470

Research Contribution

On the Dynamic Shortest Path Problem

CHIH-CHUNG LIN* and RUEI-CHUAN CHANG**

This paper proposes an algorithm to solve the dynamic shortest path problem, which is to perform an ar-
bitrary sequence of two kinds of operations on a directed graph with edges of equal length: the Insert operation,
which inserts an edge into the graph, and the FindShortest operation, which reports the shortest path between a
pair of vertices if such a path exists. Each FindShortest operation can be done in O(k) time, where k <n is the
number of edges on the shortest path, and an arbitrary sequence of at most O(n?) Insert operations can be done
in a worst-case time of O(n® log n). Furtheremore, our algorithm can be extended to perform the cost-decreasing
operation of the least-cost path problem, and always takes less time than previous algorithms.

1. Introduction

The design and analysis of efficient dynamic data
structures for the representations of graphs has been ex-
tensively studied in the lierature {2-14, 16}. In this
paper, we consider the dynamic shortest path problem.
The problem can be formulated as follows. Let G=(V,
E) be a directed graph, where Vis a set of vertices and E
is a set of edges of equal length, say /. How is it possible
to maintain a dynamic data structure under a sequence
of intermixed operations of the following two kinds on
G

Insert(u, v): Insert an edge between vertices ¥ and v.
FindShortest(u, v): Report the shortest path from
vertex u to vertex v if such a path exists.

Intuitively, we can represent the graph G by just keep-
ing the edges in G. The Insert operation can be im-
plemented in constant time, while the FindShortest
operation requires O(m) time when a breadth-first
search algorithm is used [1]. Hence, in order to reduce
the worst-case running time of FindShortest opera-
tions, we must maintain more path information while
performing the Insert operation.

Many data structures have been proposed recently to
support efficient update operations on graphs, and are
useful for the on-line computation of graph problems
[2-14, 16]. In the following, m and n denote the
number of edges and vertices in a graph, respectively.
For directed graphs, the on-line computation of tran-
sitive closure was considered by Ibaraki and Kato [5].
This maintains transitive closure in O(#’) and
O(n*(m+n)) time for any number of edge insertions
and deletions, respectively. Rohnert [8] proposed

*Institute of Computer and Information Science, National Chiao
Tung University, Hsinchu, Taiwan, R.O.C.

**nstitute of Information Science, Academia Sinica, Taipei,
Taiwan, R.O.C.

Journal of Information Processing, Vol. 13, No. 4, 1990

algorithms for the on-line least-cost problem, which re-
quires O(n?) worst-case time for an edge insertion and
O(mn) time for an edge deletion. Recently, Italiano [6,
7] discussed the path retrieval problem of how to report
a path between two vertices in a graph while edges are
successively inserted or deleted.

The dynamic shortest-path problem discussed in this
paper is an extension to the path retrieval problem [6].
In the path retrieval problem, once a path from u to v is
established, we do not have to update the path while in-
serting new edges. But in the shortest-path problem, a
newly inserted edge may create a path shorter than the
existing one, and therefore more information on the
data structure must be kept.

The paper has two main results. First, we propose the
data structure and algorithms that allow each Find-
Shortest operation to be done in O(k) time, where k<n
is the number of edges on the reported path, and an ar-
bitrary sequence of at most O(n?) Insert operations can
be accomplished in a worst-case time of O(n®log n).
Furthermore, the algorithm can be extended to perform
the cost-decreasing operation of the least-cost path
problem [8] and always takes time less than the
algorithm proposed by Rohnert [8].

The rest of the paper is organized as follows. In Sec-
tion 2, we present the data structures and algorithms for
the dynamic shortest-path problem. The time complexi-
ty analysis of the algorithms is discussed in Section 3.
Concluding remarks are given in Section 4.

