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This paper presents the design of the dataflow single-chip processor EMC-R, from the viewpoint of advanced
dataflow schemes and their implementations. The EMC-R is a component chip of a highly parallel (with more
than a thousand processors) dataflow machine, the EM-4. The distinctive features of the chip are: (1) a refined
dataflow model called a strongly connected arc model, (2) two simple and fast synchronization mechanisms, (3)
a versatile pipeline design, (4) a RISC-based architecture, (5) a packet-switching unit design with extra facilities
and (6) a maintenance architecture for monitoring the system. After these features have been examined, the con-
figuration architecture of the EMC-R that makes them possible is shown. There are six units on the chip: a swit-
ching unit, an input buffer unit, a fetch and matching unit, an execution unit, a memory control unit and a
maintenance controller. The EMC-R is a CMOS gate array chip containing 45, 788 gates and using 255 signal
pins. It is mounted on a PGA ceramic package. The EM-4 prototype system with 80 EMC-Rs is available now.
Its hardware system was completed in April 1990. The purposes of the prototype are (1) to evaluate several ar-
chitectural aspects by measuring dynamic characteristics of practical programs, (2) to confirm the architectural

design, and (3) to provide an environment for software development.

1. Introduction

Current VLSI technology will give rise to gigantic
computing systems whose component chips contain
millions of transistors. Our main concern is how to con-
struct a real computing system that provides maximum
performance for certain (or various) applications.
There are two main architectural techniques for gaining
high performance in such systems: parallelization and
pipelining. Fundamentally, the degree of parallelism ex-
tracted must be as high as possible and the pipeline
pitch must be as fine as possible, provided they are
sufficiently filled with operations. Parallel computers
have special problems that do not appear in sequential
computers: (1) extracting parallelism from a user pro-
gram, (2) mapping a huge number of tasks among many
processing elements (PEs), (3) task synchronization, (4)
latency, and (5) software writability/readability.

Dataflow architecture affords one of the most power-
ful and versatile approaches to these problems. It can
naturally extract the maximum available concurrency in
a computation, distribute tasks to a large number of
processors, and distribute tasks to stages of a circular
pipeline [4] in each processor. It can afford a flexible syn-
chronization mechanism, and it can naturally eliminate
latency-dominant processing. It can also provide an
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elegant programming paradigm for high productivity of
software. In addition, a dataflow machine can be con-
structed with a large number of identical processing
elements (PEs) and repetitive data networks. This is ad-
vantageous for VLSI implementation.

Several architectures based on the dataflow concepts
have already been proposed [1,2,3,4,5,9,10, 11].
Among these, architectures based on a tagged token
dataflow model [1, 2,4, 5,9] utilize a packet flow
scheme and a circular pipeline organization. This type
of architecture has already been used in some real ex-
perimental dataflow machines. One of them, the
SIGMA-1 [5,8], a dataflow supercomputer for
numerical applications developed in the authors’
laboratory, has 128 PEs and performs at a speed of
more than 100 MFLOPS, with 1985 CMOS gate-array
technology. The SIGMA-1 illustrates the possibility
that a tagged-token dataflow machine can surpass con-
ventional von Neumann computers. It also shows some
of the problems of a simple dataflow model and a
dataflow architecture.

Current research on the SIGMA-1 has two themes.
One is software development and the other is construc-
tion of a next-generation dataflow computer. The first
includes high-level language design, compiler design,
optimization techniques, construction of benchmark
programs, and evaluation of dataflow schemes and of
the machine itself. A high-level language, DFC-II, was
designed and its compiler is now under development



166

[15]. The second theme is to construct a feasible and
much more efficient ultra-parallel computer. For this
purpose, a dataflow machine called EM-4 [12, 13] is
now under development.

The EM-4 is a next-generation dataflow computer
whose target structure has more than 1,000 PEs. It will
overcome several defects of dataflow machines, which
are described later, and can be implemented with state-
of-the-art or very-near-future technology. For compact
implementation, the PEs of the EM-4 must be packed
onto a single chip. The single chip processor is called
EMC-R.

