¢

Invited Paper

A String Search Processor LSI

KoUSUKE TAKAHASHI*, HACHIRO YAMADA* and MASAKT HIRATA®

This paper describes a new string search processor hardware architecture, LSI chip, and application. The ar-
chitecture uses the programmable sequential logic circuit (PSLC), consisting of content Addressable Memory
(CAM) and Sequential Logic Circuit (SLC) parts. The design of the SLC was based on the FSA state transition
diagram. The resultant string search processor LSI chip can store 64 variable-length pattern strings, search for
text data at 10 Mch/sec, and provide flexible matching functions such as non-anchor matching, don’t-
care matching, wild-card matching, and approximate matching. It has proved functionally effective in an ex-

perimental full-text DB search system.

1. Introduction

Recent advances in word processing have created
enormous stores of text data from which, because of
the sheer volume of data involved, desired information
can be retrieved only with difficulty. When such sec-
ondary data as keywords or content summaries are
available, the search time for the text data contents may
be relatively short, but the time required for prepara-
tion of the secondary data may be prohibitively long [1].

In most actual office environments, where the volume
of text data produced is very large, such secondary data
preparation cannot be expected to be available. The
desired information must be found directly by sear-
ching text data. Many type-string search processors
have been studied over a long period to accelerate text
data searching (2, 3]. However, few practical processor
LSI chips allow both fast and flexible string matching,
because it is difficult to design processors that have the
complex string-matching functions required to search
for actual redundant text data.

The authors have developed a new string search hard-
ware architecture for faster and more flexible string mat-
ching, and have also developed a practical string search
processor LSI chip, using CMOS device technologies.
The LSI chips were applied to an experimental text DB
system for the search function check, in which methods
were studied for applying them effectively to achieve
faster full text DB search systems.

2. Requirements for the String Search Processor

2.1 Overall Concept of the Text DB Search System
Figure 1 shows the concept behind the full-text DB

*NEC corporation, 4-1-1, Miyazaki, Miyamae-ku, Kawasaki-city,
213 Japan.

Journal of Information Processing, Vol. 13, No. 2, 1990

I/0 Data Bus

HOST
!

Switch
QCM p——

TDM

TDM: Text DB Memory

QCM: Query Condition Memory
SRM: Search Result Memory
QRP: Query Resolution Processor
SSP: String Search Processor

> QRP
SSP SRM

Fig. 1 Concept of the full-text DB search system.

search system, in which the string search processor
(SSP) is used to search the text DB memory (TDM) con-
tents. In this system, the SSP outputs during the full
text search are stored in the search result memory
(SRM) before being transferred out. Such query condi-
tions as present and past keywords, as well as Boolean
logic operations, are stored in the query condition
memory (QCM). The keyword part is set to the SSP and
the logic operation part is set to the query resolve pro-
cessor (QRP).

Since a list of past query conditions in the QCM can
be displayed on the CRT screen, synonymous keywords
may be selected from the past query condition
keywords, to be added to the present query conditions.
The input text data can be searched by the SSP to store
many synonymous keywords. The QRP is used to in-
dicate the matched text record numbers by applying
AND or OR operations to the SRM output.

2.2 String-Matching Functions

The SSP in such a text DB search system must have a
large memory capacity for very long string matching
and parallel short string matching, because it must store
many kinds of synonymous keywords. Furthermore
since text data may show a wide variation in formatting
and may have spelling ambiguities, the SSP must have

184

Table 1 Basic string-matching functions.

Matching String Text Data
Mode Pattern /Matched String
Anchor DEFG ABC DEFG HDEFGHI
MNon-anchor DEFG ABCDEFGHDEFGHIJK
FLDC DE?G ABCDEFGABCDEXFG
VLDC DE-FG ABCDEFCGDEABCFGH
Wiid-card DEFG ABCDE?GHABD?EFGH
Approximate DEFG ABCDEGDECFGHDEAG

such flexible string matching functions as anchor,
nonanchor, fixed length don’t care (FLDC), variable
length don’t care (VLDC), wild-card, and approximate
matching functions [2, 3, 8], as shown in Table 1.

