494

Research Contribution

Knowledge Table: An Approach to Speeding up the
Search for Relational Information in Knowledge Base

TORAMATSU SHINTANI®

For efficient knowledge utilization, it is necessary to keep relationships between knowledge such as isa (or
class-inclusion) relationships, hasa (or part-whole) relationships, and data dependencies. These relationships
are useful for managing and manipulating knowledge to solve complex problems in connection with belief revi-
sion, default reasoning, multiple inheritance within networks, and so on. Unfortunately, keeping and using
them can be ineffective and expensive when large numbers of relationships are involved. In this paper, a
knowledge table is introduced as a structure that allows effective searching for relationships in knowledge bases.
The knowledge table is a table-like representation for keeping relationships that precludes the need for depth-
first searching. To create the table, we use logical bitwise computations for searching and for representing rela-
tionships. This greatly speeds up the search for the relationships and makes it easy to find loop structures among

the relationships.

1. Introduction

Recently the importance of knowledge utilization as
well as knowledge representation and acquisition has
been recognized and discussed [14]. To realize efficient
knowledge utilization, it is necessary to keep and
manage relationships between knowledge in an effective
manner. Current Artificial Intelligence (AI) programs
contain well-known relationships such as isa (class-in-
clusion), hasa (part-whole) [19, 23] and data dependen-
cies [6, 9]. These relationships are useful for managing
and manipulating knowledge to solve complex prob-
lems in connection with belief revision [6], default
reasoning [8], multiple inheritance within networks [3],
and so on. For example, belief revision [2, 11] has two
main processes for maintaining a knowledge base: sear-
ching for current false assumptions and removing them.
Searching can be performed effectively by using
dpendency-directed backtracking (or nonchronological
backtracking) [12]. When assumptions are removed in
order to maintain a knowledge base, it is necessary to
remove or modify other assumptions that depend on
them. To maintain the relationships, we need to repre-
sent graphs in a computer. There are two common
representations for a graph: adjacency matrices and
lists [1]. Each representation has advantages and disad-
vantages as shown in Table 1.

The adjacency list representation is convenient for
representing these relationships, and is frequently used
for representing relationships in AI programming.

*International Institute for Advanced Study of Social Information
Science, FUJITSU LIMITED.

Journal of Information Processing, Vol. 13, No. 4, 1990

Table 1 Advantages and disadvantages of the two graph representa-
tions.

Main advantages Main disadvantages

Matrix (1) It is convenient for
getting knowledge on
whether certain arcs are
present.

(1) Keeping a graph takes
up much storage area.
(2) Initializing a matrix
takes time.

Lists (1) It does not need much
storage area to represent
a graph structure.
(2) It is convenient for
representing directed tree
structures.

(1) It is inconvenient for
getting knowledge on
whether certain arcs are
present.

(2) It is inconvenient for
grasping the whole
relational structure.

Generally, the representation is not effective when a
large number of relationships is involved, since it is
necessary to check the relationships by using a depth-
first search. This consumes much time. The knowledge
table proposed in this paper was designed to speed up
the search and manage relationships effectively and inex-
pensively in a knowledge base. We also propose a
mechanism for the knowledge table, and present details
of methods for constructing knowledge tables in C-Pro-
log [7] on the VAX11/780.

There are five sections. Section 2 outlines the basic
idea of the knowledge table, and describes its basic
structures and manipulations. Section 3 gives detailed
procedures for manipulating the knowledge table. Sec-
tion 4 describes procedures for detecting loop structures
in a knowledge table. Section 5 gives experimental
results of their performance. Section 6 consists of some

- concluding remarks.

Knowledge Table: An Approach to Speeding up the Search for Relational Information in Knowledge Base

2. The Knowledge Table

In this section, we propose a new representation for
managing relationships. We call this representation a
“knowledge table.”’ The knowledge table introduces
the advantages of (1) the adjacency matrix, which
enables us to check the adjacencies of objects easily, (2)
the reachability matrix, which enables us to check
reachability between objects without depth-first sear-
ching, and (3) the adjacency list, which saves storage
for representing graph structures.

2.1 The Basic Structure

In order to realize the above features, we first repre-
sent the relations of knowledge by a table, which in-
tegrates an adjacency matrix and a corresponding
reachability matrix, and then reduce it to a set of list ex-
pressions. For the reasons given above, we adopt the
relational view of data in order to represent a
knowledge table. The knowledge table keeps relations
between objects (or knowledge) by representing infor-
mation on the adjacency and reachability matrix of a

@Living thing
isa 1sa
15a isaf isa isa{ *\isa
@cat| |®8ird| |®Dog ®Tree ®Bush

is ‘\iia

| @Pigeon J ‘ ®Sparrow |

Fig. 1(a) Example of isa relationships.

® @ @@ 56 @0 ®@ 0
®Living thing T+ : : § & : I
@Animal
QPlant
@cCat
®8ird
®Dog
@Pigeon
@Sparrow
@Tree
®Bush | 9

Fig. 1(b) Example of a knowledge table.