This paper describes the design of the EMC-R from
the viewpoint of advanced dataflow schemes and their
implementations. Section 2 presents the design
philosophy and features of the EMC-R. Section 3
describes the architecture of the single-chip processor,
focusing especially on its configuration architecture.
Section 4 shows the implementation of the EMC-R. It
also describes the system organization and current
status of the EM-4 prototype. Finally, Section 5 con-
cludes this paper by summing up the distinctive features
of the EMC-R and indicating directions for future
works on the EM-4,

2. Design Philosophy and Features of the EMC-R

The problem is how to construct an extremely fast,
useful, and reliable computer. To do so on the basis of
a dataflow concept, four main questions must be
answered: how to overcome the defects of the dataflow,
how to make a highly parallel computer feasible, how
to provide a maintenance structure for all the hardware
and software, and how to support high software produc-
tivity. The EM-4 and the EMC-R have been designed
with close attention to these points. The following
subsections will show how the first three questions are
answered in the machine design. The last point will be
discussed in another paper.

2.1 Model-Level Refinement of Dataflow

Conventional dataflow architectures, including the
DFM [1], the MIT Dataflow Machine [2], the Man-
chester Dataflow Machine [4], and the SIGMA-1 [5] in-
volve, several problems in realizing an efficient and feasi-
ble computer [12]: (1) a circular pipeline does not pro-
vide advanced control and thus does not work well as a
““pipeline’’ for less parallel execution; (2) simple packet-
based architecture cannot exploit registers or a register
file efficiently; (3) the time complexity and hardware
complexity for matching are high, if a colored token
style is adopted; (4) the packet flow traffic is too heavy;
(5) current dataflow concepts cannot provide flexible
and efficient resource management mechanisms; and (6)
it takes much time to eliminate garbage tokens. Note
that these problems have become clear to the authors
through their experience with the SIGMA-1.

To overcome these defects, the EM-4 uses several
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novel concepts and techniques. One of the most impor-
tant is the refinement of the dataflow model itself. The
improved model is called a strongly connected arc
model.

An exact definition and detailed consideration of the
strongly connected arc model are given in other papers
[7, 12, 13]; here, the essence of the model and its im-
plementation in the EM-4 will be described.

In this model, dataflow graph arcs are classified into
two categories: normal arcs and strongly connected
arcs. A dataflow subgraph whose nodes are connected
with strongly connected arcs is called a strongly con-
nected block (SCB). In addition to the normal data-
driven firing, there is a restriction on firing rules: a
strongly connected block must be executed exclusively;
that is to say, if one of the nodes in a certain SCB is
fired, then the PEs concerned with the SCB can only ex-
ecute the nodes in the same SCB. This means that each
SCB is executed as a critical section in the PEs
dedicated to it.

There are many ways of realizing the strongly con-
nected arc model. In the EM-4, all the nodes of one
SCB must be allocated to a single PE; the entrance of
an SCB is a unique node; there is no child function in
the SCB; SCB-tokens are stored in a register file, not
transferred as a packet; the firing order of the SCB
nodes is determined statically, that is, by a compiler;
and every SCB is executed not by a circular pipeline but
by an advanced control pipeline.

This implementation gives the EM-4 several advan-
tages over conventional dataflow machines: it allows a
fine-pitch advanced control pipeline, the matching
overhead is greatly reduced in SCB execution, packet
traffic is greatly reduced, flexible resource management
can be easily provided by the SCB, and garbage tokens
are greatly reduced, since there are no garbage tokens in
the SCB.

For example, Figure 1 shows two programs for deriv-
ing the Fibonacci number on the EM-4. Figure 1(a)
shows a conventional dataflow graph and Figure 1 (b)
shows a dataflow graph with the strongly connected arc
model. The series of hexagons in Fig. 1 (b) makes an
SCB whose execution has the same effect as the dotted
rectangle in Fig. 1 (a). In the EM-4, the execution of
the rectangular part in Fig. 1 (a) takes twenty-three
clocks and the corresponding part in Fig. 1 (b) takes
only nine clocks. That is to say, the latter is about two
and half times as fast as the former. This difference is
caused by the register-based advanced control pipeline
(described in Section 2.3) and by the elimination of the
packet distribution overhead.

2.2 Simple and Fast Synchronization

To reduce the heavy overhead of data matching, two
synchronization (or execution ordering) mechanisms
are provided in the EMC-R. One is for static ordering in-
side the SCB. The other is called a direct matching
scheme, and is for packet-data matching.
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(a) Normal Dataflow
Fibonacci Program

Fig. 1

The direct matching scheme offers data matching
with no associative mechanisms. In this scheme, a mat-
ching location is indicated by an absolute address. This
is possible since a full matching area for an active func-
tion is allocated at the function invocation time, that is,
if there are N packet-data matchings in a certain func-
tion, N words are allocated to correspond to the instruc-
tion at each node. There is no special hardware for the
matching itself or for the matching address generation.
Note that this is a dynamic data matching scheme ap-
plicable to any type of tagged-token dataflow machine.

