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A New Reorthogonalization in the
Lanczos Algorithm

HitosH1 IMa1*, MakoTo NaTor1* and Eur KAWAMURA™

A new reorthogonalization in the Lanczos algorithm is proposed. In this method, the loss of orthogonality
among Lanczos vectors is monitored by a recurrence formula. When it is detected, Ritz vectors, which corres-
pond to converging Ritz values, are employed for the orthogonalization. The main feature of this method is that
eigenvalues are obtained in any quantity and precision that the user requires. Therefore, the Lanczos algorithm
can be stopped as soon as the desired eigenvalues have been obtained.

Numerical computations are carried out to evaluate the method. Here, matrices obtained by discretization of
the two-dimensional Laplace operator are used. The features mentioned above are confirmed numerically, and

an improvement in the computational time is confirmed.

1. Introduction

The Lanczos algorithm is an interesting method of
solving large symmetric eigenvalue problems, for it has
the following two attractive features. The first is that it
can save machine storage when the matrix is sparse.
This is because, unlike other methods (such as the
Householder transformation), does not change the
given matrix in the course of computation. The second
is that theoretically computations can be stopped
halfway as soon as the desired eigenvalues have been ob-
tained. This is because accurate eigenvalues are ob-
tained iteratively from outside, and their accuracy is im-
proved if any computational error can be neglected [3].
However, since the Lanczos algorithm is sensitive to
roundoff, some computed eigenvalues are not true. This
is caused by the loss of orthogonality among Lanczos
vectors as the Lanczos algorithm proceeds. Hence some
reorthogonalizations have been introduced [3-6].
However, even when these reorthogonalizations are
used it is still difficult to know the accuracy of com-
puted eigenvalues or to distinguish true and false eigen-
values, so the second feature has not been realized. In
this paper a new reorthogonalization utilizing this
feature is proposed.

The Lanczos algorithm was first introduced in 1950
to solve the eigenvalue problem [1]

Ax=Ax, (1)

where A is a symmetric n X n matrix. This is a simple
iterative method, and may be considered as a way of
constructing a tridiagonal matrix through orthogonal
transformation. The original Lanczos algorithm is
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given as follows [2].
(I) Choose a starting vector g, (llg,ll=1), and set

u.=Aq1. 2)

(II) Compute «; and B (j=1~n) iteratively as
follows:

=ug), 3)
ry=u;—aqj, )
Bi=1rll, (%)
q1=r/ B, (6)
U1 =Agj+1— Bq;. )]

Here {g;},=1.» are called Lanczos vectors, which become
mutually orthogonal. The procedure (3)-(7) is called the
J-th Lanczos step. At the j-th Lanczos step, Ritz values
{67}i=1,; and Ritz vectors { y/},=,; can be defined as the
following eigensystem:

Tisi=0isl, (8)
yi=V;sl, o
where
ar S
B
T;= » Vislai--gl. (10)
ﬁ/‘l
Bi-1 o

From the definition, if j=n, then the Ritz values and
Ritz vectors coincide with the eigenvalues and eigenvec-
tors of the original problem (1), respectively. Note that
the Lanczos algorithm is regarded as a natural way of
implementing the Rayleigh-Ritz procedure on the se-
quence of Krylov subspace [3). Thus Ritz values are re-



A New Reorthogonalization in the Lanczos Algorithm

Table 1 Reorthogonalizations SO and PRO.

Method

Monitor  Vectors for reorthogonalization
SO B Ritz vectors
PRO Wiy, Lanczos vectors

Table 2 Matrices used in numerical computations.