495

directed graph. For example, the isa hierarchy in Fig.
1(a) can be represented in the knowledge table in Fig.
1(b), which has information on the adjacency and
reachability of the isa hierarchical graph. Each element
of the table has a number ““1°’, ““2”’, or ¢‘0’’, which in-
dicates (1) adjacency, (2) reachability, or (3) no relation
between the objects (or nodes), respectively. The unfill-
ed elements in the table in Fig. 1(b) should have ¢‘0’’s,
but these are omitted because of the economical list
representation of the table described below. Adjacency
can be expressed by an arc (m, n) of a hierarchical
graph, where node m is called a parent of node n, and
node 7 is called a child of node m. If node m is not adja-
cent to node n and there is a path of arcs from m to n,
then their relationship is represented by reachability,
and node m is called an ancestor of node n and node n
is called a descendant of node m. In Prolog programm-
ing, the 10-column and 10-row table can be represented
by the following 10 assertions of an 11-place predicate

[4]:

isa_table(living_thing, 0, 0,0, 0, 0, 0, 0, 0, 0, 0).
isa_table(animal, 1,0,0,0,0,0,0,0,0,0).
isa_table(plant, 1,0,0,0,0,0,0,0,0,0).
isa_table(cat, 2,1,0,0,0,0,0,0,0,0).
isa_table(bird, 2,1,0,0,0,0,0,0,0,0).
isa_table(dog, 2,1,0,0,0,0,0,0,0,0).
isa_table(pigeon, 2,2,0,0,1,0,0,0,0,0).
isa_table(sparrow, 2,2,0,0,1,0,0,0,0,0).
isa_table(tree, 2,0,1,0,0,0,0,0,0,0).
isa_table(bush, 2,0,1,0,0,0,0,0,0, 0).

In this representation, the predicate isa_table represents
the name of the table, and each row of the table can be
uniquely identified by the first argument of these asser-
tions. The other arguments represent the column posi-
tions of the table. This relational representation is not
efficient, because it consumes too many computational
resources, and it does not have sufficient flexibility for
the table to be extended.

From a computational point of view, we can repre-
sent the same information by omitting unnecessary
“0’s, as follows:

isa_table(table_column, [living_thing, animal, plant,
cat, bird, dog, sparrow,
tree, bush]).

isa_table(animal, [n.
isa_table(plant, [1.
isa_table(cat, [6]).
isa_table(bird, 6.
isa_table(dog, [6]).
isa_table(pigeon, [266]).
isa_table(sparrow, [266]).
isa_table(tree, [18]).
isa_table(bush, [18]).

In this representation the first assertion records a list in
which the order of rows of the knowledge table is kept.
The first argument of the other assertions identifies the

496

"00000000000000000110"

Fig. 2 The binary digit string.

rows of the table and the second argument, which is a
list, represents the significant relational information of
the rows. We call the list an adjacency-reachability list.
In this case, it is not necessary to represent the first row
“‘living_thing’’ of the table because it has no significant
relational information. The fourth row of the table is
represented by the assertion ‘‘isa_table(cat, [6])’. Its
second argument, which is the adjacency-reachability
list ““[6]"’, represents the sequence of column elements
“2,1,0,0,0,0,0, 0,0, 0 of the row. That is to say,
the sequence of elements of the row can be represented
by one decimal digit in the adjacency-reachability list.
We consider the sequence of the elements to be the
binary digit string *‘00000000000000000110”’, where
one element of the row is indicated by two binary digits
and arranged in the opposite order. The first, second,
and remaining elements of the row, namely 2, 1,and 0 . .
. 0, are represented by the last two binary digits of the
string ‘‘10”’, the second last pair of binary digits ‘01",
00’ . .. “‘00”, as in Fig. 2. Then we can represent the
sequence of column elements of the row by using the
decimal digit 6, since the binary digit string
£¢00000000000000000110”” is considered to be the
binary number ‘‘110°’, which is the decimal number 6.

Using the adjacency-reachability list we can over-
come the disadvantages and exploit the advantages of
the two representation for graphs, as shown in Table 1.
In the following sections. We shall give details of its
manipulations.

| P~ N is 2 ~ (5-1), Result is 74 \/ N.

N = 16
Result = 90

yes

| P~ Nis 2 ~ (4-1), Result is 74 /\ N,

N =28
Result = 8

yes

| 2~ N is 2 ~ (5-1), Result is 74 /\ N.

N = 16
Result = 0

yes

| 7= N is 2 ~ (4-1), Result is (\N) /\ 74.

N =28
Result = 66

yes

T. SHINTANI

2.2 The Basic Idea of the Manipulations

To manipulate a knowledge table, we need to realize
the following basic functions for adjacency-reachability
lists of the table: (1) setting, (2) checking, and (3) reset-
ting of Nth bit of a binary digit string.

Here, we describe the outline of implementation for
these basic functions in C-Prolog. For case (1), we can
use the predicate ‘“V’’, which achieves integer bitwise
disjunction. We can set a bit at the Nth position of a
binary digit string S, by bitwise disjunction between S,
and integer 2™,

For case (2), we can use the predicate ““A”’, which
achieves integer bitwise conjunction. To check a bit at
the Nth position of a binary digit string S., we first get a
number N, by bitwise conjunction between S, and in-
teger 2", and then check it as follows: The bit is set at
the Nth position of the string S. if the number N, is 1;
otherwise (N.=0), the bit is not set.

For case (3), we can use the predicates ‘““A” and
““\””. The predicate ¢\’ achieves integer bitwise nega-
tion. we can reset a bit at the Nth position of a binary
digit string S, by bitwise conjunction between S, and in-
teger N,, where N, is obtained by applying integer bit-
wise negation to integer 2V,

To clarify the above description, a few examples are
given in Fig. 3. Example 1 shows the setting of a bit at
the fifth position of the binary number ““1001010”’ (that
is, the decimal number 74). The result is the decimal
number 90, which is ““1011010’’ as a binary number. Ex-
ample 2-1 shows that the fourth bit of the decimal
number 74 is set. Example 2-2 shows that the fifth bit of
the decimal number 74 is not set. Example 3 shows the
resetting of a bit at the fourth position of the decimal

% Example 1

% Example 2-1

% Example 2-2

% Example 3

Fig. 3 Examples of basic manipulations for knowledge tables.