2. The Data Structure and Algorithms

In this section we present data structures and
algorithms for maintaining on-line information about
the shortest paths of a directed graph under a sequence
of Insert and FindShortest operations. Given a direct
graph G=(V, E') and a node ve V, a shortest-path tree
rooted at v is a tree 7 that contains all the vertices

On the Dynamic Shortest Path Problem

471

1
I
1
i
]
'
[
1
1
1
1
|
T

[[T'IA T 11

G dslol—[7]1416]5]

(b)

Fig. 1

[alafonlolofe]=TsTTTa]nl~}

An example of the data structure. (a) A directed graph G. (b) 7_Source(7) and the seventh row of the matrices P_Source and Distance. (c)

T_Sinc(7) and the seventh column of the matrices P_Sink and Distance.

reachable from », and the path from root to node xin T
is the shortest path from v to x.
We augment each vertex ve V with two sets:

Source(v): the set of vertices that are reachable from
v

Sink(v): the set of vertices that can reach ».

and organize them as shortest-path trees rooted at v,
denoted by 7_Source(v) and T_Sink(v), respectively.

To access each vertex in the shortest-path trees
efficiently, we use two n-by-n matrices of pointers, de-
fined as follows:

P_Source[u, v]: points to the vertex v in T_Source(u)
if ve Source(u); otherwise, contains a null pointer.
P_Sink[u, v}: points to the vertex u in T_Sink(v) if
ue Sink(v); otherwise, contains a null pointer.

We also record the distances of the shortest paths be-
tween each pair of vertices in an n-by-n matrix:

Distance[u, v]: the distance of the shortest path from

utouw.

Figure 1 is an example of the data structure while
=1.

The FindShortest operation can be done easily. If
P_Sink[u, v] contains a null pointer, then there is no
path from u to » in G. Otherwise, we can use P_Sink|[u,
v] to access the vertex u in the shortest path tree
T_Sink(v) and report the shortest path by the following
procedure:

Procedure FindShortest(u, v)
p:=P_Sink(u, v);
while p#null do

print(P);
p:="‘‘the parent of P in T_Sink(v)”’
od;

end FindShortest;

The implementation of the Insert operation is more
complex. Consider the graph G. Inserting an edge (u, v)
of length / may change the shortest paths of some pairs
of vertices to the new paths passing edge(u, v). If (x, t)
is such a pair, then the following statements must hold:

(1) x may reach u (i.e. xe Sink(u))

(2) tis reachable from v (i.e. te Source(v))

(3) Distancelx, t]> Distance|x, u] + !+ Distance[v,

t]
(1) and (2) are obvious from the fact that the newly
established path must pass the edge (v, v), and (3) is the
condition that causes the shortest path from x to ¢ to be
updated, where the right-hand side is the distance of the
new shortest path. Hence, to implement the Insert(u, v)
operation, we can check condition (3) for every pair (x,
t), where xe Sink(u) and te Source(v), and update the
data structures if condition (3) is satisfied.

However, it is not necessary to check all these pairs.
In fact, we may omit some of these checking steps by
considering the properties of the Source and Sink trees.
We will explain this after the definitions.

472

C.-C. LIN and R.-C. CHANG

5

® @ @
OO O

Fig. 2 (a) T_Source(7) and T_Source(9) before Insert(7, 9). (b) C(7). (¢) T_Source(7) and T_Source(9) after Insert(7, 9), note that C(7)=D;(9).

Definition: for x, te V

D.(t)={vlv is the descendant of ¢ (including ¢) in
T _Source(x)}

C(x)={t|Distancelx, t] changes after Insert(u, v)}

X={xIC(x)#¢}
Clearly, C(x)< Source(v) and X < Sink(u) after we in-
sert the edge (v, v) into G.
Lemma 2.1: After the operation Insert(u,v), C(x)
=D,(v) for every xe X.
Proof: The property is obvious because if re C(x),
the new shortest path from x to # must pass the edge (u,
v), i.e. te D.(v). On the other hand, if te D,(v) after
the insertion, since xe X, the shortest path from x to ¢
must pass the edge (i, v) i.e. te C(x). O
An example of Lemma 2.1 is shown in Fig. 2.
Lemma 2.2: For Insert(u, v), we have r¢ C(x)=w¢
C(x) and t¢ C(y) for every we D.(¢), and y is the
descendant of x in 7_Sink(u), where xe Sink(u) and
te Source(v).
Proof: Once we perform Insert(u, v), t¢ C(x) means

