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Invited Survey Paper

Systematized Approaches to the Complexity of
Subgraph Problems

SATORU MivaNno*

This is a survey of issues related to the complexity of subgraph problems proved in a systematic way. It deals
with vertex deletion and edge deletion problems that can be viewed as subgraph problems. General NP-com-
pleteness theorems for these problems are presented, as well as a systematized result that shows polynomial time
algorithms for these problems restricted to series-parallel graphs. Another problem considered in this paper is
the lexicographically first maximal subgraph problems that appear in connection with parallel complexity

theory.

1. Introduction

A number of NP-complete problems have been
shown in the literature [8]. Most of them are proved by
giving reductions problem by problem. On the other
hand, there are approaches for systematizing their
reductions so that their completeness need not be
proved individually.

Such systematized approaches have been very suc-
cessful for subgraph problems involving finding a
specified subgraph from a given graph. Formally, for a
property © on graphs (digraphs), the subgraph problem
for n is described as follows:

Instance: A graph (digraph) G=(V, E).

Problem: Find a subgraph of G satisfying the pro-
perty 7 if there is any such subgraph.

Problems of this kind involves many important prob-
lems in combinatorial graph algorithms. For example,
the problem of finding a maximum independent set (or
clique) in a graph is a subgraph problem for 7=‘‘no
two vertices are adjacent” (or m="‘‘any two vertices are
adjacent’’) [4, 12]. The problem of computing a depth-
first search tree is also of this kind [24].

This paper surveys general results that allow the com-
plexity of subgraph problems to be determined simply
by examining given properties.

This paper is organized as follows: Section 2 gives the
necessary definitions and terminology. In Section 3, we
deal with vertex deletion and edge deletion problems
that can be formulated as maximum subgraph prob-
lems. We present various important results [1, 2, 15,
27, 28, 29] that systematize NP-completeness proofs for
these problems. We also present an interesting result on
linear time algorithms for series-parallel graphs [23].

*Research Institute of Fundamental information Science, Faculty
of Science, Kyushu University, 33, Fukuoka 812, Japan.

Journal of Information Processing, Vol. 13, No. 4, 1990

Section 4 is concerned with lexicographically first max-
imal subgraph problems that can be solved by greedy
algorithms. Following the approach taken in a previous
paper [19], we present general P-completeness results
analogous to the results on NP-completeness. We also
deal with a A45-completeness theorem that yields a new
series of A5-complete problems [20].

2. Preliminaries

This section introduces some terminology related to
graph theory [9, 10]. Throughout this paper, a graph
and digraph mean an undirected graph and a directed
graph, respectively. Unless stated, all graphs and
digraphs are simple except series-parallel graphs, that
is, no parallel edges are allowed.

Let G=(V, E) be a graph (digraph). For a subset U
of vertices, the induced subgraph of U, denoted by
G(U), is the graph defined by G(U)=(U, E(U)), where
E(U) consists of edges whose endpoints are both in U.
For a subset F of edges, the edge-induced subgraph of
F, denoted by GI[F], is the graph defined by GI[F]
=(V(F), F), where V(F) is the set of vertices appearing
as endpoints of edges in F.

An edge e is said to be contracted in G if e and all of
its parallel edges, if they appear, are deleted and the end-
points of e are identified. A graph H is a contraction of
G if H can be obtained from G by a sequence of edge
contractions. A graph H is called a subcontraction of G
if H is isomorphic to a contraction of some subgraph of
G.

Let G=(V, E) be a connected graph. An articulation
point is a vertex v of G whose deletion disconnects G. A
graph G is called biconnected if G has no articulation
point. The biconnected components of G are the max-
imal biconnected subgraphs of G.

A pair {u, v} of vertices is called a separation pair if
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there exist subgraphs H,=(V,, E\) and H,=(V,, E)
satisfying the following conditions:

(@) V=V\UV, and ViNVo={u, v}.

(b) E=E\VE,, ENE,=0, |E\| =2, |E,| =2.

(c) There are edges e,e E, and e;e E; such that
there is a cycle in G containing both £, and e,.