Figure 2 shows the basic function block diagram for
the SSP, which contains several string matchers for
parallel string matching between input text strings and
stored pattern strings. Each string matcher compares
the strings in the specified matching mode. The encoder
is used to output the pattern string class code by detec-
ting which string matcher generates the string match
signal. This signal is output through the OR gate from
either of the string matchers.

3. Conventional String Matching Hardwares

Typical string matching methods in current string
search hardware architectures are categorized into four
methods: (Parallel Comparator) PC, (Cellular Array)
CA, (Finite State Automaton) FSA and (Dynamic Pro-
gramming) DP. Typical string matching circuits based
on these methods are shown in Figs. 3(a), (b), (c), and
(d).

The PC method employs a character comparator ar-
ray or CAM (Content Addressable Memory) and an in-
put string shift register [SR] for string comparison [1, 2,
9]. It permits parallel string matching, because the
CAM can store many pattern strings. It also allows
variable-length string matching, if the CAM is designed
to have the capability to handle don’t-care character
matching. The encoder (ENC) is used to discriminate
parallelly matched strings. The advantage of the
method is the speed; the disadvantages are the poor str-
ing matching functions and the required hardware size.
When the wild-card and approximate matching func-
tions are required, this kind of hardware becomes pro-
hibitively large.

The CA method employs a set of contiguously con-
nected cells, as shown in Fig. 3(b), each of which con-
tains character registers R1 and R2, a character com-
parator [COMP], and a flag-bit register [SR] to hold a
flag-bit as a matching signal for a partial string [3, 10,
11, 12]. The strict string match signal is output from the
last (right-side) cell flag-bit register. Multiple string mat-
ching is realized by arranging such cell arrays in
parallel. Numerical-range string matching can also be
accomplished by modifying the comparator [COMP],

K. TAKAHASHI, H. YAMADA and M. HIRATA

{ ﬁrlngZIStnngS I String 1}

Strlng 1

o
; W iString
String2 IL)=
L 8 |Class
String3 E Code
STRING = |
MATCHERS

{ Match Signal

Fig. 2 Blockdiagram of the basic string search processor func-

tion.
[SR
[T [
CAM
(Patterns)
Text —CLK
- ‘Pattern
CLK§
(b) CA method
il
FSA Table Memory
(RAM) %2
Code
(c) FSA method
Text [R1 H nz—H na IPattern
R1— - u —]
Cell {1 ~ i1 [g
\ HsXer a
R2— R] rna.:
TGl |2
L s
R3 H
L WA

(d) DP method

Fig. 3 Typical string-search processor configurations.

though approximate string matching is not so easily
realized.

The advantage of the CA method is the speed. The
disadvantage is the poor string matching functions.
Though the regular circuit configuration is convenient

v—

RATA

ne-

a1

L e

o WA 31 S e

L o RO

A String Search Processor LSI

for VLSI design, the hardware size is not always small,
since it contains discrete registers R1 and R2.

The FSA method employs the RAM to store the FSA
state transition table data [13, 14]. The RAM response
to each input character consists of the state code and str-
ing class code. The state code is fed back to the RAM gd-
dress decoder through the state register. Complex string
matching is possible, based on the FSA, though FSA
transition table composition is troublesome, particu-
larly in the nonanchor string-matching mode. The
advantage of this method is the large number of
string-matching functions, though this does not permit
approximate string matching. The disadvantage is the
amount of hardware required for parallel string mat-
ching. _)

The DP method employs a two-dimensional cell
array [8, 15, 16]. Each cell consists of a character com-
parator [C], a string distance register [R], and a
distance minimum selector [S], as shown in Fig. 3(d).
Pattern string characters in registers R1, R2, and R3 are
simultaneously compared with the text string characters
in registers R1’, R2’, and R3’ over all cells. The
character comparison result in each cell is used to
calculate the shortest string distance together with other
string distances coming from neighbouring cells, based
on the DP algorithm. Therefore, though approximate
string matching can be accomplished, the array hard-
ware becomes very complicated, especially in the wild-
card and don’t-care matching modes. The advantage of
the method is the rich matching functions, while the
disadvantage is the complex hardware design.