Another paper [13] gives a detailed description of the
direct matching scheme. Its hardware is fairly small and
there are no mis-hits of associative access at the cost of
memory efficiency. In the EM-4 prototype, each PE can
provide 1,000 active function instances at the same
time, so memory hang-up seldom occurs.

2.3 Versatile Pipeline Design

As mentioned in Section 2.1, a circular pipeline can-
not stand by itself, since it does not match the register
architecture and cannot perform advanced control. On
the other hand, introduction of the strongly connected
arc model brings a register-based advanced control
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Fig. 2 Pipeline Organization of the EMC-R.

pipeline. The EMC-R thus adopts two integrated
pipelines (Fig. 2). One is a circular pipeline with a direct
matching scheme, and the other is a register-based ad-
vanced control pipeline for executing SCBs. The latter
is called a strongly connected pipeline.

There are four stages in a circular pipeline: (1)
Template Number Fetch, for linkage between a mat-
ching location and an instruction (L), (2) Matching
(R/CW, R/CD) or Immediate Fetch (IMF), (3) Instruc-
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tion Fetch and Decode (FD), and (4) Operation Execu-
tion and Packet Output (E). Each stage is performed in
a single clock (80 ns). This pipeline has several bypass
routes, that is to say, special packets such as a remote
read/write of a memory word bypass the first stage,
and packets for single-operand instructions bypass the
second stage.

In the second stage, the matching operation contains
the following actions: read the matching word from
memory (R), check whether the partner is present or
not, and eliminate it if it is present (CD) or write the
packet data in the same memory place (CW) if it is ab-
sent. The direct matching scheme allows all these ac-
tions to be executed in a single clock. In the fourth
stage, instruction execution and packet transfer are
realized in parallel, that is, the header part of the result
packet is transferred at the same time as the instruction
execution.

The latter two stages are shared with a strongly con-
nected pipeline. In an SCB execution mode, the instruc-
tion is executed in parallel with the fetch and decode of
the next instruction. Simultaneously, the fetch of the
next instruction operands is carried out. Normally the
results are stored in a register file, but they can also be
sent as a packet. The operands are usually fetched from
a register file in parallel with the previous instruction ex-
ecution.

In this way, two kinds of pipeline are integrated
naturally.

2.4 RISC-Based Single-Chip Architecture for a
Highly Parallel Computer

So as to shorten the execution cycle and reduce the
development period, the EMC-R adopts a RISC ar-
chitecture. We consider the features of a RISC chip for
a parallel processor PE to be as follows:

(1) Small instruction set, (2) A few instruction for-
mats, (3) A few addressing modes, (4) Register file
architecture, (5) No microprograms, (6) A few packet
formats, (7) Simple synchronization mechanisms, (8)
Communication unit is included and performs in-
dependently of the processing.

Of these, (1)-(5) are the same as in a sequential RISC
chip. A parallel RISC chip needs (6)-(8) for efficiency
and simplicity.

The EMC-R has only (1) twenty-six instructions, (2)
four instruction formats, and (3) two addressing
modes. In addition, (4) it adopts a register file architec-
ture, (5) it has no microprograms, and (6) the packet for-
mat is fixed. In the EMC-R, (7) the synchronization
mechanisms are static ordering of the SCB nodes and
direct matching, which are both fairly simple and fast.
As will be mentioned in the next section, (8) it contains
a communication unit that performs independently of
the processing sections. The EMC-R thus meets all of
the above conditions.
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Fig. 3 Processor-Connected Omega Network.

2.5 Interconnection Network with Extra Facilities

The essential conditions that should be satisfied in the
interconnection network of a huge computing system
are as follows [14]. It needs only O(N) hardware, where
N is the number of PEs. The distance between any two
nodes is less than or equal to O(logN). The structure is
uniform, that is to say, any PE can see the network
structure in the same way. Self-routing is possible.
Store and forward deadlock (SFD) does not occur or
can be easily prevented.