Dimension 60 200 400 800
ID 6 20 25 25
JD 10 10 16 32

garded as approximations to the eigenvalues in (1).
This simple Lanczos algorithm is sensitive to roun-
doff, so the orthogonality among Lanczos vectors is lost
as the Lanczos steps proceed. This 10ss of orthogonality
causes redundant copies of Ritz pairs, so some com-
puted eigenvalues are not true. To relax the sensitivity
to roundoff, the reorthogonalization of Lanczos vectors
is carried out. However, since the matrices are usually
large, full reorthogonalization (FRO) is not available.
Some partial reorthogonalizations have therefore been
introduced. In particular, the selective orthogonaliza-
tion (SO) method developed by Parlett and Scott [4]
and the partial reorthogonalization (PRO) method de-
veloped by Simon [5, 6] are famous. In SO the loss of
orthogonality at the j-th step is monitored by
Bi.i=Bia:
where g, is the j-th component of s/. If | 8;,| <&'/2, then
the i-th Ritz vector is chosen for the reorthogonaliza-
tion. From now on, ¢ stands for the machine epsilon.
The Ritz values are usually computed before the Ritz
vectors. Therefore, SO needs to solve eigenvalue prob-
lem (8) at every step and to compute adequate Ritz vec-
tors. On the other hand, in PRO the loss of orthogonali-
ty at the j-th step is monitored by w;.,;, where wj+;;
satisfies the following recurrence formula: [6, 7].

wio=0, wi=1, l=sk=sj+1, (12)
2=k<j, 13)

l=isj 1y

Wi k~1= Yk,

1
Wy l,i='E { Biwkiv1+ (i— )i+ Bi-1 k-

= Br-10k-1} + dris
2=ksj, l=isk—1 (19)
where
w,;—en% ¥, ¥Ye N(0,0.6), (15)
di=e( i+ )P, Pe N(0,0.3). (16)

If lwjv1:1 >€"?, then the i-th Lanczos vector is chosen
for the reorthogonalization. After the reorthogonaliza-
tion has been performed, w;+1, is set as wj+1e N(O,
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Fig. 1 Correspondence of Ritz values for the convergence check-
ing in RIC.

1.5)¢. The monitors and the vectors in reorthogonaliza-
tions SO and PRO are compared in Table 1.

Although these reorthogonalizations give a larger
number of true eigenvalues, it is still difficult to
discriminate true eigenvalues and to know the accuracy
of computed eigenvalues. In the next section, we in-
troduce a new reorthogonalization that can indicate
true eigenvalues and their accuracy. This method is also
effective in terms of computational time.

2. A New Reorthogonalization

Our new reorthogonalization is based on the follow-
ing considerations.

To estimate the computed eigenvalues it is better to in-
vestigate the behavior of Ritz values among the Lanczos
steps. This investigation is only necessary when the
behavior changes. From Paige’s theorem, this change in
the behavior occurs when the orthogonality among
Lanczos vectors is lost [2, 3]. This loss of orthogonality
is simply monitored by w;., as in PRO. Therefore

(i) The behavior of Ritz values is checked only when
wj+1,; becomes greater than &'/2.

At the same time, this investigation may also be used
for the reorthogonalization. The problem lies in the
choice of the vectors to which the Lanczos vectors are
orthogonalized. PRO applies the value w;+; not only
to the monitor of the orthogonality but also to the
choice of vectors. However, numerical results show
that, while SO is successful, PRO is not (see Table 3).
Hence, Ritz vectors seem to be suitable for the reor-
thogonalization. In SO they are chosen by estimating
B;.. However, it takes a long time to compute g;; since
all the eigenvectors in Eq. (8) are necessary. The follow-
ing choice of Ritz vectors is therefore introduced:

(i) Choose the tolerance t for the convergence
check. (For example, choose 7in 107'°~ 10~"? for dou-
ble-precision calculations.)

(i) Then perform a convergence check of Ritz
values from outside sequentially by comparing the Ritz
values at the j-th and (j—1)-st steps (see Fig. 1).

(iv) Ritz vectors that correspond to converging Ritz
values are chosen for the reorthogonalization.

This choice is partially supported both by Paige’s
theorem, which shows the inclination of the Lanczos
vector, and by the fact that Ritz values are Rayleigh-
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Ritz approximations to eigenvalues. Here note that if
the loss of the orthogonality is detected sequentially,
then computations of Ritz values at the last step can be
omitted. Moreover, there may be no need to recheck
Ritz values that have already been determined to be con-
vergent. There may also be no need to recompute Ritz
vectors that correspond to these Ritz values if formerly
computed Ritz vectors are retained in the memory.

Hereafter, this new reorthogonalization (i)-(iv) is
called reorthogonalization with improved convergence-
checking (RIC). In RIC, converging Ritz values are re-
garded as eigenvalues, and at the same time their error
is roughly estimated from the tolerance 7. Therefore
RIC can be expected to offer some eigenvalues for the
given accuracy at any time. Moreover, it can be ex-
pected to stop the Lanczos algorithm before it begins to
fail. More precisely, if the monitored outermost Ritz
values tend to diverge at some step, then the Lanczos
algorithm will fail from this step. However, even in this
case RIC can be expected to offer some accurate eigen-
values, because converging Ritz values obtained before
this step are regarded as good approximations.