A biconnected graph G is called 3-connected if it con-
tains no separation pair. The 3-connected components
of G are the maximal 3-connected subcontractions of
G.

3. Vertex Deletion and Edge Deletion Problems

Many combinatorial graph problems can be for-
mulated as vertex-deletion and edge-deletion problems.
This section surveys some very general NP-com-
pleteness theorems on these problems. The importance
of the results is that they systematize NP-completeness
proofs and remove the need to solve each problem in-
dividually.

3.1 Problems

Let n be a property on graphs (digraphs) such as
‘‘planar.”’ The vertex deletion problem for n is the prob-
lem of finding a set of vertices of minimum size such
that deletion of these vertices together with the edges ad-
jacent to them results in a subgraph satisfying 7.
Equivalently, the vertex deletion problem is to find a set
U of vertices of maximum size such that the induced
subgraph of U satisfies 7. By this correspondence, the
vertex deletion problem for = is also called the max-
imum induced subgraph problem for n.

Examples of graph (digraph) properties are listed
below:

(1) Independent set (or null): No two vertices are ad-
jacent.

(2) Clique (or complete): Every vertex is adjacent to
all other vertices.

(3) Planar: A planar graph is a graph that has a
layout on a plane in which no edges cross.

(4) Outerplanar: An outerplanar graph is a planar
graph with a planar layout such that all vertices lie on
the same face.

(5) Bipartite: A bipartite graph is a graph G=(V,
E) such that the vertex set V is partitioned as V'=NUM,
and every edge in E has one endpoint in N and the other
in M.

(6) Acyclic: Without any cycles. An acyclic graph is
also called a forest. A set of vertices whose deletion
results in an acyclic graph (digraph) is called a feedback
vertex set.

(7) Maximum degree k: Every vertex is adjacent to
at most k vertices.

(8) Chordal: A graph G is chordal if for every cir-
cuit of length greater than 3 there is an edge joining two
nonconsecutive vertices of the circuit. A chordal graph
is also called a triangulated graph.

(9) Line-invertible (or edge graph): A graph G is
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line-invertible if there is a graph H=(V, E) such that G
is isomorphic to the graph having E as a vertex set and
an edge set consisting of {e, e’} such that e and e’ share
a common endpoint in H.

(10) Without cycles of length /: This property is for
both graphs and digraphs.

(11) Without cycles of length</: This property is
for both graphs and digraphs.

(12) Transitive: A digraph G=(V, E) is transitive if
(u, v)e E and (v, w)e E implies (4, w)e E.

(13) Symmetric: A digraph G=(V, E) is symmetric
if (v, u)e E=(u, v)e E.

(14) Antisymmetric: A digraph G=(V, E) is an-
tisymmetric if (u, v)e E= (v, u)¢ E.

(15) Transitively orientable: A graph is transitively
orientable if there is an assignment of directions to the
edges such that the resulting digraph is transitive. A
transitively orientable graph is also called a comparabii-
ity graph.

(16) Interval graph: A graph is an interval graph if
there is a one-to-one correspondence between the vertex
set and a set of intervals such that two vertices are adja-
cent if and only if their corresponding intervals have
nonempty intersection.

(17) Nonseparable: A graph G is nonseparable if it
is connected, has more than one vertex and has no ar-
ticulation points.

(18) With a singleton k-basis: We say that a graph G
has a singleton k-basis if each connected component of
G contains a vertex v such that every vertex in the con-
nected component is at a distance of at most £ from v.

(19) Eulerian: A graph is called Eulerian if there is a
path that passes through all edges exactly once.

The edge deletion problem for n is to find a set of
edges of minimum size whose deletion results in a
subgraph satisfying 7. As in the case of the vertex dele-
tion problem, the edge deletion problem can be re-
garded as a problem of finding a set F of edges of max-
imum size such that the edge-induced subgraph of F
satisfies #. We also call this problem the maximum
edge-induced subgraph problem for n. However, there
is a slight difference between the edge deletion problem
and the maximum edge-induced subgraph problem.
Edge deletions may produce vertices of degree 0, but
every vertex of an edge-induced subgraph is of degree at
least one. These problems are often confused, since the
only differences are in vertices of degree 0.