As a network topology satisfying all these conditions,
a processor-connected omega network is selected. Very
few other networks have all of the above features. For
instance, a completely connected network, a star, a
hypercube, a crossbar switch, a benes network, a
bitonic network, and a logN network such as multistage
omega do not satisfy the first condition. A mesh does
not meet the second condition. A tree does not meet the
third one.

Figure 3 shows the topology of the processor-con-
nected omega network, where the number of nodes is
twelve. Each box indicates a switching unit connected
to a processor. As previously mentioned, the EMC-R
contains the switching unit. One reason for this is to
reduce the packet transfer time between a switch and a
PE. Other reasons are the low hardware cost and design
simplicity. This unit and a processor can work in-
dependently and concurrently.

Features of the EM-4 network are grouping
mechanisms  with  circular paths, self-routing
algorithms, an SFD prevention mechanism with spiral
buffer methods, and automatic load balancing facilities,
all of which are reported by Sakai et al.[14].

2.6 Maintenance Architecture

A maintenance architecture means an architecture
for initializing, hardware/software debugging, and
dynamically monitoring a whole system. The
maintenance architecture of the EM-4 has three layers:
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a maintenance host, a maintenance for a group of PEs,
and maintenance circuits on the EMC-R chip. Features
of the third layer will be presented here.

The fundamental functions of the on-chip
maintenance logic are reading and writing registers on a
chip and memory words independently of the system
clock and system data path. Almost all the registers
have an auxiliary address dedicated to maintenance. In
addition, there are several special registers on the chip
indicating the PE conditions, such as the number of in-
structions executed, the load status of the PE, the status
of a packet buffer, the error conditions of the PE, and
the usage of structure memories. The maintenance pro-
cessor can read and write the PE registers and an outer
memory even while the dataflow programs are running.
A dynamic monitor can thus be provided.

The maintenance architecture also supports fault ex-
ecution in a PE. Each PE can send an interrupt signal to
the maintenance processor when an error occurs. If this
happens, the system clock of the group to which the PE
belongs can be halted immediately. The host can in-
vestigate the cause of the error by reading the status of
the PE, and can resume the execution from the point at
which it was halted after necessary treatment.

2.7 Other Features

Besides the described features above, the EMC-R
also provides facilities for fast branching operations,
efficient structure handling, lazy (demand-driven) opera-
tions, and fast function control. They are described and
closely examined in other papers [12, 13].

3. Architecture of the EMC-R

Figure 4 shows a block diagram of the EMC-R,
which realizes all the features described in the previous
section. The chip consists of six units: a Switching Unit
(SU), an Input Buffer Unit (IBU), a Fetch and Matching

Switching Unit

““|  Input Buffer
B Unit

Off-Chip

Memory

Execution Unit

Maintenance Controller

Fig. 4 Block Diagram of the EMC-R.
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Table 1 EMC-R Hardware Profile of EMC-R.

Gates Pins

UNIT
Switching Unit 9,179 176
Input Buffer Unit 9,295 —
Fetch and Matching Unit 3,610 —
Execution Unit 20,620 —
Memory Control Unit 1,664 67
Maintenance Controller 1,420 12
Total 45,788 255

IPO|: OPO
1IP1 OP1
— —

PRC : Packet Rewriting or2 1P2
Controller
RC : Routing Controller

Loap JBU EXU

Fig. 5 Switching Unit Organization.

Unit (FMU), an Execution Unit (EXU), a Memory Con-
trol Unit (MCU), and a Maintenance Controller.

This paper focuses on showing configuration architec-
ture of the EMC-R. The following subsections describe
the roles and features of each unit. The EMC-R’s in-
struction, set is listed in the description of the EXU;
details of each instruction, the packet format, and in-
struction formats are presented in another paper [12].

Table 1 shows the gate usage and pin usage of each
unit and of the EMC-R itself. The EMC-R consists of
45,788 CMOS gates and 255 signal pins. Each entry in
this table will be referred to in the following subsec-
tions.

3.1 Switching Unit

The Switching Unit (SU) is an element of a processor-
connected omega network. It switches packet data in-
dependently of and concurrently with other units. In
the EM-4, all packets have the same size of two words.
The first part is called the address part, and contains a
destination address, a packet type, and flags. The sec-
ond part is called the data part, and includes data and a
data type.