As described above, PC and CA methods are conve-
nient for realizing a simple SSP by means of LSI chips,
and the FSA method for realizing an SSP that uses
RAMs available on the market. The DP method is
useful for realizing approximate string matching func-
tions, though it is difficult to design.

4. A New String Search Hardware Architecture

4.1 Programmable Sequential Logic (PSL) Method

The design concept used in the proposed string search
processor divides the string comparison process into
character comparison and sequence comparison pro-
Cesses, so that the processor may consist of (Content Ad-
dressable Memory) CAM or Random Access Memory
(RAM) character comparison, and a sequential logic cir-
cuit (SLC) for sequence comparison [4]. The design of
the SLC was based on the flag-bit shift control on the
shift register. Figure 4 shows an SLC used to detect the
bit pattern string ‘‘1101°’. The D-flip registers RO, R1,
R2, R3, and R4 are connected serially by AND gates,
and are used as shift registers for flag-bit signals.

Let the i-th AND gate input signal at time 7 be express-
ed by Yi(#), and the content of the register R,, i=0, 1,

2,3, 4 be expressed by Si(z), The SLC then operates as
follows:

185

CLK

Bit
string E

Fig. 4 Sequential logic circuits for detecting *“1101°’.

0691620631

Fig. 5 FSA state transition diagram.

Se(t—1)=1,
SI)=Y1(2)xSo(1 = 1), Sy(1)=Y(£)*Si(t —1),

Si()=Y3(0)*Sx(t—1), Su(t) =Y4(t)*Sy(t— 1) (1)

where the symbol* means a logical product operation.
Therefore, Si(t) becomes 1, only if Y.()=Y (- 13
=Yy(t—=2)=Y(t—3)=1 or if the bit string “1101”’ is
applied clock by clock. This Su(z) is used as a matc
signal for the bit string “‘1101”’.

This means that the SLC detects the bit pattern
“1101”" by checking whether or not a flag-bit ““1’’ on R,
can reach R, by applying the bit string. This flag-bit
shift on the flag bit registers, connected by AND gates,
Is coincident with the state transition on the FSA state
transition diagram to allow the specified bit pattern
““1101”’ to be accepted, as shown in Fig. 5, because the
state on the node S, can be transferred to the last node
Sq only when the string ““1101°’ has been applied clock
by clock. On this analogy, it is easy to realize a complex
bit-string-matching FSA by using the registers and
AND gates.

The fixed bit pattern “‘1101°’, shown in Fig. 4, can be
programmably changed by using a RAM or CAM, in-
stead of a wire connection. Additionally, the bit pattern
can be converted to a character code pattern by widen-
ing the RAM address code or expanding the CAM word
width. Figures 6(a) and (b) are examples of an SLC us-
ing a RAM and CAM, respectively. The RAM and
CAM can store the character string X;X,X;X,. The out-
put from the RAM or CAM can made to correspond to
the bit string Y,Y,Y,Y,.

Let the input character code be X(?) at time ¢:

Yi(#)="1" if X(¢) is equal to Xi;

other wise, Yi(t)=0"". Q)

If the RAM or CAM for storing the character codes X1,
Xs, X3, X, outputs bit signals Y, Yy, Y3, Y, for the
SLC, the SLC can detect the character string instead of
the bit string. Thus, Figures 6(a) and (b) are called pro-
grammable sequential logic (PSL) circuits.

In each PSL circuit, fast string matching can be
achieved when character match signals output from the
memory part are fed in parallel to the SL part. Though
this PSL circuit is similar to the DB filter [15], it is

186

Code

Fig. 6 Programmable Sequential Logic (PSL) circuits using CAM
(a) and RAM (b).

different from a DB processor as regards the flexible cor-
respondence to an FSA. An the analogy with the FSA,
PSL circuits make it easy to design string search pro-
cessors with approximate string-matching functions.