Distancelx, ul + 1+ Distance(v, t] = Distancelx, t]

Considering T_Source(v), for every we D.(¢), v, ¢,
and w are in the same path of T_Source(v), so

Distance[v, w]l = Distancelv, t]+ Distance(t, w]
hence
Distancelx, u] + 1+ Distance[v, w]
= Distance[x, t]+ Distance[t, w]

= Disttance[x, w)

i.e. w¢ C(x)

On the other hand, we may treat 7_Sink(u) in the
same way as T_Source(v) by reversing edge directions,
and get the result ¢ C(y).0

Combining Lemmas 2.1 and 2.2, we have the follow-
ing theorem, which is useful in designing an efficient
algorithm for the operation Insert(u, v).

Theorem 2.1: For the operation Insert(u,v), if
xe Sink(u) and y is the descendant of x in T_Sink(u),
we have

1) CH=o=C(y)=9¢

(2) C(y)SD.(v)SSource(v) after the update of
T_Source(x) for xe X.

Proof: Obvious from Lemmas 2.1 and 2.2. 0

Hence, if we check condition (3) for the pair (x,t)
after the edge (u, v) is inserted and find that it is not
satisfied (i.e. ¢ C(x)), then we need not check the pair
(y, w) for all y and w, the descendants of x and ¢ in
T_Sink(u) and T_Source(v), respectively.

To implement [Insert(u,v), we may update
T_Source(x) for each x in 7_Sink(u) in depth-first
order. If C(x)=¢, we need not update T_Source(y) for
all y, the descendant of x in T_Sink(u). Furthermore,
we update T_Source(x) for xsu by checking the pair
(x,) for every t in D,,(v) in depth-first order, where w s
the parent of x in T_Sink(u). In this way we always
traverse a subtree of T_Source(v) and the subtrees will
become smaller and smaller as we update 7-_Source(x),
xe Sink(u) (see Fig. 3). The complete algorithm for /n-
sert(u, v) is given below.

Procedure DFT_Sink(x, w, u, v) makes a depth-first
traversal to T_Sink(u) to update T_Source(x) for each x

On the Dynamic Shortest Path Problem

473

Fig. 3 Update T_Source(7), T_Source(1) and T_Source(2) for Insert(7,9). (a) T_Sink(7) and T_Source(9). (b) T_Source(7), T_Source(1) and
T_Source(2) before Insert(7, 9). (c) C(7), C(1), C(2) caused by traversing 7T_Source(9), D,(9) and D,(9), respectively. (d) T_Source(7),

T_Source(1) and T_Source(2) after Insert(7, 9).

in T_Sink(u). Note that w is the parent of x in
T_Sink(u) except in the first loop of DFT_Sink, in
which x stands for ¥ and w stands for ». We call w the
predecessor of x in the following section. In fact,
w being the predecessor of x means that we will traverse
T_Source(w) (or D,(v)) while updating 7_Source(x).

Procedure Insert(u, v);
DFT_Sink(u, v, u, v);
end Insert;

Procedure DFT_Sink(x, w, u, v);
Update(x, w, u, v)
if Distancelx, u] + /< Distance[x, v] then
do for every y son of x in T_Sink(u)
DFT_Sink(y, x, u, v)
od
fi
end DFT_Sink;

Procedure Update(x, w, u, v);
if Distancelx, u}+!< Distance[x, v] then
Distancelx, v): = Distance|x, u] +1;
if P_Source[x, v]=null then
create vertices pointed by
P_Sourcelx, v] and P_Sink[x, v]
fi;
update the links of P_Sourcelx, v]
to son of u in T_Source(x);
update the links of P_Sink[x, v]
to son of w in T_Sink(v);
do for every ¢ son of v in T_Source(w)
Update(x, w, v, t)
od
fi
end update;

Remark Insert(u, v) can be modified simply by making

474

I, the length of edge (u, v), a parameter for performing
edge insertion in a graph, without the restriction of all
edges having equal lengths. Hence we have two versions
of the Insert algorithm: Insert(u, v) and Insert(u, v, !).
Both have the same time complexity and do exactly the
same thing except that Insert(u, v, /) regards / as a
parameter which is decided by the inserted edge. In-
sert(u, v, [) can be used to implement the cost-decreas-
ing operation of the least-cose path problem proposed
by Rohnert [8].