Figure S shows the SU organization. The SU has two
input ports, IPO and IP1, from other PEs, and one in-
put port, IP2, from the EXU. It also has two output
ports to other PEs, OP0 and OP1, and one output port,



170

OP2 to the IBU. IPO and IP1 have their own buffers,
which are divided into three banks. These buffers are
called spiral buffers, and provide facilities for SFD
prevention [14]. Each IP has a routing controller
(RC) that performs self-routing and each OP has an
arbitration controller that controls the selection of a
multiplexer connected to the outer world PE.

An automatic load balancing mechanism is im-
plemented in a packet rewriting controller (PRC). The
PRC rewrites a special packet named MLPE (minimum
load PE), which always contains the minimum load PE
address and its load. The rewriting is perfectly embedd-
ed into the data switching action, so the speed of the
MLPE packet is as same as that of a normal packet.

Normal packet transfer occurs as follows. A packet
address part arriving at the SU is stored in a buffer, if it
is empty. In the next clock, the data part of the same
packet is input and, simultaneously, an arbitration at
the multiplexer (MUX) in the IP, routing in the RC,
and an arbitration at the OP are carried out. After that,
still in the same clock, the packet address part is stored
in the next SU spiral buffer, if possible. In this way, the
SU perfectly transfers one word per clock, including
routing and arbitration.

According to Table 1, the SU contains 9,179 logical
gates. These include three bank buffers, each of which
has two words, and each word has thirty-nine bit data.
Each network port (IPO, IP1, OP0O, OP1) has thirty-
nine data lines, two request lines, and three ready lines,
that is to say, forty-four lines per port, or a total of 176
1/0 lines.

3.2 Input Buffer Unit

The Input Buffer Unit (IBU) is a buffer for packets
waiting for matching and execution. A 32-word FIFO-
type buffer is implemented on the chip. If an overflow
occurs, a part of the off-chip memory is used as a sec-
ondary buffer, with a capacity of 8 K words. If the sec-
ondary buffer overflows, then the trap occurs and the
maintenance controller informs the host of it.

Figure 6 shows the configuration of the IBU. It con-
sists of a dual port RAM realizing a FIFO buffer a data
multiplexer, a data register (DR) for a temporal packet
storage, a FIFO write counter (FWC), a FIFO read
counter (FRC), a memory write counter (MWC), a
memory read counter (MRC) and control circuits. They
are implemented with 9,295 CMOS gates, as seen in
Table 1.

3.3 Fetch and Matching Unit

The Fetch and Matching Unit (FMU) performs all the
synchronizations and sequencing in the EMC-R. It pro-
vides facilities for data matching, instruction fetch, and
pipeline control, including the switching of two
pipelines described in Section 2.3. The first three stages
of the pipeline illustrated in Fig. 2 are all carried out in
the FMU, except the decoding. Figure 7 shows the
organization of the FMU. It consists of a packet ad-
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FMU

DR: Data Register MWC: Memory Write Counter
MRC: Memory Read Counter FWC: FIFO Write Counter
FRC: FIFO Read Counter

Fig. 6 Input Buffer Unit Organization.

IBU

PAR : Packet Address Register
IAR : Instruction Address Register
MDR : Matching Data Register

PDR : Packet Data Register

Fig. 7 Fetch and Matching Unit Organization.

dress register (PAR), an instruction address register
(IAR), a packet data register (PDR), a matching data
register (MDR), several multiplexers, and control
logics. The FMU contains 3,610 CMOS gates, as shown
in Table 1.

The control of the IAR is rather more complex than
that of conventional von Neumann computers and con-
ventional dataflow computers. The next instruction ad-
dress is obtained in the following way. In a normal
dataflow mode, a successful packet matching causes an
instruction fetch, where the PAR data are used with
minor reform. In a strongly connected mode, which
means that a strongly connected block is being ex-
ecuted, there are two cases. If there is no branching, the
physically next address ((IAR)+ 1) is used. Otherwise,
the branching address is given by the instruction word.

The status of the FMU means the synchronization
status or sequence control status of the EMC-R. In the
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EMC-R, the synchronization is performed only in the
FMU and the execution is done only in the EXU. The
status register of the synchnonization are clearly
separated from those of the execution. This is
called synchronization-execution separation, which is
one of the major features differentiating the EM-4 from
other advanced architectures {10, 11].