4.2 Approximate and Strict String Matching Prin-
ciples

Figure 7 shows a PSL circuit for both approximate
and strict string matching. The design of this PSL cir-
cuit is based on the FSA shown in Fig. 8, and allows it
to accept strings with such character errors as insertion,
omission or substitution, and no character error. The
CAM storing the character pattern string X, Xz, X3, X4
outputs the match signal Y,, Y,, Y3, or Y4, becoming
““1”” when the input character code X(¢) is equal to X,
Xz, X;, or Xq.

In the state transition diagram, shown in Fig. 8, the
state is initially put on node Sjo. If the matching signal
Yiis ““1”’, the state on node S, is sent to node S, for
strict matching. The state on S, _ is sent to node S, _,
for an omission error. If Yiis <‘0”’, the state on node S;,
is sent to nodes S, and S, for insertion and substitu-
tion errors, respectively. In general, the state on the j-th
row nodes is expressed as follows:

Si()=Y(0)*{S;-1(t = 1) +8;- 2t =1}
+Yi(t)*{S;—u(t— 1) +S;— -1z — 1), 3)

where i=1, 2, 3, 4 and j=1, 2. Then the S;(¢) is the
state on node S;; at time ¢. The symbol + means a logical
OR operation.

Thus, if state S;4(¢) is ‘‘1’’, the input character string
is judged to be exactly the string X,X,X;X,. If the state
Sa(t) 1s ¢“1°’, the input character string is judged to be
any of the one-error strings, such as X;X;Xu,
X1 X2XsX3Xa, or X, X:XsXs. If Sia(2) and S,u(¢) are not
““1”’, the input character string is judged to be neither a
strict nor an approximately matched string. These state
transition processes can be realized on register arrays in
the PSL circuit shown in Fig. 7.

That is, the flag-bit registers and AND gates in the
SLC part in Fig. 7 are arranged according to the state
nodes and state transition paths in the FSA shown in

K. TakaHASHI, H. YAMADA and M. HirRATA
| CAM

[:: Text
T) T i T
Y| e | w

T _
CLK
Y3 i Y4 .
iRd | [Rs Rs, LLD—E \j’ Rs3 W 1) Rs4si'.rlct
1 5 B e sianal

elimiter L_
egister < < < Approx
Set match
R Rai R Ra Raq signal
CLK

Fig. 7 PSLC for approximate string matching.

Fig. 8 FSA state transition diagram for accepting strings with
single-character errors.

Fig. 8. Therefore, the flag-bit registers R,, Rs, Ry, R,
and R;, for the SLC part are used for strict string mat-
ching. Registérs R, , Ra,, R, and R,, are used for approx-
imate string matching.

The flag-bit signal Sy on the 1st R, is always “‘1”°.
Since Y,(¢) becomes ‘‘1’’ when X(¢) equals the character
code X, stored in the CAM, the content of register R,
becomes ‘“1”’. Next, if Y,(¢) is “‘1”’, then registers Ry,
and R, become ““1’’. If Y,(¢) is “‘0’’, the contents of
both R,, and R,, become ““I’’. When Y,(?), Y (t+1),
Y3(¢+2), Yuo(f+3) become ‘1’ clock by clock, then the
content of register R, becomes ““1°’. If there is one omis-
sion, insertion, or substitution error in each input
character string, the register R4 content becomes ‘1°’.
This approximate string matching process can be easily
expanded to allow more than two errors, by adding one
or more arrays of flag-bit registers to the circuit in
Fig. 7.

5. String Search Processor LSI Chip

5.1 LSI Circuit Configuration

The proposed string search processor, based on the
PSL hardware architecture, has been designed as showr
in Fig. 9. An LSI chip has been realized by using CMOS
device technology [S5, 6]. This circuit consists of a se
quential logic circuit (SLC) part and a CAM part.
which are divided into 64 segments so that can accep!
both variable-length long and short strings.