3. Time Complexity Analysis

In this section, we shall analyze the time complexity
of FindShortest and Insert. Let n denote the number of
vertices in ¥ and m the number of edges inserted.

Obviously, the time complexity of the FindShortest
operations if O(k), where k <n is the number of edges
of the shortest path.

For the Insert operation, there are two nested recur-
sive procedures, DFT_Sink and Update. Procedure
DFT_Sink(x, w, u, v) traverses 7._Sink(u) and pro-
cedure Update(x, w, u, v) traverses T_Source(w).
Theorem 3.1: The time complexity of Insert(u, v) is

O(Z |C(x)| +indegr_simwu(X)

xe X
+ > outdegr sourcetw(C(x)))
xe X
where indegr_sinu(X)= Zxe x indegr_siaru(X)s

Ou[degT,Source(w)(c(x)) = le Cx) OutdegT,Sourre(w)(t); and in-
degr_simuy(x) and outdegr_sourcawy(x) are the number of
tree sons of x in T_Sink(u) and T_Source(w), respec-
tively.
Proof: The time complexity is straightforward from
the Insert(u, v) algorithm. The first term, X, x| C(x)I,
is the number of operations for the actual updating of
data structures; the second term, indegr_sinku(X), is the
number of steps to traverse 7_Sink(u); and the last
term, X, x outdegr sourcew(C(x)), is the number of steps
to traverse T_Source(w) for all w, the predecessor of
xe X.O

As mentioned in the last section, we sould like to com-
pare the Insert algorithm with the cost-decreasing
algorithm [8].

The cost-decreasing algorithm works in a similar man-
ner and the time complexity can be expressed as:

o(Z;(l C)| +indegr_sinku(X)

XE
+ Z OutdegT_Source(l')(C(x)»-
xe X

Corollary: The Insert algorithm always takes time less
than the cost-decreasing algorithm [8].
Proof: The only difference of the above equation and
the equation shown in Theorem 3.1 is the last term.
This is because the cost-decreasing algorithm updates
T_Source(x) for each xe X by traversing 7_Source(v),
whereas our algorithm does it by traversing D.(v),

C.-C. LN and R.-C. CHANG

which is always a subtree of T_Source(v) as discussed in
the previous section. Obviously, outdegr_sourcew(C(X))
< outdegr_source(C(x)) for every xe X. Hence the cor-
ollary holds. [u}

In the following, we shall show that a sequence of at
most O(n®) Insert operations can be accomplished in
O(n® log n) time.

For convenience of analysis, we will concentrate on
one of the Source trees, say T_Source(x). We measure
the time it takes, in the worst case, for the updates of
T_Source(x) over a sequence of Insert operations. The
total time required for the sequence of operations is the
update time for all the n Source trees.

Let us examine the Insert(u, v) algorithm. While up-
dating one of the Source trees, say T_Source(x), for the
insertion of edge (i, v), we need to traverse D,,(v) for w,
the Predecessor of x, to check the pair (x, t), te D.(v).
What we want to measure is the number of vertices
visited while traversing D, (v) (that is, the number of
vertex pairs checked) over an arbitrary sequence of at
most O(n?) Insert operations.