3.4 Execution Unit

The Execution Unit (EXU) executes an instruction,
that is to say, it mainly performs the last pipeline-phase
operation illustrated in Fig. 2. Table 2 shows the instruc-
tion set of the EMC-R. There are twenty-six instruc-
tions, which are classified into four categories:
arithmetic and logic, branch, memory or register read
or write, and communication. Arithmetic and logic in-
structions and communication instructions can make a
packet and send it to an outer PE. Memory read or
write instructions are the only instructions that can com-
municate between the off-chip memory chips and the
EMC-R. Since there is no space on the chip for floating-
point circuits, floating-point calculations will be per-
formed by an off-chip commercial VLSI, if necessary.
This is why Table 2 has no entries for floating-point in-
structions. These instructions will be realized by L
(memory load) and S (memory store) instructions with
special tag values.

Figure 8 shows the structure of the EXU. The EXU
contains an instruction register (IR), an instruction
decoder (DCD), operand registers (OP0O and OP1), an
ALU, a barrel shifter (BSHF), a multiplier (MUL), a
versatile comparator (CMP), packet generation cir-
cuits, and control circuits.

In an execution cycle, the contents of operand
registers are sent to the ALU, and so on. Then the opera-
tion is carried out according to the instruction in the IR.
The result is sent in a packet or stored in a register file.
All of these actions are executed in a single system
clock, and, in the same clock, the fetch and decode of
the next instruction and data load from the FMU or a
register file are performed.

Table 1 indicates that the EXU contains 20,620 gates,
including register file handware.

3.5 Memory Control Unit

The Memory Control Unit (MCU) arbitrates memory
access requests from the IBU, the FMU, and the EXU,
and sends data between the off-chip memory and the
EMC-R chip. The MCU consists of an arbitration con-
troller, an address multiplexer, and a data multiplexer.

The off-chip memory size can be up to five
megabytes. It is used for a secondary packet buffer, a
matching store, an instruction store, a structure store,
and a working area.

The amount of MCU hardware is 1,664 gates, as
shown in Table 1.
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Table 2 EMC-R Instruction Set.

INSTRUCTION

CATEGORY ACTION
Arithmetic and Logic ADD integer add
SUB integer subtract
MUL integer multiply
DIVO preparation of division
DIVl element of division
DIV2 correction of division
DIVR remainder of division
DIVQ quotient of division
SHF shift
AND bitwise AND
OR bitwise OR
EOR bitwise exclusive OR
NOT bitwise NOT
ALUTST ALU test
Branch BEQ branch by equality
BGT branch by greaterness
BGE branch by greaterness or
equality
BTYPE branch by data type
BTYPE2 branch by two data types
BOVF branch by overflow

Memory or Register L load from memory

Read or Write S store to memory
LS load and store from/to
memory
LDR load from register
Communication GET send packet for remote
operation
MKPKT make packet by two
operands
FMU
MUX MUX
OP0 OP1
REGISTER
MCU FILE
:;| Packet Gen. Ci .
e ~EXU

SU
IR : Instruction Register OPi: Operand Register i

Fig. 8 Execution Unit Organization.

3.6 Maintenance Controller

The Maintenance Controller plays the role described
in Section 2.6. It uses a clock independent of the system
clock.
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MIR : Maint. Inst. Reg. MAR : Maint. Address Reg.
MAD : Maint. Addr. Decoder MWDR : Maint. Write Data Reg.
MRDR : Maint. Read Data Reg. MSR : Maint. Status Reg.
CLF : System Clear Flip Flop

Fig. 9 Mainterance Controller Organization.

Figure 9 shows its organization. The Maintenance
Controller consists of a maintenance status register
(MSR), a maintenance instruction register (MIR), a
maintenance address register (MAR), a maintenance ad-
dress decoder (MAD), a data multiplexer for reading
register data, a -maintenance write data register
(MWDR), and a maintenance read data register
(MRDR).It contains 1,420 gates, as shown in Table 1.

The table also indicates that it has 12 signal pins. But
there are no clear lines, since clearance of all registers is
carried out by writing a special flip-flop (CLF) by a
maintenance instruction.

4. Implementation

The EMC-R chip was fabricated in October 1989,
and its hardware complexity is listed in Table 1. The
design is based on the 1.5 micron rule and the typical
gate delay is 0.7 ns. Peak performance is 12.5
MIPS/chip, since it uses an 80ns-clock and every in-
struction needs only one clock for its execution. This
peak is obtained at the SBC execution. On the other
hand, in a normal dataflow mode, the peak perfor-
mance is 6.3 MIPS/chip. The chip has 299 pins, of
which 255 are used for signals and 43 are used for
power supply. The EMC-R chip is mounted on a
ceramic PGA package.