A number of graph problems can also be viewed as
maximum edge-induced subgraph problems. The
following are some examples: The maximum matching
problem is the case in which 7=*‘degree < 1’’. The max-
imum cut problem is defined by setting 7= ‘‘bipartite’’.
The Chinese postman problem is for 7 =‘‘Eulerian”’.

The edge contraction problem for n is to find a set of
edges of minimum size whose contraction produces a
subgraph satisfying n. This is not exactly a subgraph
problem, but we deal with edge contraction problems
since they are deeply related to edge deletion problems.
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In discussing the issues related to the complexity of
these problems, we consider the following decision

problems:

1. MAXIMUM INDUCED SUBGRAPH PRO-
BLEMS FOR =

Instance: A graph (digraph) G=(V, E) and an in-
teger K< | VI.

Problem: Decide whether there is a set U of vertices
with |U| =K whose induced subgraph satisfies 7.

2. MAXIMUM EDGE-INDUCED SUBGRAPH
PROBLEM FOR n

Instance: A graph (digraph) G=(V, E) and an in-
teger K=< |VI.

Problem: Decide whether there is a set F of edges
with | Fl = K such that the edge-induced subgraph of F
satisfies 7.

Instance: A graph (digraph) G=(V, E) and an in-
teger K< | VI.

Problem: Decide whether there is a set F of edges
with |F| <K whose contraction results in a subgraph
satisfiying 7.

3.2 General NP-Completeness Results

3.2.1 Vertex Deletion Problems

The vertex cover problem, which is known to be NP-
complete [12], is regarded as the vertex deletion prob-
lem for n="‘‘independent set’’.

Krishnanmoorthy and Deo [13] showed that the max-
imum induced subgraph problems are NP-complete for
17 explicit properties. They developed a rather unified
approach to NP-completeness proofs for reductions
from the vertex cover problem, using forbidden
subgraphs.

A more general NP-completeness theorem was ob-
tained by Lewis and yannakakis [15]. We need some
definitions before stating their result.

Let D be a class of graphs (digraphs). We say that a
property n is nontrivial on D if infinitely many graphs
(digraphs) in D satisfy n and infinitely many graphs
(digraphs) in D violate n. A property 7 is said to be
hereditary (resp., hereditary on induced subgraphs,
hereditary on contractions) if, whenever a graph G
satisfies 7, all subgraphs of G (resp., induced subgraphs
of G, contractions of G) satisfy n. Obviously, if a pro-
perty is hereditary, then it is hereditary on induced
subgraphs. A property 7 is called polynomial time
testable if there is a polynomial time algorithm for
deciding whether a graph (digraph) G satisfies = or not.

The graph (digraph) properties of (1)-(16) in the
above list are nontrivial, hereditary on induced
subgraphs, and polynomial time testable. The property
n="‘‘transitively orientable’’ is hereditary on induced
subgraphs but not hereditary.

Theorem 1 (Lewis and Yannakakis [15]) Let n be a
property on graphs (digraphs). If n is:

1. nontrivial,

2. hereditary on induced subgraphs, and

3. polynomial time testable,
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then the MAXIMUM INDUCED SUBGRAPH PRO-
BLEM FOR n is NP-complete.

If n satisfies the conditions of Theorem 1 for planar
graphs, then the problem whose instances are restricted
to planar graph is also NP-complete. Moreover, for
digraphs, the problem restricted to acyclic digraphs is
NP-complete under the same conditions on 7 for
acyclic digraphs [15].

Theorem 1 covers infinitely many NP-complete max-
imum induced subgraph problems. As we have seen,
properties (1)-(16) of the list satisfy the conditions of
Theorem 1, and thus the corresponding maximum in-
duced subgraph problems are all NP-complete.
Theorem 1 was proved by reducing the vertex cover
problem but requires different reductions according to
whether it is used for graphs or digraphs.