Knowledge Table: An Approach to Speeding up the Search for Relational Information in Knowledge Base

number 74. The result is the decimal number 66, which
is ‘1000010’ as a binary number. By extending these
basic functions, we can get functions for a knowledge
table that can manipulate two bits of a binary digit str-
ing at a time.

3. Manipulating the Knowledge Table

A knowledge table is composed of a set of assertions
whose second arguments are adjacency-reachability
lists. An adjacency-reachability list is composed of
some positive integers. These integers represent
elements of columns (or rows) of a knowledge table.

Here, for convenience of description, we define terms
for the knowledge table. We call integers in an adjacen-
cy-reachability list list-elements. Elements are elements
of a knowledge table, which identify its rows (or col-
umns). Adjacency-reachability lists are kept orderly.
These lists are arranged according to the order of rows
(or columns) of a knowledge table. To keep the order,
we use a list whose elements are the names of the rows
(or columns) that have adjacency-reachability lists. We
call the list the L, list.

In this section, we define and show the frameworks of
procedures for managing a knowledge table by using a
C-Prolog syntax and a few of its built-in (system-de-
fined) procedures (or predicates). Since Prolog is a sim-
ple but powerful and practical tool for programming in
logic, we can show the procedures with clear, readable,
and concise Prolog programs.

3.1 Adding a New Relation

We show the procedure for adding a new relationship
to a knowledge table, that is, the addition of a new arc
(n, m) where n is the tail node and m is the head node of
the arc (n, m). We can define it as follows:

Procedure Al
add_arc_to_Knowledge_Table(Head_node, Tail_node,
Knowledge_table):-
(exist_node(Tail_node, Knowledge_table),
find_position(Tail_node, Knowledge_table,
T_position)

make_position(Tail_node, Knowledge_table,
T_position), %Procedure A2
record_arc_in_Knowledge_table(Tail_node,
T_position,[], Knowledge_table)),
(exist_node(Head_node, Knowledge_table),
find_position(Head_node, Knowledge_table,
H_position),

make_position(Head_node, Knowledge_table,
H_position)),
(take_adjacency_reachability_list(Tail,
Knowledge_table, A_r_list_of_T),
transform_01_to_10(A_r_list_of_T,

A_r_list_of_T_2), %Procedure A3

497

set_rtype_at_T_position(A_r_list_of_T_2,
T_Position, 1,

New_list_of_Head) %Procedure A4

set_rtype_at_T_position([], T_Position, 1,
New_list_of_Head)),
(find_sub_knowledge(Head_node, Knowledge_table,
Descendants), %Procedure AS
set_type_at_T_positions(Descendants, T_position,
Knowledge_table, 2) %Procedure Al.1
true),
record_arc_In_Knowledge_table(Head, node,
H_position, New_list_of_Head,
Knowledge_table).
Procedure Al.1
set_type_at_T_positions([}, T_positions,
Knowledge_table, Type).
set_type_at_T_positions([N1|N2], T_positions,
Knowledge_table, Type):-
find_position(N1, Knowledge_table, N1_position),
take_adjacency_reachability_list(N1, A_r_list),
set_rtype_at_T_position(A_r_list, T_position, Type,
New_list), %Procedure A4
record_arc_in_Knowledge_table(N1, N1_position,
New_list, Knowledge_table),
set_type_at_T_positions(N2, T_positions,
Knowledge_table, Type).

Procedures have comments which are made between the
operator ‘“%’’ and the end of a line. For example, Pro-
cedure A1 has five comments, which show the names of
procedures to be referred to.

In Procedure Al, the predicate

exist_node(Node, Knowledge_table)

is used to test whether a node currently belongs to a
knowledge table, where the first and second arguments
represent the node and the knowledge table respec-
tively. The predicate

find_position(Node, knowledge_table, Position)

finds the position number of a node in the L, list of a
knowledge table, where the first, second, and third
arguments represent the node, the knowledge table, and
the position number, respectively. The predicate

take_adjacency_reachability_list(Node, Table, List)

retrieves the adjacency-reachability list of a node from
a knowledge table, where the first, second, and third
arguments represent the node, the knowledge table, and
the list, respectively. The predicate

record_arc_in_Knowledge_table(Node, P, A_r_list,
Table)

is used to record the adjacency-reachability list A_r_/ist
of a node Node is a knowledge table Table by inserting
the node at the Pth position in the L, list of the

498

knowledge table and by asserting the adjacency-
reachability list A_r_list of the node, where the first and
fourth arguments represent the node and the knowledge
table, respectively.

3.2 Retrieving and Removing Relations

Procedure AS in Procedure Al is used to retrieve the
sub-nodes of node Nj from a knowledge table. The pro-
cedure can be specified as in Appendix A. The
mechanism of this procedure is to check all the adjacen-
cy-reachability lists of nodes in a knowledge table to
find whether the relation type ¢‘1°’ or ‘‘2”’ exists at the
Nth element position in each of the adjacency-reachabil-
ity lists, where the position number N is determined by
the position of node Nj in the L list of the table. This
mechanism is equivalent to checking a row of a
knowledge table sequentially to find whether a relation
type exists at the Nth column position of the row.

