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A Survey of Avéfage Time Analyses of
Satisfiability Algorithms

PauL PurpoM*

Various algorithms for satisfiability problems require vastly different times to solve typical problems. The
time taken to solve random problems is discussed for five algorithms, and the results from asymptotic analyses
are surveyed. Plots of the average number of nodes per problem are given for random problems with 50
variables. The plots give contours for the number of nodes as a function of the number of clauses and of the
probability that a literal is in a clause. They show the strengths and weaknesses of each algorithm.

1. Introduction

The best algorithms for NP-complete problems ap-
pear to use exponential worst-case time. Yet some
algorithms can solve typical problems quite rapidly.
This paper summarizes asymptotic studies for five
algorithms for the satisfiability problem and gives new
curves showing the average time each algorithm takes to
solve random satisfiability problems with 50 variables.
The number of clauses per problem varies between 1
and 500. The probability that a literal is in a clause also
varies. These parameters have a drastic effect on the
average running time. No algorithm is best for the en-
tire range of parameters. These studies clearly indicate
some of the strengths and weaknesses of the algorithms.

Although the algorithms are evaluated by the speed
with which they solve the satisfiability problem, they
can solve any discrete constraint satisfaction problem
and are stated for a broader class of problems. Let Ry, . .
., R, be relations on variables x,, . . . , x,, where each
variable has a finite set of possible values. The con-
straint satisfaction problem is to set the variables so
that

R1(X1, e ey X,-)/\' . '/\R,(X], v e ey x,-) (1)

is true, or to determine that this can not be done. In the
satisfiability problem, each variable can have the value
true or false, and each R is a clause (the logical or of
literals, where a literal is a variable or its negation).

2. Algorithms

This paper states each algorithm informally. More
details are given in the original papers.
Backtracking [1]: Select the first remaining variable
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from those variables without a value. (If all variables
have values then the current current setting is a solu-
tion.) Generate a set of subproblems by assigning each
possible value to the selected variable. Solve the
subproblems recursively, but skip those subproblems
where some R; simplifies to false with the current
variable setting.

Backtracking is an old algorithm. It is relatively

quick when most of the subproblems are skipped. The
version of backtracking given here finds all the solu-
tions to a problem, so it takes a lot of time if the prob-
lem has a lot of solutions.
Unit clause backtracking [2]: If some relation depends
on only one of the unset variables then select that
variable; otherwise, select the first unset variable. Con-
tinue as in backtracking.

In practice, improved variable selection often results

in much faster backtracking [3]. The version of unit
clause backtracking given here also finds all the solu-
tions.
Clause order backtracking [4]: Select the first relation
that can evaluate to both true and false depending on
the setting of the unset variables. Select variables from
this relation until its value is determined. Process
selected variables in the same way that backtracking
does.

By setting only those variables that affect the value of
relations, this algorithm sometimes avoids the need to
assign values to all the variables. It finds all the solu-
tions, but in a compressed form. A single solution with
unset variables represents the set of solutions obtained
by making each possible asignement to the unset
variables.

The pure literal rule algorithm [S]: Select the first
variable that does not have a value. (If all variables
have values, then the current setting is a solution if it
satisfies all the relations.) If some value of the selected
variable results in all relations that depend on the
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selected variable having the value frue, then generate
one subproblem by assigning the selected variable that
good value. Otherwise, generate a subproblem for each
value of the selected variable. Solve the subproblems
recursively.

This algorithm has the essence of the pure literal rule

from the Davis-Putman procedure [6]. By removing
most of the good features, an analyzable algorithm is
obtained. It can solve a wide class of problems in
polynomial average time, but does not find all solu-
tions.
Iwama’s algorithm [7]: For each relation of the prob-
lem, count the number of nonsolutions. For each pair
of relations that depend on different variables, count
the number of nonsolutions. Continue for triples and
so on. Use inclusion-exclusion to determine the total
number of nonsolutions. Subtract the number of non-
solutions from the number of possible variable settings
to obtain the number of solutions.

The counting for this algorithm can often be done
quickly if there are few clauses or if the clauses depend
on many variables.

It is clear that an improved algorithm can be obtained
by combining the techniques of the first four
algorithms. Such an algorithm would be at least as fast
as the fastest of the four. Iwama’s algorithm is
sometimes much faster than the others and sometimes
much slower. It is not clear how best to combine it with
the previous four algorithms.

3. Random Satisfiability Problems

In the random clause model there are v variables
available for forming CNF predicates. A literal is a
variable or its negation. A clause consists of the logical
or of a set of literals. A random clause is formed by in-
cluding each of the 2v possible literals with probability
p. It is possible for a clause to contain both a variable
and its negation, but this is not likely when p is well
below v~"2. A random predicate is formed by taking
the logical and of t random clauses.