Let Ci(x) denote the C(x) for the ith insertion.
Definition:

T:(x)={vlvertex pair (x, v) is checked while updating
T_Source(x) in Insert algorithm for the ith in-
sertion}

Ni(x)={vl|vertex pair (x,v) is checked, but
Distance[x, v] does not change for the ith in-

sertion}
Obviously,
T:(x)=Ci(x)UNi(x) and 2 Tix) | =ZACix)
+2INi(x)|. We bound Z;IT:(x)l by measuring

21 Ci(x)| and Z;IN:(x)!.

To measure 2;|Ci(x)|, let us observe the changes in
the ‘‘depths’’ of the vertices in 7_Source(x) while up-
dating 7_Source(x) over a sequence of Insert opera-
tions. We first recursively defined the depth of a vertex
as follows:

Definition:
0 if v=x
Depth,(v)= {n if v¢ Source(x)
Depth,(u)+1 otherwise

where u is the parent of v in T_Source(x)

Note that if ve Source(x), Depth,(v)= Distance[x, v] as
the length / of each edge is equal to one. If a vertex
ve Ci(x), then Depth,(v) decreases at least one for the
ith Insert operation. In fact, Depth.(v) will never in-
crease over a sequence of Inmsert operations for each
ve V.

Lemma 3.1: For an arbitrary sequence of at most
O(n?) Insert operations

Z | Ci(x) | < O(n?)

Proof: The proof is based on the sense of depth. If

On the Dynamic Shortest Path Problem

we Ci(x) for the insertion, then Depth,(w) decreases at
least one for this insertion. Depth,(w) is at most n and
at least 1, so Depth.(w) can decrease at most n—1
times. This means that w belongs to C{x) at most n—1
times over a sequence of Insert operations. For the total
n vertices, we can have at most n(n— 1) depth decreases.
Thus we have

S| =0 o

Now we want to measure ;| Ni(x)l, those vertices
that are checked (visited) but remained unchanged
while T_Source(x) is updated over a sequence of Insert
operations.

In the procedure Update(x, w, u, v), we check
whether the shortest path from x to v must be changed
to the one passing through the edge (u, v) by comparing
Distancelx, u]+ 1! and Distance(x, v]. Note that w is the
predecessor of x and v is a child of u in T_Source(w) ex-
cept in the initial step. Let the shortest path from x to u
be (x, t, ts, . . . , tr=u) while we execute update(x, w,
u, v). Obviously, #,(=w) is the predecessor of x. We call
the shortest path (x, ¢, ¢, . . ., #) a critical path of
length k& induced by v if ve N;(x) for some i. Indeed,
k=Depth,(t). Figure 4 is an example of critical paths.

We have the following properties of critical paths:
Lemma 3.2: If there exists a critical path (x, #), f,, . . .,
t) induced by v for ve Ni(x), then the shortest path
from ¢, to v after the ith Insert operation is (¢, f2, . . . ,
Ly, Z)).

Proof: Because ¢, is the predecessor of x, v is a son of
t; in T_Source(t,). Furthermore, the shortest path from
Htotis(t, ta, . ..,). O

Lemma 3.3: If there exists a critical path (x, #i, f;, . . . ,
1) induced by v for ve Ni(x), then one of the following
statements must be true for the ith insertion.

(a) The inserted edge is (x, #), and Depth,(t;) for

Jj=1... k decreases at least one.
(b) The inserted edge is (4, v), and Depth, (v) for
J=1... k decreases at least one.

(c) The inserted edge is (¢, tj+1) for j=1...k—1,
Depth,(ts), Depth, (t,), and Depth, (v) for f=1,. .. J,
b=j+1, ... k all decrease at least one.

Proof:

The inserted edge is either one of the edges in

()
(@

(5 @ ©

@9

Fig. 4 An example of the critical path. Path (1, 7, 9, 6) is the
critical path of length 3 induced by vertex 11 for 11 N(1)
while Update(l, 7, 6, 11) is executed.