For properties that are not hereditary, the maximum
induced subgraph problems need not be NP-complete.
For example, the maximum induced subgraph problem
for m="‘‘biconnected”’ is solvable in linear time [24].

The vertex cover problem allows a polynomial time
algorithm by the matching technique if instances are
restricted to bipartite graphs [14]. This restriction may
make a problem easier. Yannakakis [27] analyzed the
complexity of maximum induced subgraph problems
restricted to bipartite graphs. He proved a very
beautiful classification theorem by complicated
arguments.

For a graph G=(V,E) and a vertex w, the

neighborhood N(u) of u is defined by Nw)={v!{u,
vieE}. Let v(G) be the number of different
neighborhoods of its nodes, i.e., WG)=|{N()
lue V'}1. Then for a property m on graphs we define
v(n)=sup {v(G)|G is a graph satisfying n}.
Theorem 2 (Yannakakis [27]) Let n be a nontrivial
property on bipartite graphs that is hereditary on in-
duced subgraphs and polynomial time testable. The the
MAXIMUM INDUCED SUBGRAPH PROBLEM
FOR n restricted to bipartite graphs is

(1) NP-complete if v(n)=®

(2) polynomial time computable if v(n)< ©.

Yannakakis [25] considered how the connectedness
condition affects the complexity of maximum induced
subgraph problems.

The MAXIMUM CONNECTED SUBGRAPH PRO-
BLEMS FOR = is, given a graph (digraph) G and an in-
teger K, to decide whether there is a subset U of vertices
with | Ul = K whose induced subgraph is connected and
satisfies 7.

A property © is interesting on connected graphs if
there are arbitrarily large connected graphs satisfying r.

The following result asserts that the connectedness
does not affect the complexity:

Theorem 3 (Yannakakis [25]) Let = be a property on
graphs. If n is

1. hereditary on induced subgraphs,

2. nontrivial and interesting on connected graphs,
and
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3. polynomial time testable,
then the MAXIMUM CONNECTED SUBGRAPH
PROBLEM FOR 7 is NP-complete.

The same result is also shown for digraphs, but re-
quires the following additional condition [25]: There is
a polynomial time algoprithm that finds a digraph on n
vertices satisfying 7 for every n.

The property n="*‘maximum degree 2 and acyclic”’
satisfies the conditions of Theorem 3 and the connected
graphs satisfying n are paths. Therefore, the problem
of finding a maximum induced path is NP-complete.

3.2.2 Edge Deletion Problems

Yannakakis [27] showed that maximum edge-induced
subgraph problems for some properties on graphs and
digraphs are NP-complete. He proved the NP-com-
pleteness of the maximum edge-induced subgraph prob-
lems for the following properties by giving reductions
individually: (a) without cycles of specified length /, or
of any length</, (b) connected and maximum degree
k(k=2), (c) outerplanar, (d) transitive, (e) line-inverti-
ble, (f) bipartite, (g) transitively orientable.

It is natural to ask whether a result similar to
Theorem 1 holds for maximum edge-induced subgraph
problems. It is well-known that the maximum matching
problem [14] and the Chinese postman problem [6] are
solvable in polynomial time, but the maximum cut prob-
lem is NP-complete [12]. hence the situation is rather
different from in vertex deletion problems. However,
Watanabe, Ae and nakamura {28, 29] have succeeded in
proving a result analogous to Theorem 1.

Let S be a set of graphs. We say that a property = is
characterizable by forbidden subgraphs (resp., forbid-
den  subcontractions,  forbidden = homemorphic
subgraphs, forbidden induced subgraphs) in S if a
graph G satisfies 7 if and only if G has no subgraph
isomorphic to (resp., no subgraph homeomorphic to,
no subcontraction isomorphic to, no induced subgraph
isomorphic to) any graph in S. A graph property is said
to be finitely characterizable by 3-connected forbidden
subcontractions if there exists a finite nonempty set S of
3-connected graphs such that 7 is characterizable by for-
bidden subcontractions in S.