The CAM part was designed to realize a large
memory capacity by using eight blocks of the 2-bii
SRAM. Individual bit lines for the SRAM were con:
nected with wired AND lines, to make a match signa
for 16-bit character code [4, 5, 6]. As a result, an 8-Kbi
CAM part was realized by 16-Kbit SRAM cells. Using
two SRAM cells per CAM cell, this CAM part store:

Y2 = Ee]

A String Search Processor LSI

516bitCode
N K |#1sLc _
#1 ~— D - -§
#FV > S
IR S =
47 1 S| O
*8 TEE Y R
Ll va s] l‘\:\d :\RS i;a 3
#8 - [~ # # a s
RAM| |[RAM|RAM s G| o
4 #64sLC ;) ||38|4
#505 > 7 210
0 :E
g 5
#511 > NS
*p12 S ﬁ % L/
#520 - T A
K K Anchdr
%528 " Wild-card
CAM part SLC part

Fig. 9 SSP LSI circuit configuration.

and detects don’t-care characters. A write-in operation
for storing the character strings and delimiter codes is
achieved by giving the character and delimiter codes
together with address codes in the write mode. The
erase operations is carried out by resetting all SRAM
cells before the write-in operation.

The SLC part is designed to be a cascade connection
of 64 SLC segments. Each SLC segment consists of 16
flag-bit registers R, and R,, 32 or more AND gates, and
8 delimiter registers Ry, to detect a variable-length str-
ing shorter than eight characters, since most English
language words are shorter than eight characters. If the
last delimiter register R, in a segment holds ‘1”’, the
flag bit for the last register R; or R, in the segment is
used as a strict or an approximate string match signal,
and is then sent to the encoder. If the register R, holds
“‘1”’ on another position of a segment, then the flag-bit
register R, on the corresponding position is set at “‘1”’
as a flag-bit signal.)

The delimiter signals for R, are supplied from the
CAM when the delimiter character is input after each
character string. In the anchor matching mode, the R,
contents are set to the register R; only when the anchor
code character is applied to the CAM part. In the nonan-
chor mode, this signal is always set to ‘“1’’. To detect
variable-length string longer than eight characters, the
last delimiter register R, is not *‘1”’, except on the last
segment of serially connected SLCs.

As explained above, the PSL-method string search
processor has such versatile string matching functions
as variable-length anchor or non-anchor string mat-
ching, don’t care string matching, and approximate str-
ing matching.

Additionally, the variable-length don’t-care (VLDC)
circuit was inserted between the SLC and the encoder.

187
Table 2 Hardware architecture comparison.

Matchi Hard . -
Mgtlioglg \? &f;ﬁée Parallelism Fiexibility

PC o e} X

CA A A A

FSA X A o

DP X X o)

PSL o) o o

This circuit holds the string match signal for the SLC to
be used as an anchor flag-bit signal for the next SLC.
Thus, this processor can detect compound strings con-
taining several strings in sequence by using serially con-
nected VLDCs. Furthermore, the SLC circuit has hid-
den OR gates between the CAM part and the SLC part.
These OR gates give ‘‘1”’ instead of the output signal Y,
from the CAM when the wild-card character is given. In
this way, wild-card string matching is accomplished.

On the other hand, the CAM part always compares
the input character code with all the stored characters.
All character match signals are simultaneously sent to
the SLC part. Therefore, fast parallel string matching
can be accomplished. Table 2 shows a comparison be-
tween these conventional methods and the proposed
PSL method. The PSL method is judged to be better
from many view points, since the hardware is regularly
configured to mate it convenient for higher-density
VLSI circuit design, even if complex string matching
functions are requested.

5.2 LSI Chip Characteristics

The SSP LSI chip has been fabricated by using dou-
ble-metal-layer 1.6-um CMOS technology. It consists
of an 8-Kbit CAM part and a 20-K gates logic part. It
was mounted on a 72-pin PGA package, as shown in
Fig. 10. Its characteristics are summarized in Table 3.
This LSI chip has proved successful when operated at
10 MHz. That is, 64 pattern strings can be stored at 10
Mch/sec and can be parallelly compared with input str-
ings contiguously transferred in at 10 Mch/sec. This
means that the CAM part performs about 5 billion
character comparisons per sec.