Table 3 Averaged relative errors of computed eigenvalues.

Dimension 60 200 400 800

PRO 7.6x107" 2.7x107" 3.9x107"  4.6x107"

SO 29x107'% 5.1x107'¢ 8.9x107' -

RIC* 3.5%107" 1.2x107" 4.5x107"7 1.7x107?
*r=10""

Table 4 Number of computed eigenvalues whose relative errors are
less than 107"

Dimension 60 200 400 800

PRO 59 0 0 0
SO 60 200 400 —
60

RIC 200 400 436

Table 5 Number of converging Ritz values and averaged relative er-
rors in RIC for t=107"2

Number of converging Averaged relative

Dimensioni i R»“?_Vﬂ“_esf) ) ~errors o
® 7 it
o n o
0 179 ol
T Y e

219 2.8x107"

*The number is determined by RIC; the number from the
minimum eigenvalue is in the upper row, and the number from the
maximum eigenvalue is in the lower row.
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3. Numerical Results

In this section we present the numerical results ob-
tained by RIC, SO, and PRO. The matrices used here
are obtained by discretization of the two-dimensional
Laplace operator that is defined in the rectangular do-
main and subject to the homogeneous Dirichlet bound-
ary conditions. Exact eigenvalues for these matrices are
given as follows:

ni nj
A,=4 Lsin? in? ,
d {S’" 2ap+n TS 2(JD+1)}

i=1~ID, j=1~JD 1

where (JD+1) and (JD+1) are divisions of the rec-
tangular domain along the x-axis and the y-axis, respec-
tively.

Numerical computations are carried out for the
matrices in Table 2. Matrices over 800 x 800 are not
used because of the limitation on computational time
(see Table 6).

In Table 3, the averaged relative errors of eigenvalues
are presented for various matrices with simple eigen-
values. Although SO is not carried out for the 800 x 800
matrix because of the limitation on computational time,
SO would give as accurate results as RIC in this case.

Table 4 exhibits the number of computed eigenvalues
with a relative error of less than 1078, This shows that
RIC is superior in precision to PRO.

Table 5 shows the number of Ritz values that are de-
termined by RIC to be convergent. Comparison with
Table 4 shows that the approximate eigenvalues can be
guaranteed up to the number of converging Ritz values.
This observation implies that RIC can stop the Lanczos
step as soon as the desired eigenvalues have been ob-
tained.

Table 6 shows the CPU time on a HITAC M682H.
Since the CPU time strongly depends on the matching
between the program and the machine, these values are
not absolute. However, RIC is expected to be superior
in computational time to SO.

In Table 7 the averaged relative errors of eigenvalues
in RIC for different t are presented.

Table 6 CPU time (sec., HITAC M682H).

Dimension 60 200 400 800
PRO 0.2 2.2 10.4 56.4
SO 3.0 118.1 1127.8 —
RIC 24 89.1

688.5 5402.2

Table 7 1t dependence of RIC for 400 x 400 matrix.

T 107"

o

4.5%107"?

Averaged relative

] 4.1x107'
errors of eigenvalues
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When the eigenvalues are degenerate, some Ritz
values appear suddenly at a certain step and afterwards
converge to degenerate eigenvalues. In this case, neither
SO nor PRO is applicable. However, RIC is useful even
in this case because it can be programmed to give
knowledge about the step at which the convergence is
numerically lost. This informs the user that eigenvalues
are degenerate or that the Lanczos algorithm fails
halfway.

4. Conclusion

A new reorthogonalization of the Lanczos algorithm,
called RIC, is proposed. In this method, a recurrence
formula is used to monitor loss of orthogonality among
Lanczos vectors. When a loss of orthogonality is
detected, the adequate Ritz vectors are chosen by in-
vestigating the convergence of Ritz values, and are used
in the reorthogonalization.

Numerical results show that if the eigenvalues are sim-
ple, RIC is as successful as and faster than SO.
Moreover, it allows the Lanczos algorithm to be stop-
ped halfway as soon as the desired eigenvalues have
been obtained.
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