For example, the property n=‘planar’” is

characterizable by forbidden homeomorphic subgraphs
in {Ks;, Ks}.
Theorem 4 (Watanabe, Ae and Nakamura [28, 29]) If
7 is a nontrivial property on graphs that is finitely
characterizable by 3-connected forbidden subcontrac-
tions, then the following problems are NP-complete:

(1) MAXIMUM EDGE-INDUCED SUBGRAPH
PROBLEM FOR &

(2) EDGE CONTRACTION PROBLEM FOR 7.

Asano and Hirata [2] improved Theorem 4 as
follows: a property n on graphs is determined by the 3-
connected components if a graph G satisfies n if and
only if every 3-connected component of G satisfies n.

It can be seen that if n is characterizable by 3-con-
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nected forbidden subcontractions then it is hereditary
on subgraphs and determined by the 3-connected com-
ponents, but the converse is not true.

Examples of properties n that are hereditary on
subgraphs and determined by the 3-connected com-
ponents are 7= "‘‘planar’’ and n="‘‘series-parallel’’.
Theorem 5 (Asano and Hirata [2]) Let n be a non-
trivial property on graphs that is hereditary, determined
by the 3-connected components and polynomial time
testable. Then the following problems are NP-com-
plete:

(1) MAXIMUM EDGE-INDUCED SUBGRAPH
PROBLEM FOR n

(2) EDGE CONTRACTION PROBLEM FOR 7.

Furthermore, Asano [1] extended the arguments in
Watanabe et al. [28, 29] and showed that the problem re-
mains NP-complete even if instances are restricted to
planar graphs.

As to edge contraction problems, Asano [3] also
showed that if a property = is nontrivial on connected
graphs, hereditary on contractions, determined by the
biconnected components, and polynomial time
testable, then the EDGE CONTRACTION PROBLEM
FOR r is NP-complete.

The following results obtained by El-Mallah and Col-
bourn [7] also cover quite large NP-hard families:
Theorem 6 (El-Mallah and Colbourn [7)) Let S be a
set of biconnected graphs with minimum degree at least
3. If a property m is characterizable by forbidden
homeomorphic subgraphs (resp., forbidden subcontrac-
tions) in S, then the MAXIMUM EDGE-INDUCED
SUBGRAPH PROBLEM FOR 7 is NP-hard.

3.3 Restriction to Series-Parallel Graphs

Most NP-complete graph problems fall in P when in-
stances are appropriately restricted. For example, the
restriction to bipartite graphs allows a polynomial time
algorithm to be used for the vertex cover problem. Such
restrictions that make NP-complete problems solvable
in polynomial time are found for each problem in the
appendix of Garey and Johnson (8]. It is not the pur-
pose of this paper to enumerate these restrictions but to
show a class of graphs for which subgraph problems
can be solved in polynomial time.

Takamizawa, Nishizeki, and Saito [23] showed in a
unified way that maximum induced subgraph and max-
imum edge-induced subgraph problems are linear time
computable for series-parallel graphs.

In this section we deals with graphs (digraphs) with
multiple edges since we consider series-parallel graphs.
We say that two edges are series (resp., parallel) if they
are incident to a vertex of degree 2 (resp., if they join
the same pair of distinct vertices). A series-parallel
graph is defined recursively as follows:

(a) A graph consisting of two vertices joined by two
parallel edges is a series-parallel graph.

(b) If G is a series-parallel graph, then a graph ob-
tained by replacing any edge of G by series or parallel
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Fig. 1 The lexicographically first maximal independent set.

edges is a series-parallel graph.

Theorem 7 (Takamizawa, Nishizeki, and -Saito [23]
Let n be a property on graphs characterizable by a finite
number of forbidden subgraphs (resp., forbidden in-
duced subgraphs). Then the maximum edge-induced
subgraph problem (resp., maximum induced subgraph
problem) for n is linear time computable for series-
parallel graphs.