475

the critical path or the edge (#, v). In case (a), tjie Ci(x)
for j=1. .. k, or else the vertex pair (x, v) will not be
checked for Lemma 2.2. In case (b), ve Ci(t)) forj=1. .
. k, or else the vertex pair (x, v) will not be checked.
Case (c) is obtained in the same way as (a), (b). O
Lemma 3.4: For each vertex ve V, all the critical
paths induced by v for ve Ni(x), i=1, 2,..., O#®),
over a sequence of Insert operations are different.
Proof: If there exists a critical path (x, ti, t2, . . . , &)
induced by v twice, then Depth.(t) and Depth, (v) for
Jj=1...k are the same for the two insertions, and
violate all the three cases in Lemma 3.3.0

With Lemma 3.4, we can count the number of occur-
rences of ve Ni(x) for i=1, 2, ..., O(n* by counting
the number of possible critical paths induced by v over
an arbitrary sequence of at most O(n?) Insert opera-
tions. We shall prove that the number of these possible
critical paths is at most O(n log n), and get the bound of
O(n*log n) for Z,IN;(x)!.
Lemma 3.5: If Depth,(t)is the same for a sequence of
Insert operations, then the shortest path from x to ¢ re-
mains unchanged
Proof: The shortest path from x to ¢ is changed only
when Distancefx, t] decreases, that is, when Depth (1)
decreases. O
Lemma 3.6: If two critical paths with equal length in-
duced by v for ve Ni(x), i=1, 2, ..., O(n?, contain a
common vertex ¢, then Depth,(t) is the same in these
two critical paths.
Proof: Let the two critical paths be CPy=(x, ¢, . . .
4,=t,..., k) and CPr=(x, s1,...8,=t, ..., S,
which contain a common vertex ¢, with Depth,(t) equal
toj;in CP; and j; in CP,. By Lemma 3.2, there exist two
shortest paths SP,=(t,..., & ..., t, v) and
SP,=(s1,...,t...,Sk v). Since Depth,(t) never in-
creases, if CP, is induced before CP, during the Insert
operations sequence, we have j =j,. But, using the
same reasoning for Depth,(v), we have
k—j+1 Zk"jz+ 1, i.e., j] sz. Hence j1=jz, and thus
Depth,(t) will be the same. O
Lemma 3.7: The critical paths with equal length in-
duced by v for ve Ni(x), i=1, 2,. .., have no com-
mon vertex except the root x.
Proof: If two critical paths

CP|=(X, Lyow oy ly ety tk),
CP1=(X, Sty o« oy ly oo ,Sk)

of equal length k contain a common vertex ¢, then from
Lemma 3.2, there exists two shortest paths SP,=
(t.,...,t,...,tk,v)andSP2=(sl,...,t,...,sk,
v). From Lemma 3.6, Depth,(t) will be the same in CP,
and CP,, and thus Depth,(v) remains unchanged. From
Lemma 3.5, Depth,(t) keeps the same value, which im-

plies that
(X, Lyoo oy [):(X,S] Lo t)

and Depth,(v) remains unchanged, which implies that

476

..., 0)=0...,S0).

Hence, CP,= CP,, which violates Lemma 3.4. 0
Lemma 3.8: The number of possible critical paths in-
duced by v for ve Ni(x), i=1,2, ..., over an arbitrary
sequence of at most O(n?) Insert operations is no more
than O(n log n).

Proof: From Lemma 3.7, for ve V, the maximum
numbser of critical paths with length & induced by vis { n/k] .
Thus, the total number of possible critical paths is

n+ |n/2] + |n/3]+ - +1
=n(1+1/241/3+---+1/n)

<n (1+§"1/xdx)
1

=0(n log n)
a}

Theorem 3.2: For an arbitrary sequence of at most
O(?) Insert operations, ;| Ni(x)| < O(n’ log n).
Proof: From Lemma 3.8, the number of occurrences
of ve Ni(x) for i=1, 2,.. . is at most O(n log n) for
every vertex ve V. Hence, 2| Ni(x)| < O(n* log n), since
V has at most n vertices. O

From Lemma 3.1 and Theorem 3.2, we know that for
some Source trees, say Source(x), the numbers of steps
it takes for an arbitrary sequence of Insert operations
(.e. =] Tix)!) is O(n*+ n? log n)=0O(n’ log n). Hence,
for the total number n of Source trees, it takes at most
O(n* log n) time. This leads to the following theorem:
Theorem 3.3: An arbitrary sequence of at most O(n?)
Insert operations takes no more than O(n’ log n) time.