The EM-4 testbed system is now operational, and is
used for testing the EMC-R and the PE group board,
and for developing basic software. Each PE group
board has five EMC-Rs, network connection lines in-
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Fig. 10 The EM-4 Prototype.

side the group, a maintenance processor, timing coor-
dination circuits, and some other circuits. An
assembler, an initialization software, a basic monitor,
and some other software are already usable. In the testb-
ed, each PE has about 1.2 MB of off-chip SRAM.
The first version of the EM-4 prototype, which has 80
PEs, was constructed in April 1990. The aims of
developing the prototype were to confirm the architec-
tural design of the EM-4, to provide an environment for
developing software, and to evaluate several aspects of
the architecture by measuring dynamic characteristics
of practical programs. Figure 10 shows the structure of
the prototype. It consists of sixteen PE group boards,
each group of which is the same as that on the testbed
system, a global network, a packet interface switch
board, a packet interface processor, and a host com-
puter. A global network is implemented on two mother
boards and with thirty-two cables connected between
PE group boards. A packet interface switch offers a
packet interface between packet interface processor and
the prototype system. One of the roles of a packet inter-
face processor is gathering information from the pro-
totype, such as trace information and program results.
It also provides system information, such as function
skeletons and program-starting information as a
packet. The host computer is a workstation whose role
is the top-level control of the whole prototype system. It
is connected by VME buses to maintenance processors,
each of which is dedicated to the PE group
maintenance. It is also connected to the packet interface
processor to pass on machine information. Initializa-
tion, debugging, monitoring, display of results, and
software development are ordered by the host com-
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puter.

The peak performance of the prototype is now 1
GIPS. Our experience with the EM-4 prototype will
soon show whether the EMC-R chip design is adequate
or not, whether the network performance is sufficient or
not, and whether the maintenance architecture is power-
ful enough or not.

5. Conclusion

This paper has described the basic design of the
EMC-R from the viewpoint of advanced dataflow
schemes and their implementations. The main features
are model-level refinement with a strongly connected
arc dataflow model, two simple and fast synchroniza-
tion schemes, versatile pipeline design, RISC-based
design, and interconnection networks with extra
facilities. In addition, the paper has described the chip
architecture that makes these features possible, and its
implementation.

Several other advanced dataflow architectures are
now being developed; for example, lannucci’s hybrid ar-
chitecture [10], Nikhil’s PRISC architecture [11], Gao’s
non-data flow architecture [16], and Amamiya’s
Datarol architecture [17]). The EM-4’s distinctive
features are as follows:

(1) A strongly connected arc model for versatile
resource management and fast local execution, as de-
scribed in Section 2.1

(2) Integration of two kinds of pipelines, as de-
scribed in Section 2.3

(3) Separation of synchronization and execution, as
described in Section 3.3

(4) Single-chip architecture with a data switching
element.

In addition, the EMC-R is the only advanced
dataflow processor that has actually been fabricated
and is now fully functional. The EM-4 prototype with
80 EMC-R’s has been implemented and the overall
debugging phase finished. The performance evaluation
will be presented in a forthcoming paper.

The abovementioned features are expected to ac-
celerate the system performance significantly and to
give system flexibility, which will not be obtained by
any other architecture. These effects will be measured in
the EM-4 prototype from the Spring of 1990.

The current problems with the EM-4 are to develop
software and to show the actual effectiveness of the
EM-4 architecture and the EMC-R chip. High-level
language design and compiler design are the two of the
most significant problems with the software. There will
be two main high-level language. One is DFC-II [15],
which will soon be available on the SIGMA-1 machine,
and the other will be an advanced functional language
based on EMLISP, which was developed on the EM-3
machine [9]. Two phases are being considered for a com-
piler. In the first phase, high-level languages are
translated to an intermediate language, which expresses
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pure dataflow graphs. This is necessary for both high-
level languages. The second phase creates the actual
machine code. This includes the automatic creation of
strongly connected blocks and optimal structure alloca-
tion.

Future problems are to construct a machine with
1,000 PEs, to consider a PE chip architecture contain-
ing far more transistors, to establish optimization
methods for such systems, and to reconsider and ex-
pand the strongly connected arc model.
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