The procedure can be changed simply to retrieve the
children of a node from a knowledge table by modify-
ing the predicate ‘‘find_sub_knowledge2”’ so that it
finds only the relation type ““1°’.

Procedure A6 for finding super nodes can be specified
as in Appendix A. Using the predicate
“find_super_knowledge’’, we can find the parents of a
node if the third argument is ‘1’’. We also find the
ancestors of a node if the third argument is “‘2’’. This
procedure is equivalent to checking a column of a
knowledge table sequentially to find whether a relation
type exists at each row position of the column.

To clarify the description, a few examples are

| 7?- add_to(n3,Cnl,n2],isa).
n3

yes

| P~ add_to(n7,Ln3,n4,n5],isa).
n?7

yes .

f ?- add_to(n8,Ln7,n63,isa).
n8

yes
| ?- children(n4,X,isa).

X = En7]

yes
| ?- descendants(n4,X,isa).

X = Cn8]

T. SHINTANI

presented in Fig. 4. The predicate ‘‘add_to(Tail, Heads,
Kt)”’ is equivalent to the predicate
“‘add_arc_to_Knowledge_Table’’ in Procedure Al, and
the nodes Heads are considered to be parents of the
node Tail in knowledge table Kt. The predicate
‘‘children(Node, Children, Kt)”’ retrieves the children
of a node from knowledge table K¢, whereas the
predicate ‘‘descendants(Node, Descendants, Kt)”’
retrieves descendants of a node from Kt. These two
predicates are obtained from Procedure A5 by modify-
ing it. The predicate ‘‘subs’’ is equivalent to the
predicate ‘‘find_sub_knowledge’’ in Procedure AS. The
predicate ‘‘parents(node, Parents, Kt)’’ retrieves
parents of a node from knowledge table K¢, whereas the
predicate ‘‘ancestors(node, Ancestors, Kt)’’ retrieves
ancestors of a node from Kr. These two predicates are
specified simply by using the predicate
“find_super_knowledge’” in Procedure A6. The
predicate ‘‘supers(Node, Supers, Kt)’’ retrieves all the
super knowledge of the node from knowledge table K.
This predicate is also obtained from Procedure A6 by
modifying it.

In order to remove a node and its relations from a
knowledge table, we can specify the following pro-
cedure by using Procedures AS and Al.1.

remove_from(node, Knowledge_table):-
find_position(Node, Knowledge_table, Position),
find_sub_knowledge(Node, Knowledge_table,
Descendants), %Procedure AS
remove_adjacency_reachability_list(Node,
Knowledge_table),

@ @

@ @
7

(26)

Te;_ subs(n2,X,isa). | ?- ancestors(n7,X,isa).

X = Ln3,n7,nB]

yes yes

| ?- parents(n7,X,isa).
X = Ln3,n4,n5]

yes yes

X = Lnl,n2]

| ?- supers(n8,X,isa).

X = Lnl,n2,n3,n4,n5,n7,n6]

Fig. 4 Examples of retrieving relations from a knowledge table.

Knowledge Table: An Approach to Speeding up the Search for Relational Information in Knowledge Base

set_type_at_T_positions(Descendants, Position, 0).
%Procedure Al.1

In the procedure, the predicate

remove_adjacency_reachability_list(Node,
Knowledge_table)

is used to remove the adjacency-reachability list of the
node in the knowledge table.

3.3 Propagating Reachabilities

Procedure A3 in Procedure Al is needed to pro-
pagate reachabilities effectively from parent nodes to its
sub nodes. It transforms any ‘‘01°’ element (that is, ad-
jacency) to a ‘‘10°’ element (that is, reachability) in an
adjacency reachability list. Procedure A3 can be
specified as follows:

Procedure A3

transform_01_to_10([1, [D)-

transform_01_to_1O([E11E2], New_list):-
change_01_to_10(E1, New_E1), %Procedure A3.1
New_list=[New_E1 | New_list2],
transform_01_to_10(E2, New_list2).

Procedure A3.1

change_01_to_10(N1, N2):-
Num = 178956970,
N2 is (N1« DANum)V(N1ANum)).

In Procedure A3.1, the decimal number
‘178956970
is used to represent the binary number
€“1010101010101010101010101010°°.

Using this number, we can easily transform ‘01"’
elements to ‘‘10’’ elements in an adjacency-reachability
list through efficient bitwise computations in Procedure
A3.1. If we do not use the bitwise computations, we
need to check and change all the bit elements of every
list-element of an adjacency-reachability list. The bit-
wise computations help to speed up the search for
elements.

procedure A4 in Appendix A is used to set a relation
type of ‘0”’, *‘1”’, or ‘‘2’’ at the Nth element position
of an adjacency-reachability list. This procedure is also
done effectively by using bitwise computations.

In C-Prolog [7] for the VAXI11/780, one integer
(positive decimal number) can represent 14 elements of
a knowledge table, since a decimal number is treated as
a sequence of 28 bits. If the number of the column (or
row) elements of a knowledge table is greater than 14,
the adjacency-reachability lists of the knowledge table
are composed of more than one decimal number, as
follows:

table(. . ., [77,. .., 256]).
table(fish, [266, 6557, 256, . . ., 181]).