4. Remarks and open Problems

In this paper we discussed the dynamic shortest-path
problem, which searches for and reports the shortest
path between two vertices on a directed graph with n ver-
tices while edges of equal lengths are inserted one by
one. We have proposed efficient algorithms by presen-
ting a data structure that supports each FindShortest
operation in O(k) time, where k=<n is the number of
edges of the reported path, and an arbitrary sequence of
at most O(n?) Insert operations in a worst-case time of
O(n® log n). The structure requires O(n”) space. Further-
more, our Insert algorithm can be extended to perform
the cost-decreasing operation of the least-cost path
problem [8] and always takes a time less than or equal
to that in [8].

C.-C. LIN and R.-C. CHANG

Our result may be generalizable in various directions.
first, the question of whether there is an algorithm that
takes less than O(n?) worst-case time per operation re-
mains open. Furthermore, the operations of edges dele-
tion are not considered in this paper. Both the case in
which only edge deletions are allowed and that in which
both edges insertions and edge deletions are allowed
deserve further study.

Finally, this problem can be extended to graphs
whose edges have arbitrary length without negative
distance cycles, such as the least-case path problem [8].
In contrast to the case in which the edges are of equal
length, the distance of a shortest path between two ver-
tices can have at most » values, namely, n, n—1, . . .,
1. In this case however, the distance of a shortest path
may be any value. Hence, the analysis in Section 3 is no
longer valid.

References

1. AHO, A. V., HOPCROFT, J. E. and ULLMAN, J. D. The Design and
Analysis of Computer Algorithms, Reading, Mass.; Addison-Wesley,
1974.

2. EVEN, S. and SHILOACH, Y. An on-line edge deletion problem, J.
ACM, 28 (1981), 1-4.

3. FREDERICKSON, G. N. Data structures for on-line updating of
minimum spanning trees with applications, SIAM J. Comput. 14
(1985), 781-798.

4. HAREL, D. On-line maintenance of the connected components of
dynamic graphs, Unpublished manuscript, 1982.

5. IBARAkl, T. and KATOH, N. On-line computation of transitive
closures for graphs, Inf. Process. Lett. 16 (1983), 95-97.

6. ItaLiaNo, G. F. Amortized efficiency of a path retrieval data
structure, Theor. Comput. Sci., 48 (1986), 273-281.

7. ItauiaNo, G. F. Finding paths and deleting edges in directed
acyclic graphs, Inf. Process. Lett. 28 (1988), 5-11.

8. ROHNERT, H. A dynamization of the all-pairs least-cost path
problem, Proc. 2nd Ann. Symp. on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science, 182 (Springer, Berlin,
1985), 279-286.

9. SLEATOR, D. D. and TARJAN, R. E. A data structure for dynamic
trees, J. Comput. Sys. Sci., 24 (1983), 362-381.

10. SLEATOR, D. D. and TaRrJAN, R. E. Self-adjusting binary search
trees, J. ACM., 32 (1985), 652-686.

11. SLEATOR, D. D. and TARJAN, R. E. Self-adjusting heaps, SIAM
J. Comput., 15 (1986), 52-69.

12. Tarian, R. E. Efficiency of a good but not linear set union
algorithm, J. ACM., 22 (1975), 215-225.

13. TArJAN, R. E. and LEEUWEN, J. VAN. Worst-case analysis of set
union algorithms, J. ACM., 31 (1984), 245-281.

14. Tarian, R. E. Data Structures and Network Algorithms,
CBMS 44, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1983.

15. TArJAN, R. E. Amortized computational complexity, SIAM J.
Alg. Disc. Meth., 6 (1985), 306-318.

16. TsakaLiDis, A. K. The nearest common ancestor in a dynamic
tree, Acta Inf., 25 (1988), 37-54.

(Received March 5, 1990; revised June 21, 1990)