4. Problems Solvable by Greedy Algorithms

Instead of finding a maximum size subgraph, there is
a way of finding a maximal subgraph satisfying a given
property. One of the simplest ways of finding a max-
imal subgraph is to employ greedy methods. This sec-
tion considers algorithms that find the lexicographically
first maximal subgraphs.

Let G=(V, E) be a graph (digraph) with V={1, . . .,
n}. The vertices in V are linearly ordered as 1< - - - <n.
For a hereditary property n, consider the following
greedy algorithm:

begin/*G=(V, E)is given, where V'={1, . . .

U<0;
for i<1 to n do
if the subgraph induced by UU{i} satisfies n
then U~ UU{i}

,nt*/

end

Algorithm 1:
subgraphs

The set U of vertices computed by the above
algorithm is the lexicographically first maximal set of
vertices whose induced subgraph of U satisfies n. For-
mally, the lexicographic order on the set 2" of all
subsets of V is defined as follows, where V={1,. ..,
n}:

0<{1}<{1,2}<---<{1,2,...,nt<{2}<{2, 3}
<--<{2,3,...,n<{3}< - <{3,...,n}
< --<{n=1, n}<{n}

Greedy algorithm for maximal

For example, the lexicographically first maximal in-
dependent set is shown in Fig. 1 as the gray vertices.

The problem we consider is the following decision
problem, where LF is an abbreviation for ‘‘lex-
icographically first’’:
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4. LF MAXIMAL SUBGRAPH PROBLEM FOR
7 (LFMSP(%))

Instance: A graph (digraph) G=(V, E') and a vertex
v, where V={1,. .., n}.

Problem: Decide whether the vertex v is in the lex-
icographically first maximal subset U of vertices whose
induced subgraph satisfies 7.

4.1 General P-Completeness Theorems for LFMSP
(m)

P denotes the class of sets accepted by polynomial

time deterministic Turing machines. A set S is called P-
complete [11] if (1) S is in P and (2) every problem in P
is log-space reducible to S. Another definition of P-com-
pleteness is given by NC-reducibility [S] but the
difference is not important in this paper. Recently, P-
complete problems have received considerable atten-
tion, since any P-complete problem does not seem to
allow efficient parallel algorithms [5, 18]. Some P-com-
plete problems have also been reported [21].
Theorem 8 (Miyano [19]) Let n be a nontrivial proper-
ty on graphs (digraphs) which is hereditary on induced
sugraphs and polynomial time testable. Then
LFMSP(r) is P-complete.

The above theorem also holds when the instances are
restricted to planar (resp., bipartite) graphs and =
satisfies the conditions of Theorem 8 for planar (resp.,
bipartite) graphs. These results are proved by reducing
the lexicographically first maximal independent set prob-
lem restricted to planar (resp., bipartite) graphs that is
P-complete [19].

Unfortunately, the lexicographically first maximal in-

dependent set problem restricted to planar bipartite
graphs is not known to be P-complete. For this reason,
we need a new analysis for simultaneously planar and
bipartite graphs. We call a collection of disjoint edges
independent edges. With an additional condition for in-
dependent edges, LFMSP(n) restricted to planar bipar-
tite graphs becomes P-complete.
Theorem 9 Let n be a nontrivial property on planar
bipartite graphs. If n is satisfied by all independent
edges, hereditary on induced subgraphs and polynomial
time testable, then LFMSP(n) is P-complete.

From Theorems 8 and 9, the problem of finding the
maximal induced subgraph by Algorithm 1 for many
hereditary properties is seen to be P-complete, and thus
difficult to parallelize efficiently.

When a linear order is given on the edge set as
E={e <e;<:--<ey}, we can also consider the lex-
icographically first maximal edge-induced subgraph
satisfying a given property #. As we saw in Section 3,
general NP-completeness results are known for the max-
imum edge-induced subgraph problems. But we do not
know such general P-completeness results for the lex-
icographically first maximal edge-induced subgraph
problems. The situation is rather different from that of
induced subgraphs. We may make the following obser-
vations:
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(1) For the properties 7= “‘‘acyclic’’ and 7= "*‘bipar-
tite’’, the lexicographically first maximal edge-induced
subgraph problems have efficient parallel algorithms.
Hence they do not seem to be P-complete [19].