499

3.4 Reducing Memory Space

Procedure A2 is used to reduce memory space for
representing the knowledge table. It does so by
eliminating unnecessary elements that are used for keep-
ing ‘0" relationships in adjacency-reachability lists.
The procedure can be specified as follows:

Procedure A2

make_position(Node, Knowledge_table, Position):-
take_LK_list(Knowledge_table, LK_list),
(LK list=[], Position=1

(find_sub_knowledge(Node, Knowledge_table,
Descendants), %Procedure A5
one_left_shift(Descendants, Knowledge_table),

length(LK_list, Length),
Position is Length + 1)).

The predicate
one_left_shift(Node_set, Knowiedge_table)

is used to left-shift columns elementwise. It shifts the ad-
jacency-reachability lists by one place for all the nodes
in the set Node_set in a knowledge table, where the sec-
ond argument represents the knowledge table. An exam-
ple is given to clarify the above description. we consider
the directed graph in Fig. 5, which is represented by the
knowledge table in Fig. 6.

We add to the knowledge table a new node “‘w”’,
which is a parent of the node ‘‘a’ already kept in the
table. We put node “‘w’’ at the last position in the L,
list. We call this extension of a knowledge table tail-ex-

@ ®
©

@

Fig. 5 Example of a directed graph.

ab c de

o A6 T oo

Fig. 6 Knowledge table of the graph in Fig. 5.

500

o Ao e

Fig. 7 Tail-extended knowledge table of Fig. 6.

wabed e

o e o p €

Fig. 8 Head-extended knowledge table of Fig. 6.

Table 2 number of elements required for adding rel (T, H).

1Nyl %0 INgsl =0
INupl #0 INpI=0 INg.I#0 [Ny, I=0
Tailex- (INgl+1) (INgyl+1) INI .
tension X (INgpl +2) X (INgpl+2) = INy, [+1 po
Headex- | IN, | +1 IN | IN, I +1
tension

tension of a table. Then, node ‘“‘w’’ can be added to the
knowledge table as in Fig. 7 by using Procedure Al
without using Procedure A2. The knowledge table in
Fig. 7 has many unnecessary ‘‘0’’ elements to keep node
“w,

On the other hand, to add the new node ‘“w’’ to the
knowledge table in Fig. 6, we can put it at the first posi-
tion in the L, list. We call this extension of a knowledge
table head-extension of a table. Then, node ‘‘w’’ can be
added to the knowledge table by using Procedure Al
together with Procedure A2, as in Fig. 8. Unnecessary
““0”’ elements are eliminated in the knowledge table in
Fig. 8, in contrast to that in Fig. 7, which is generated
by the tail-extension method.

Table 2 summarizes the number of elements required
to keep relationships when a new relationship rel (T, H)
is added to a knowledge table, where *‘rel’’ indicates the
name of the added relationship between T and H that
has a direction from T (tail node) to H (head node); in
other words, T is a parent of H. In Table 2, IN| is the

T. SHINTANI

number of nodes in the knowledge table. IN,| is the
number of nodes that have adjacency-reachability lists
(or parents) in the knowledge table. INg,l is the
number of sub nodes of node H, which are descendants
and children of node H. INg,| is the number of super
nodes of node H, which are ancestors and parents of
node H. N is the number of column position of node
T in the knowledge table. These numbers are specified
before rel(T, H) is added to the table, and their relation-
ships are as follows:

INI> Nyl = INgol, INI>INgpl, and [N} >Ny

If sub nodes of node H exist, it is generally more
efficient to keep node T in the table by using the head-ex-
tension method to reduce the memory space for the
table. Otherwise it should be kept in the table by using
the tail-extension method, since the head-extension
method needs more computational resources (such as
applying the predicate shifted once to the left) than the
tail-extension method. Procedure A2 is used to realize
these ideas and save memory space when a node is
added to the knowledge table.

4. Detecting Loop Structures

Procedure Al, described in Section 3.1, can detect a
loop structure simply by modifying the function of the
predicate ‘‘set_type_at_T_positions’’ (that is, Pro-
cedure Al.1) in the procedure. The predicate

set_type_at_T_positions(Nodes, Nth,
Knowledge_table, 2)

is used to set the reachability relationship ‘‘2’’ at the
Nth element position of adjacency-reachability lists of
the nodes in the knowledge table. In this process, if a
relationship number already exists at the position, it
sets the relationship to “‘0’’ before setting the number
¢“2” at the position. This setting is performed by using
an integer bitwise disjunction, as discussed in Section
2.2,

If we only use the integer bitwise disjunction to set
the number ‘‘2”’ instead of the original function, we can
easily find a loop structure by checking whether the
number ‘3’ exists or not in the elements of adjacency-
reachability lists. The number ¢‘3’’ appears in an ele-
ment of an adjacency-reachability list of a node when
the node has descendants some of which are also its
parent nodes. The new relationship ‘‘3”’ is obtained by
an integer bitwise disjunction between the numbers ‘“1”’
and ‘‘2’’, which are used to indicate adjacency and
reachability, respectively, in a knowledge table. We can
easily check whether the number ‘‘3”’ exists or not by us-
ing the predicate

find_3_in_bit_string(Number)

where the argument is a decimal number used as a list-
element of an adjacency-reachability list. It can be de-
fined as follows:

Knowledge Table: An Approach to Speeding up the Search for Relational Information in Knowledge Base

find_3_in_bit_string(Number):-
Test is (NumberA178956970)A((Number « 1)
ANumber),
Test>0.

The number 178956970 is discussed in Section 3.3.