The characteristics of the typical predicate vary with
the values of v, ¢, and p. One of the most important
characteristics is the average number of solutions per
problem. When solutions are rare, the running time of a
satisfiability algorithm depends mainly on how quickly
it can prove that a problem has no solution. When solu-
tions are common, the time depends mainly on how
quickly an algorithm can find some solution.

Asymptotic studies of the algorithms have considered
the running time of these algorithms as a function of ¢
and p as v tends to infinity, where ¢ and p are both func-
tions of v. This paper includes contour plots for the
case v=>50. The number 50 is large enough for the main
features of the asymptotic analyses to be clearly
demonstrated.
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4. Results

The average number of solutions for a random
satisfiability problem [8] is

$=2"[1-(1-p)T"- (2)

The lower contour in Fig. 1 shows the value of p (as a
function of ¢) that results in an average of v solutions
per problem when »=50. Above it are the contours for

v?, 3, and v* solutions. Both the p and ¢ scales are
logarithmic. The number of folutions is exponentially
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Fig. 1 Contours for the number of solutions.
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Fig. 2 Contours for compacted solutions.
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small in the lower right corner, where p is small and
there are many clauses. The number of solutions ap-
proaches 2' in the upper left corner, where p is near 1
and there are few clauses. When v goes to infinity and p
goes to zero, the dividing line between an exponential
and polynomial number of solutions is given by [2]

t In2
v —In(l1—e™)" ®

The contours are defined only for integer values of ¢,
and consecutive points on the contour are connected by
straight lines. Since the scale is logarithmic, this is most
evident for small values of ¢ (see Fig. 2).

Figure 2 shows the average number of solutions when
the settings of irrelevant variables are not given (as with
clause order backtracking). The outer contour is for an
average of » solutions. Contours for v, v°, and v* solu-
tions are also given. The line from the left side to the
right side shows, for each ¢, the value of p that results in
the largest number of solutions. Listing solutions in this
compact form does not have much effect when 7 is large
and p is small or moderate, but it drastically reduces the
number of separate solutions in all other cases.

The contours in Fig. 2 are given by [4]

S=S(t, 0), (&)
where S(¢, i) is the solution to the recurrence
S0, i)=2/, (&)

S(t, )= a(i)S(t—1, i+j) (6)

for t>0, where

a(j)=1—(=py(1+p)y~, @)
v—i ; )
ai(f)=2( )2*-Jp*(1—p)2"""* ®
* k
1 e
v =50
10-1 |
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10—3 l
1 10 100 500
t

Fig. 3 Contours for backtracking.

451

for i>0.

The remaining figures have the same general form as
Fig. 1 and 2, but they give the number of nodes
generated by the various algorithms while solving ran-
dom satisfiability problems. each algorithm generates
nodes in time that is bounded by a low-degree
polynomial function of the number of clauses and
variables. The exact relation between the number of
nodes and the running time varies with the skill of the
person programming the algorithm and with the speed
of the computer. Usually these details are not as impor-
tant as selecting an algorithm with the appropriate
features to reduce the number of nodes.

The average number of nodes for backtracking is [8]

N=1+ 3] 211=(1—-p* . )

'sisv

The lower contour in Fig. 3 shows the value of p (as a
function of ¢) that results in an average of v nodes per
problem. Above it are the contours for v?, %, and v*.
The general shape of these contours is the same as the
contours for the number of solutions. However, the
contours for backtracking do not increase as rapidly, ar-
ticularly above r=v. By =500 the value of p associated
with 50 solutions results in nearly 50* nodes. Asymp-
totic analysis [8] shows that when v goes to infinity, the
boundary between polynomial and exponential time
follows Eq. (3) for p below (In 2)/v. For larger values
of p, the boundary for exponential time diverges from
that for an exponential number of solutions (see the
equations in Purdom and Brown [8] and the curve in
Purdom [2]). In the limit as pv goes to infinity (with p
going to zero), the boundary is given by

t In2

=— ¥, (10)

v pv

In the limit as » goes to infinity when ¢> v, there is a
region where the average number of nodes is an ex-
ponential function of », while the average. number of
solutions is near zero [8]. This region is of considerable
interest, because people often use backtracking to solve
problems with just a few solutions [3].

The average number of nodes for unit clause
backtracking is

t
N=1-[1—-(1-py*I'+ ] ( u)

x [p(1—py*~'I“N(t—u, u, v), 1n
where N(¢, u, v) is the solution to the recurrence
N(t, u, 0)=0100.w, (12)

N, 0,v)=[1—-(1 —p)Zu_zvp(l _p)Zv—l]l

l =r
+2 =l +u 1— 20v—Du' +1
50 ) () ron
X[(I=A=pP 1IN, w', v, (13)
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Fig. 4 Contours for unit clause backtracking.