5.3 Function Test in the Full Text Search System

The experimental full-text DB search system, which
was developed to evaluate the matching functions for
the SSP LSI chip, was realized by attaching a string
search board containing two SSP LSI chips to the per-
sonal computer PC-98. In this system, all the string mat-
ching functions shown in Table 1 were accomplished by
each SSP LSI chip. Though the text data transfer rate
was restricted to less than 1 MB/sec, the SSP operation
time was very short.

g .
T

. vage

188
Table 3 SSP LSI chip characteristics.

Operation Strict/ Approximate, Anchor/Non-an-
chor

Modes FLDC/VLDC, Wild-card/Priority En-
code

Storage Max. 512 characters

Capacity Max. 64 strings (8 char./string)

Pattern Average < 8 characters

String Length Max. 512 characters

Max. 10 M char./sec; 5 G char.com-

Search speed
parison/sec

Power Consump. 800 mW (10 MHz)

LSI chip 217,600 transistors/8.62 x 12.76 mm

1.6-um CMOS double-metal-layer
technology

Device process

<TEL

6. Design Considerations for Faster Text DB Search
Systems

For faster full-text DB search systems, the string
search processor should be used, together with (search
result memory) SRM, (query condition memory) QCM,
(query resolve processor) QRP, and (text database
memory) TDM, as shown in Fig. 1, because the perfor-
mance can be improved by fast text data transfer and
the query comparison process [7].

6.1 Query Resolution Process

A normal search operation consists of setting
keywords to the SSP from the QCM, searching the
TDM content (text data) by means of the SSP, and stor-
ing the resultant string match signals in the SRM. The
QCM stores the the keywords and Boolean logic opera-
tion for the present query. The full-text search time is
minimized by increasing the rate for the text data
transfer from the TDM to the SSP. The final search
results are output from the QRP by re-entering the
keywords into the SSP after operation codes such
AND, OR, and NOT were set in the QRP.

Figure 11 shows a query resolve processor (QRP)
with the SSP and the SRM. The counter for records is
used to make addresses for the SRM. The SRM stores
match signals, indicating which text records contain
keywords (patten strings) stored in the SSP. The match
signals are serially output from the SRM every time the
keyword is input to the SSP, under the control of the
timing pulse generator TPG.

The QRP has two shift-registers, SR1 and SR2, and
three logic circuits, LG1, LG2, and LG3. The Not, OR,
and AND operation codes in the query conditions are
set to registers NOT-R, OR-R, and AND-R in LGlI,
LG2, and LG3, respectively, where NOT-R, OR-R, or
AND-R is set to ‘“1”’ when the NOT, OR, or AND
operation is specified. The SR1 is used to load the out-

K. TakaHASHI, H. YAMADA and M. HIRATA

i
i
QRR SR1
!
i SR2
ﬂ
ssP [
SRM

it
1 Matched
TPG I\o—l Counter Record No]:>

Record delimiter

Fig. 11 A query resolution processor for the SSP.

put from the SRM and to find the logical product of the
content received from the SRM and the content stored
in the SR1. The SR2 is used to find the logical sum of
the content transferred from the SR1 and the content
stored in the SR2. The final match signals are output
from the SR2. That is, the timing when ‘‘1°’ is output is
the matched record number, which is converted to the
matched record address by the outside RAM.

6.2 Query Comparison Process and Learning Effect

The query comparison process is started by the opera-
tion of the SSP to store either new or old keywords, and
compares the new query keywords with the past ones,
which are stored together with the past search results in
the QCM.

If no keyword matching occurs in the SSP, the text
data in TDM must be searched by the SSP, and the
search result must be stored in the SRM. If any
keyword matching occurs in the SSP, the full-text
search operation can be omitted, because the corre-
sponding text search result is output directly from the
SRM or QCM. Let the hit ratio h be the probability that
a matching keyword is detected by the SSP. Then, the
averaged search time is approximated as (1-h) times the

A String Search Processor LSI

full-text search time T. When an incorrect hit occurs,
the keywords causing the incorrect hit are added to the
SSP and QCM. Therefore, the hit ratio h is enhanced as
the search operations are increased. This learning effect
improves the performance.