An example is given to clarify the description and the
process of making a knowledge table. Let us keep the
graph as in Fig. 9 in a knowledge table, which contains
a loop structure. We can keep the graph in a knowledge
table by executing the directives in the following order:

:-add_to(c, [a, b], graph). %Step 1
:-add_to(e, [c, d], graph). %Step 2
:-add_to(a, [e], graph). %Step 3

The knowledge table is constructed in the same order

ab c a
Step 1 a P TABLE(1)
b
c
Step2 2
b
Setting reachabilities
c
d
e . . M
TABLE(2)
b
Step 3 : 0

o 2 0 T ®

tmng reachabilities

501

as in Fig. 9. In Fig. 9, setting reachabilities means set-
ting the reachability relationship ‘“2’’ in the elements of
a knowledge table. TABLEs (3) and (5) are obtained by
executing Procedures A3 and A4 in Procedure Al,
which adds relations to a knowledge table. TABLE (6)
is obtained by executing Procedures AS and modified
Al.l in Procedure Al. These procedures are used to
propagate reachabilities from parent nodes to their sub
nodes. First, as in TABLE (6), the number ¢‘3’’ appears
in the fifth column of the first row for node ‘‘a’’ when it
propagates reachabilities from the node ‘‘a’’ to its sub
nodes ‘‘a’’, ‘‘c’’, and ‘‘e’’, which can be found by using
Procedure A5. Here we can check and find the loop
structure by applying the predicate ‘‘find_3_in_bit_str-
ing’’ to the list-elements of the adjacency-reachability
list of node ‘‘a’’. In Section 3.4, we discussed the

o

o A & T

2i2 i1 i1 / i1:1 ¢
TABLE(4) TABLE(5)
Setting reachabilities
a b c d e
8l2ip 22 '3
b
°3:3:2:2: 2
d e eesntesfescersimannsarcrnanny;
el2:i2: P2

TABLE(6)

Fig. 9 The process of construction a knowledge table and finding a loop structure.

502

Fig. 10 Example of four relations.

number of elements necessary to keep a relationship in
a knowledge table, and we summarized the discussion
in Table 2. However, this does not hold if the
knowledge table contains a loop structure.

5. Timing Data

We conducted a few experiments to see how fast the
procedure runs. The program was written in C-Prolog
for a VAX11/780. The experiments were conducted by
setting up a sequence of linked tri-node relations. For
example, the experiment for four relations is shown
graphically in Fig. 10. One relation is composed of
three nodes, where one is a child of the others, such that
the next relation is also composed of three nodes, one
parent of which is the previous child node. The rela-
tions in Fig. 10 were made by applying the ‘‘add_to’’
directives as follows:

:-add_to(n3, [nl, n2], graph).
:-add_to(n3, [nl, n2], graph).
:-add_to(n3, [nl, n2], graph).
:-add_to(n3, [nl, n2], graph).

To compare this with the knowledge table approach,
we made another representation for keeping relations,

T. SHINTANI

which was realized by the program P in Appendix B.
Program P functions like Procedure Al. However, it
does not keep relations in the sameway as a knowledge
table, but keeps them as binary assertions. It executes a
depth-first search to find a relation. In Prolog program-
ming, the representation in program P is usually used to
represent relations. For example, in program P, the rela-
tions in Fig. 10 are represented by the following asser-
tions:

graph(n3,
graph(n3,
graph(n5,
graph(n5,
graph(n7,
graph(n7,
graph(n9,
graph(n9,

nl).
n2).
n3).
n4).
ns).
né6).
n7).
n8).

Table 3 summarizes the results of the experiments.
The compilation time means the CPU time necessary to
load each of the files that contain add_to directives or
assertions. The compilation time corresponds to the
time needed to make a knowledge table or to assert
binary representations for keeping the relations. The
memory space means the memory space necessary to
keep the relations. The supers and subs are predicates
specified in Section 3.2. The search time for retrieving
these relations is measured by the CPU time. The
predicate supers was used to find all the super-nodes of
the bottom node, which has no children. The predicate
subs was used to find all the sub-nodes of the root node,
which has no parents. In Table 3, the symbol ‘3’
shows that the program P cannot search the super-
nodes, because it causes local stack overflow of the C-
Prolog system during execution.

The practical program we realized for a knowledge
table includes an extra mechanism for checking and
keeping loop structures, which is discussed in Section 4.
In other words, the compilation time for a knowledge
table includes the time taken to check loop structures.

Although the knowledge table method requires more
memory space, as shown in Fig. 11, and more compila-
tion time, which is required when a knowledge relation
is added to a table, it is much faster than the binary

Table 3 Results of experiments.

Binary representation

Knowledge table

subs

0.50
3.88
10.72
20.69
34.06

Nurg})ers Compilation Memory Sca::‘:‘z;mw
relations time spaces ——
(sec) (byte) supers
10 0.3 760 1.00
50 1.25 3,640 6.76
100 2.27 7,240 18.57
150 4.37 10,840 35.31
200 5.45 14,440 56.79
250 7.47 18,040 X

51.41

Search time

Compilation Memory

time spaces (sec)
(sec) (byte) supers subs
1.67 1.436 0.24 0.19
17.68 8,368 1.67 0.86
51.75 20,900 4.70 1.72
110.73 37,716 9.80 2.86
183.82 58,816 15.86 3.98
262.78 84,200 23.89 5.14

Knowledge Table: An Approach to Speeding up the Search for Relational Information in Knowledge Base 503