N(, u, v)=2[1—(1—p)* = 2up(1 —p)*~ (20}

)37 )05

X val—l’+j(l _p)Z(v—l)j+I'[1 _(1 _p)2u—l]I~I’—j

x {N(', w', v—1)—~[1—(1—p)*~?

—2(v—Dp(1—p)* ) 2v—2)}, (14)
for u>0. This equation comes from an unpublished ex-
tension of the work in Purdom [2] and Purdom and
Brown [9].

The lower contour in Fig. 4 is for an average of v
nodes. Contours for v, v°, and v* are also given. (These
contours stop at =153 because of floating point
overflow and because of the large amount of time re-
quired to solve the recurrence for large ¢.) Each contour
is between the corresponding contour for the number of
solutions (Fig. 1) and the one for the number of nodes
for backtracking (Fig. 3), but much closer to the one for
the number of solutions. The formulas for the asymp-
totic analysis [2] are too long to repeat here, but they
show that when ¢/v is large enough, the boundary for
exponential time is closer to that for backtracking than
it is to that for the number of solutions. Figure 4 sug-
gests that unit clause backtracking does much better
than the lower bound analysis in Purdom [2] would sug-
gest, but the calculations do not extend to a large
enough value of ¢/ v to allow comment on the quality of
the upper bound analysis. Among the algorithms
presented in this paper, unit clause backtracking is the
fastest when ¢ is large and p is small.

The average number of nodes for the clause order
backtracking is [4]

N=N(, 0), (15)
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Fig. 5 Contours for clause order backtracking.
where
N, i)=1, (16)

N@, i)=1+b(i)IN(¢—1, i)—1]

+ 3 D2 = —py iy

+N(@—, i+j)—1}, an
and
b()=1—-(1-p)(+p)~, (18)
bi(i)=3] (v;') 2pH(1—pyrik 19)
k=zj
for j=1.

The outer contour in Fig. 5 is for an average of v
nodes. Contours for »2, »*, and v* are also shown. The
line from the left side to the right side shows, for each ¢,
the value of p that results in the largest number of
nodes. This algorithm is much better than simple
backtracking, particularly when ¢ is not large or when p
is large. A comparison of Figures 2 and S shows that
much of the speed of this algorithm is associated with
the compact representation of solutions. When ¢ is large
and p is small, the algorithm is only slightly better than
backtracking. Among the algorithms in this paper,
clause order backtracking is the fastest when ¢ is
moderate and p is small. The analysis of a simpler
algorithm [10] suggests that clause order backtracking
should run in polynominal time when pv is below some
constant.

The average number of nodes for the pure literal rule
algorithm is [11]

N@O, v)=N(, 0)=1 (20)
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Fig. 6 Contours for the pure literal rule algorithm.

N@, v)=1+1—p)¥N(t, v—1)

t . R
+23; ( ; ) P(A—=p)Y 'N@t—i, v—1) 1)
izl

for t>0. The outer contour of Fig. 6 is for an average
of v nodes. Contours for %, v?, and v* are also shown.
The line near the middle on the right side shows, for
each ¢, the value of p that results in the largest number
of nodes. Asymptotic upper bound analysis [12] show
that this algorithm requires polynomial time when

Inv
1<—, (22)
pP>E, (23)
Inv
tp<e 5 (24)

where ¢ is any fixed small number. The lower bound
analysis [13] gives similar results. Among the
algorithms in this paper, the pure literal algorithm is
fastest when ¢ is small and p is not large.

The average number of sets of clauses considered by
Iwama’s algorithm is given by [7]

t ; .

N= 3 ( . ) [(A-p)Y1—(1=p))I". @5)
Osist \ I

The upper contour in Fig. 7 is for » nodes. Contours for

v?, v3, and »* are also given. The average time [7] for

Iwama’s algorithm is polynomial when

In ¢

p>$:m (26)

Of the algorithms presented in this paper, Iwama’s
algorithm is the fastest for large p.
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Fig. 7 Contours for Iwama’s algorithm.

5. Discussion

The algorithms we have described vary drastically in
their average running time for random satisfiability
problems, depending on the parameters used to
generate the problems. Each algorithm has a region
where it is best (except that backtracking is never quite
as good as either unit clause or clause order backtrack-
ing). It is straightforward to add the unit clause rule and
the pure literal rule to clause order backtracking to ob-
tain an algorithm that has the good features of all the
algorithms except Iwama’s. The important problem of
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5 10 20 50 100 200 500
t

Fig. 8 The contours for a combined algorithm.
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how best to combine the ideas of Iwama’s algorithm
with the backtracking-type algorithms is more challeng-
ing.