(2) For the property n="*without cycles of length
k>’ (k=3), the lexicographically first maximal edge-in-
duced subgraph problem is P-complete [19].

(3) For the property z="‘‘maximum degree 1°’, the
problem is the lexicographically first maximal matching
problem. This problem is shown CC-complete [16].
This fact implies that this problem may be neither P-
complete nor efficiently parallelizable.

4.2 General A2-Completeness Theorem

‘e

A typical nonhereditary graph property is ‘‘con-
nected.”” Theorem 3 shows that the connectedness
neither increases nor decreases the complexity of many
maximum subgraph problems. However, the complexi-
ty of LFMSP(n) changes drastically when the con-
nectedness is added to the property. The class we con-
sider here is 45 (also denoted by P™"), which is the class
of sets accepted by deterministic polynomial time oracle
Turing machines using oracles in NP [8]. This class ob-
viously contains NP and co-NP.

Algorithm 1 computes the lexicographically first max-
imal set when the property = is hereditary on induced
subgraphs. In general, for any property n (not necessari-
ly hereditary), the lexicographically first maximal set of
vertices that induces a subgraph satisfying n is com-
puted by the following algorithm (Algorithm 2):

begin/*G=(V, E)is given, where V={1, ..., n}*/

U+0;
fori—1lton
if there exists a set W satisfying
1. W2UU{i}
2. the induced subgraph of W satisfies n
then U+ UU{i}
end

Algorithm 2: General LFMSP(x) algorithm

Again we consider the following decision problem:

5. LF MAXIMAL CONNECTED SUBGRAPH
PROBLEM FOR 7 (LFMCSP(n))

Instance: A graph (digraph) G=(V, E) and a vertex
v, where V={1, ..., n}.

Problem:Decide whether the vertex v is in the lex-
icographically first maximal subset U whose induced
subgraph is connected and satisfies 7.

If 7 is polynomial time testable, it is easy to see that
LFMCSP(n) is solvable by a deterministic polynomial
time oracle Turing machine using the NP-oracle that
decides the if-condition of Algorithm 2. Hence it is in
A5. For this problem we also have a general com-
pleteness theorem.

We say that a graph property n is determined by the
blocks if for any graphs G, and G, satisfying =, the
graph formed by identifying any vertex of G, and any
vertex of G, also satisfies 7.
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Theorem 10 (Miyano [20]) Let n be a nontrivial pro-
perty on graphs that is hereditary on induced sugraphs,
determined by the blocks and polynomial time testable.
Then LFMCSP(rn) is A%-complete.

Theorem 10 is proved by reducing the deterministic
satisfiability problem [22], which was shown to be A45-
complete.

One of the interesting properties not covered by
Theorem 10 is np=‘‘maximum degree 2 and acyclic’’,
for which the connected induced subgraphs are paths.
For the property no, LFMCSP(n,) is also shown 45-com-
plete by giving an individual reduction [18]. Hence a
more general result seems to hold.

For a property n, we define the diameter 6(;r) by sup
{6(G)IG is a connected graph satisfying n}, where
o(G) is the diameter of G. For example, J(‘‘planar’’)
=00, d(ng)= and J(‘‘clique’’)=1. By Theorem 8
LFMCSP (“‘clique’’) is P-complete. On the other hand,
LFMCSP(n,) and LFMCSP(‘‘planar’’) (by Theorem
10) are A5-complete. From these observations, we may
make the following conjecture:

Conjecture 1 If a property n is nontrivial on con-
nected graphs and satisfies d() = o0, then LFMCSP(n)
is A%-hard.

5. Conclusions

We surveyed some general theorems for showing com-
pleteness for NP, P, and 45. Since thousands of natural
NP-complete problems have been reported, a single
NP-complete problem may not be very attractive.
However, the approaches presented in this paper cover
a large class of problems in a systematic way. Such sys-
tematic approaches will have increasing importance in
the analysis of complexity.
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