E 120
)
e
N
w
@
8
Q
w
>
S
<]
Q
=
10 50 100 150 200 250
number of relations
Fig. 11 Memory spaces.
0.32

search time(sec)/relation

s,
v
|
1 50 100 150 200 250
number of relations

Flg 12 Search time per relation.
supers (Binary representation)
subs (Binary representation)
supers (Knowledge Table)
subs (Knowledge Table)

4x[>u

representation method in finding the super-or sub-
nodes of a node. This speed is particularly important
when searching through a large knowledge base. Fig. 12
shows the search time (in seconds) per relation for the
binary representation and for the knowledge table. The
graphs in Figs. 11 and 12 are obtained by using the data
in Table 3. We emphasize that the time required for
finding sub-nodes in the knowledge table is linearly pro-
portional to the number of relations. The ideal search
performance is realized by fully exploiting the merits of
the bitwise computation mentioned in Section 2.2. In
other words, the simple computation makes it possible
to check the relationships between nodes effectively.
For representing relationships in C-Prolog programm-
ing for the VAX11/780, the program for a knowledge
table is more complicated than program P in Appendix
B. The complication is partly due to the bitwise com-
putations. If a row of a knowledge table can be
represented with one integer, the program can be
simplified and made faster than the current program for
a knowledge table. If the number of the column

elements of a knowledge table is greater than 14, the ad-
jacency-reachability lists of the knowledge table are
composed of more than one decimal number. The com-
plication of the program is due to the management of
the resulting lists. Despite this inessential complication,
which is constrained by the design of the specific
machine, the program is more efficient than program P
in searching for super- or sub-nodes of a node. This
shows the efficiency of bitwise computations. The
search time for finding super nodes in the knowledge
table is also faster than that of binary representation, as
shown in Fig. 12. If we use a ‘‘bignum’’, the perfor-
mance of the supers is effectively improved, since we
can represent the rows of the knowledge table by using
only one bignum. The bignum is an integer of potential-
ly unbounded size, which is usually implemented and
used in Lisp systems.

In practice, it is convenient to use both the knowledge
table and the binary representation in an application,
since the knowledge table requires more compilation
time for the relationships, as shown in Table 3. The
binary representation is applied for executing the ap-
plications as an interpretive mode in which the relation-
ships are recorded quickly. The knowledge table is used
to speed up the execution by compiling the relationships
in the application. If the application and the knowledge
table are implemented by using a parallel programming
language such as GHC [13], the mechanism for the
knowledge table can be used effectively, since the com-
pilation process can be accomplished as a background
task.

6. Conclusions

In this paper, we have proposed a mechanism for a
knowledge table, and related procedures. The
knowledge table has been designed to manage effective-
ly many relationships between items of knowledge in a
knowledge base. Managing the relationships is useful
for belief revision, searching for objects from super
classes in isa hierarchies, and so on. To achieve this, we
have introduced a new representation for a knowledge
table, which adopts some of the advantages of table
representation and list representation for the relation-
ships, and uses logical bitwise computations to search
for them. The computations greatly speed up the search
for the relationships. The table-like representation has
the following advantages: (1) it is easy to check adjacen-
cy and reachability among knowledge items, (2) it is
easy to find loop structures among relationships, and
(3) the space needed for keeping the relationships is less
than in a representation using complete tables. These ad-
vantages result from combining table representation
and list representation. Research is in progress to realize
the following mechanisms {10, 11] as applications of
knowledge tables: (1) keeping data dependencies for
belief revision, (2) keeping information to control
message-passing between objects in object-oriented pro-

504

gramming, (3) keeping hierarchical taxonomies to con-
trol inheritances in frame-oriented programming, and
(4) keeping information to generate explanations for
results in rule-oriented programming.

Acknowledgment

The author would like to acknowledge the continuing
guidance and encouragement of Dr. Mitsuhiko Toda,
IIAS-SIS. He is also deeply grateful to Dr. Kozo
Sugiyama, I1AS-SIS, for reading the draft of this paper
and making many valuable comments.

References

1. AHo, A. V., HOPCROFT, J. E. and ULLMAN, J. D. The Design and
Analysis of Computer Algorithms, Addison-Wesley (1974), 55-60,
172-223.

2. DovLE, J. The Ins and Outs of Reason Maintenance, 1JCAI-83,
(1983), 349-351.

3. ETHERINGTON, D. B. and REITER, R. On Inheritance Hierarchies
with exceptions, AAA7 (1983), 104-108.

4. KowaLski, R. Logic for Problem Solving, Elsevier North
Holland, 1977.

5. McDERrRMOTT, D. and DoyLE, J. Non-monotonic Logic [, MIT,
Technical Report Memo 486, 1978.

6. McDermMOTT, D. Contexts and Data Dependencies: A Synthesis,
IEEE Trans. PAMI, PAMI-5, No. 3 (1983), 237-246.

7. PEREIRA, F. (Ed.), C-prolog User’s Manual, Version 1.4a (Sept.
1983).

8. REITER, R. A Logic for Default Reasoning, Artificial Intelligence
13 (1980), 81-131.

9. RicH, R. Atrtificial Intelligence, McGraw-Hill, 1983.

10. SHINTANI, T., KATAYAMA, Y., HirAISHI, K. and Topba, M.
KORE: A Hybrid Knowledge Programming Environment for Deci-
sion Support Based on a Logic Programming Language, Proceedings
of LPC ’86 (Springer, Lecture Notes in Computer Science 264)
(1986), 22-33.