Figure 8 shows the contours that result if the best
algorithm is used in each region. The outer contour is
for v nodes. Contours for »*, ¢3, and v* nodes are also
given. The upper part of each contour comes from
Iwama’s algorithm (except that the =7 point on the up-
per v contour comes from the pure literal rule). The rap-
idly sloping lower left part of each contour (except for
the » contour) comes from the pure literal algorithm.
The lower part of each contour comes from clause
order backtracking. The unit clause algorithm becomes
best just as it becomes hard to compute the contour. On
the » contour, it is best for > 135, Starting at =135,
the v contours for both clause order and unit clause
backtracking are given. For the higher contours, the
unit clause algorithm is not best until after =153
(where the calculation for unit clause backtracking was
stopped).

There are a number of algorithms for satisfiability
and constraint satisfaction problems that appear to
have promising average time performance, but which
appear hard to analyze [e.g. 14, 15]. The contours in
this paper suggest useful places to measure the perfor-
mance of these algorithms.

6. Other Analyses

The type of model for random clauses used in this
paper is often called a random clause model. Both
backtracking [1] and unit clause backtracking [9] have
also been analysed with a fixed clause model. In this
type of model, each clause is a random selection of s
literals.

Some analyses concern algorithms that a/ways run in
polynomial time and often solve the problem.
Sometimes, however, they give up. Analyses of these
algorithms give the conditions in which the probability
of finding solutions is high. In the random clause
model, the algorithm that tries a random truth assign-
ment can solve a large fraction of the problems in the
region where most problems have solutions [16], that is

In ¢
p>—. 27

(It takes a somewhat larger value of p for most prob-
lems to have solutions than it does to cause the average
number of solutions per problem to be near one. Solu-
tions occur in bunches, so a random problem with a
solution in one branch tree is more likely to have solu-
tions in other branches [17].) The algorithm that says
the problem has no solutions if it has an empty clause
has a high probability of detecting the lack of solutions
[16] if
In ¢

< (28)
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The unit clause rule is often effective for values of p be-
tween the two bounds in Eqgs. (27) and (28) [18].

Probabilistic analyses with a fixed clause model have
found conditions where many resolution proofs have ex-
ponential length [19] and where all search rearrange-
ment backtracking algorithms often require exponential
time [20]. Backtracking where variables are selected
from the shortest clause has also been analyzed in this
model [21].

7. Numerical Techniques

The function associated with each figure was
evaluated algebraically at p=0 and p=1. The values at
intermediate points were found numerically. In those
cases where the peak value was not at an end point, the
peak was found by using a combination of quadratic in-
terpolation and bisection. At all times the program
remembered the value of the function for three values
of p, where the peak was known to lie between the two
extreme values. Each new value of p was required to
differ from the previous values by at least a factor of
1.0001 (except on the last step), and the search was stop-
ped when the peak was located within this accuracy.
Once the peak value was known, the contours were
found by using similar techniques.

Some of the recurrences took a long time to solve.
The recurrence for unit clause back-tracking took time
O(t*v) (the time would have been O(#*v) except that
direct computation of the sum over j can be avoided),
the one for clause order backtracking took time O(tv?),
and that for the pure literal rule took time O(t%).
Therefore several additional techniques were used in
most programs to speed up the finding of contours. The
evaluations done to find one contour were sometimes
useful for finding other contours. In some cases, the
calculation for one value of ¢ resulted in values for all
smaller values of ¢. For each ¢ and for each result (con-
tour or peak) the programs remembered the three
points closest to the contour or peak (subject to the re-
quirement that one point be on each side of the result).
Once the contour was found for three values of ¢, addi-
tional points on the contour were computed by ex-:
trapolation. The extrapolation was checked by
evaluating the function at the extrapolated point and at
a point a factor of 1.0001 away. When the extrapola-
tion was outside the permitted tolerance, the step size
was reduced. When it was inside the tolerance, the esti-
mated error was used to predict the next step size. In the
case of the unit clause rule, the procedure was refined
by extrapolating on the basis of the ratio of the ex-
pected number of nodes to the expected number of solu-
tions. The expected number of solutions is easy to com-
pute, and using this ratio permitted larger step sizes.
The extrapolation of contours resulted in the need to
compute only about one twentieth of the ¢ values for
large ¢. Usually only two function evaluations were
needed for each contour.



A Survey of Average Time Analyses of Satisfiability Algorithms

Each contour program was checked against a sym-
bolic algebra program to verify that it was calculating
the number of nodes correctly. The algebra program
was checked by actually counting the number of nodes
generated by a program for the algorithm. The counts
from the programs were used to produce formulas di-
rectly for the number of nodes for fixed small values of
t and v. In most cases these checks were done for
l<v=<6, l<1<6, 1=tw=<12.
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