6.3 Performance of the Full-Text Search

The full-text search speed will be restricted by the rate
at which text data are transferred from the TDM to the
SSP, even if the SSP can operate faster. Since the
transfer rate is 1 Mch/sec in such actual TDMs as disc
memories, the search time for 1 billion characters of
text becomes 1000 seconds in the normal mode. Using
the above query comparison process, most text search
times can be reduced to the time for inputting
keywords. The 1000-second text search operation takes
place only when a query mismatch occurs, though it
seldom does so for hit ratios higher than 0.9.

7. Conclusion

This paper described a string search processor hard-
ware architecture that uses the PSL method. The SSP
LSI chip, based on the above architecture, has been de-
veloped by using CMOS device technology. String-mat-
ching functions, such as variable-length anchor, nonan-
chor, FLDC, VLDC, wild-card, and approximate
string-matching functions have been included. The
keyword store and text search operation speed in this
LSI chip was 10 Mch/sec.

The application of this SSP to the full-text DB search
system was evaluated and improved. It was suggested
that the query comparison process in the SSP is useful
for improving the performance.

189
Acknowledgement

The authors thank the people concerned with the SSP
in the C&C system research labs., the microelectronics
research labs, and the system LSI development division
for discussions and support in the development of the
LSI chip.

References

1. LEeg, D. and LocHovsky, F. Text Retrieval Machine, Sec. 14 of
Office Automation, Springer-Verlag (1985), 338-376.

2. FaLouTtsos, C. Access Methods for Text, Computing Surverys,
17, 1 (March 1985), 49-74.

3. HovrrLaar, L. A. Text Retrieval Computers, IEEE Computer
(March 1979), 40-50.

4. TakaHASHI, K. et al. A New String Search Hardware Architec-
ture for VLSI, Computer Architecture News, 14, 2 (June 1986), 20-
27.

5. Yamapa, H. et al. A High-Speed String Search Engine, J. of
Solid State Circuits, SC-22, 5 (Oct. 1987), 829-834.

6. HIrRATA, M. et al. Versatile Data String Search Processor, JEEE
J. of Solid State Circuits, SC-23, 2 (April 1988), 329-335.

7. TakaHASHI, K. et al. Intelligent String Search Processor to Ac-
celerate Text Information Retrieval, Proc. of IWDM ‘87 (Oct. 1987),
440-453.

8. HaLL, P. A. V. et al. Approximate Matching, Computing
Surveys, 12, 4 (Dec. 1980), 381-402.

9. BEAVEN, P. A. Interactive Data Retrieval Apparatus, USP4, 433,
392 (Feb. 1984).

10. MukHOPADHYAY, A. Hardware Algorithms for String Process-
ing, Proc. of ICCC 80 (1980), 508-511.

11. FosTER, M. J. and KunG, H. T. The Design of Special Purpose
VLSI Chips, IEEE Computer (Jan. 1980), 26-40.

12. HaLaAs, A. A Systolic VLSI Matrix for a Family of Fundamen-
tal Searching Problems, INTEGRATION, the VLSI Journal (Aug.
1983), 1-17.

13. ROBERTS, D. C. A Specialized Computer Architecture for Text
Retrieval, 4th Workshop on Computer Architecture (Aug. 1978), 51-
59.

14. HaskIN, R. Hardware for Searching Very Large Text Databases,
SIGIR, 15, 2 (March 1980), 49-56.

15. CHEN, H. D. et al. VLSI Architecture for String Matching and
Pattern Matching, Pattern Recognition, 20, 1 (1987), 125-141.

16. YianNiLos, P. N. A Dedicated Comparator Matches Symbol Str-
ing Fast and Intelligently, Electronics/Dec. 1 (1983), 113-117.

17. PRAMANIK, S. Performance Analysis of a Database Filter Search
Hardware, IEEE Trans. Comput. C-35, 12 (Dec. 1986), 1077-1082.

(Received October 5, 1989)