11. SHINTANL, T. An Approach to Nonmonotonic Inference
Mechanism in Production System KORE/IE, Proceedings of LPC
'88 (Springer, Lecture Notes in Computer Science 384) (1989), 38-52.
12, StaLtMAN, R. and SussMaNn, G. Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer Aided
Circuit Analysis, Artificial Intelligence, 9, 2 (1977), 135-196.

13. UEeDpA, K. Guarded Horn Clauses, ICOT Technical Report TR-
103, 1985.

14. Haves-RoTH, F. The Knowledge-Based Expert System, A
Tutorial, COMPUTER (September 1984), 11-28.

(Received April 16, 1987; revised December 4, 1989)

Appendix A

Procedure A4
set_rtype_at_T_position(A_r_list1, Position,
Relation_type, A_r_list2):-
element_position(Position, List_Element, Element),
%Procedure A0
pick_up_list_element(A_r_list1, List_Element,
Object),
Bitl is 2*Element,
Bit2 is Bitl —1,
(Relation_type=:=0,
reset_bit(Object, Bitl, Objectl), %See Section 2.2
reset_bit(Object, Bit2, Object2)

Relation type=:=1,
reset_bit(Object, Bitl, Objectl),

T. SHINTANI

set_bit(Object, Bit2, Object2) %See Section 2.2
Relation type=:=2,
set_bit(Object, Bitl, Objectl),
set_bit(Object, Bit2, Object2)),
replace_list_element(A_r_list1,
List_element_number, Object2, A_r_list2).
Procedure A0
element_position(N, M, L):-
(N=<14, M=1,L=N

X is N/14, Y is N mod 14,
(Y=:=0,M=X,L=14

Mis X+1, L=Y)).
Procedure AS
find_sub_knowledge(Node, Knowledge_table, Subs):-
find_position(Node, Knowledge_table,
Node_position),
take_LK_list(Knowledge_table, LK list),
(LK list=[], Subs=[]

find_sub_knowledge2(Node, Node_position,
LK_list, Subs)).

find_sub_knowledge2(Node, Node_position, [|, [1.
find_sub_knowledge2(Node, Node_position, [E1|E2],
Subs):-
(exist_relationship(E1, Node_position, 0)
%Procedure AS.1
find_sub_knowledge2(NOde, Node_position, E2,
Subs)

find_sub_knowledge2(Node, Node_position, E2,
Subs2),
Subs=[E1 | Subs2]).

Procedure AS.1
exist_relationship(A_r_list, Position, Relation_type):-
element_position(Position, List_Element, Element),
%Procedure A0
pick_up_list_element{A_r_list, List_Element,
Object),
Relation_type is (Object > 2*(Element — 1))A3.
Procedure A6
find_super_knowledge(Node, Knowledge_table,
Relation_type, Supers):-
take_A_r_list(Node, Knowledge_table, A_r_list),
take_LK_list(Knowledge_table, LK_list),
find_relationship(A_r_list, LK_list, Relation_type,
Supers). %Procedure A6.1
Procedure A6.1
find_relationship([], LK list, Relation_type, []).
find_relationship([L11L2}, LK list, Relation_type,
[K11K2)):-
pick_list_elements(LK_list, 14, LK_elements, Rest),
%Procedure A6.2
find_LK_elements(L1, LK_elements, Relation_type,
K1, 1), %Procedure A6.3

Knowledge Table: An Approach to Speeding up the Search for Relational Information in Knowledge Base

find_relationship(L2, Rest, Relation_type, K2, 1).
Procedure A6.2
pick_list_elements(List, O, [], List).
pick_list_elements(List, Num, List, []):-

length(List, Length),

Num > Length.
pick_list_elements([L1/L2], Num, [L1|Result], Rest):-

Num2 is Num—1,

pick_list_elements(L2, Num2, Result, Rest).
Procedure A6.3
find_LK_elements(List_element, LK_elements,

Type, [1, 15).
find_LK_elements(List_element, [], Type, [], Num).
find_LK_elements(List_element, [LK1|LK2], Type,

Result, Num):-

Num2 is Num+1,

(Type is (List element > 2*(Num — 1))A3,

find_LK_elements(List_element, LK2, Type,

Result2, Num2),
Result =[LK1|Result2]

find_LK_elements(List_element, LK2, Type,
Result, Num?2)).

Appendix B

The program P

add_to(Node, [], KT).

add_to(Node, [P1Ps], KT):-
write(Node), nl,
TERM=. .[KT, Node, P1],
assert(TERM),

add_to(Node, Ps, KT).
parents(X, Ps, KT):-
TERM=. .[KT, X, P},
bagof(P, TERM, Ps).
children(X, Cs, KT):-
TERM=. .[KT, C, X],
bagof(C, TERM, Cs).
supers(X, S, KT):-
(parents(X, Ps, KT),
supers2(Ps, S2, KT),
append(Ps, S2, S)
S=[D.
supers2({ 1, [], KT).
supers2([P11Ps], A, KT):-
supers(P1, Al, KT),
supers2(Ps, As, KT),
append(Al, As, A).
subs(X, S, KT):-
(children(X, Ps, KT),
subs2(Ps, S2, KT),
append(Ps, S2, S)

S=[D.
subs2([1, [1, KT).
subs2([P11Ps], A, KT):-
subs(P1, Al, KT),
subs2(Ps, As, KT),
append(Al, As, A).
append([], X, X).
append([X Y], Z, [XIR]):-
append(Y, Z, R).

505

