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A Dynamic Algorithm for Placing Rectangles
without Overlapping

TAKESHI TokuYAaMA*, TAKAO AsaNo** and SHUJI TSUKIYAMA***

We consider the dynamic allocation problem of rectangles such that a mixed sequence of insertions and dele-
tions of rectangles in a rectangular board is executed without any pair of rectangles overlapping each other. We
present an O(n log log n) time algorithm for insertion of a rectangle if n rectangles have been already placed in
the board. We solve the problem by reducing it to the contour construction problem on a special class of ar-

rangements of rectangles.

1. Introduction

The problem of allocating a set of iso-oriented rec-
tangles without overlapping has widespread applica-
tions. Assume a rectangular board W and a set S of rec-
tangles are given.

Problem 1. Find an allocation of the rectangles of S
on W such that none overlaps another.

Problem 1 is a kind of two-dimensional bin packing

problem that is NP-hard [1]. Therefore, we would like
to consider the following problem of dynamic place-
ment, where we process a series of insertions and dele-
tions, updating suitably preprocessed data.
Problem 2. Suppose n rectangles R,, R,, ..., R,
have already been placed on W without overlapping.
Then decide whether a rectangle Rect(a, B) of width o
and height B can be inserted in the orthogonal region
W—R\URU- - -UR,. If so, construct the region con-
sisting of all possible placements of (the right-upper cor-
ner of ) the inserted rectangle.

The region consisting of all possible placements
defined above is called the admissible region. Figure 1 il-
lustrates the problem. The admissible region is impor-
tant in applications of the dynamic placement problem
to chip layout, window systems, scheduling, and map
layout. We design an algorithm for constructing an ad-
missible region in O(n log log n) time and O(n) space,
using O(n) space dynamic data. We reduce the problem
to the contour construction problem and the rectangula-
tion problem on a special class of arrangements of rec-
tangles called FIFO arrangement. Our algorithm, which
is simple as well as efficient, is essentially a plane sweep
algorithm using an O(log log n) time priority queue, a
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Fig. 1 Admissible region (The union of the shaded regions). The
rectangle R can be inserted without overlapping rectangles
R;(i=1,2, .. .,6)if the right-upper corner C is located in
the admissible region.

visible skeleton, and saving boxes, which are defined
later.

2. Admissible Region and Extended Rectangles

Let us characterize the admissible region mentioned
above. Suppose that R=[/, r] x [b, (] is a rectangle plac-
ed on the board with the vertex set {(/, b), (I, 1), (r, b),
(r, £)} such that /<r and b< . If we deal with the inser-
tion problem of a rectangle with width « and height 3,
we consider the extended rectangle R[a, S1=[I, r+«a}
X [b, t+pB] of R. Further, we contract the board
W=, rJx[b., t.] to obtain W,z=[l,+a,r,)
X [bw+8, t.].

Observation 2.1 (Fig. 2)

A rectangle Rect(c, ) of width « and height £ is plac-

ed in Py= W—-IL:J, R; if and only if its right-upper corner
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Fig. 2 Arrangement of extended rectangles. Each rectangle of R,
(i=1,2, ..., 6)is extended to the right by the width the
rectangle R and upwards by its height. The board W is
shrunk to the right and upwards by the width and height of
R, respectively.

is located in the region P.s=W.s—U Rila, B).
Therefore, the admissible region coincides with P, 4.

The problem is now reduced to the contour construc-
tion problem, since the problem of constructing the ad-
missible region is equivalent to that of constructing the
contour of the union of extended rectangles q Ri[a, B].
O(n log n+ k) time algorithms are known to construct
the contour of a union of »n rectangles, where k is the
complexity of the contour [2, 5]. Wood [5] presented a
research problem of constructing the contour of a set of
rectangles in O(n log log n+ k) time provided that the
both vertical and horizontal sorted orders of the ver-
tices are known. That problem is still open in general;
however, it is true for the set of extended rectangles
Rila, Bl G=1,2, ..., n):

Theorem 2.2 (main theorem)

1. The admissible region P,z is constructed in O(n
log log n) time and O(n) space, updating O(n) space
dynamic data. The Admissible region is obtained as a
disjoint union of connected orthogonal regions, which
are represented by the edge lists of their boundary or-
thogonal polygons.

2. O(log n) time is needed to update the data when
we remove a rectangle from the board.

We maintain the following three lists as dynamic
data:

(1) List of all horizontal edges of rectangles R;
(i=1, 2, ..., n)sorted with respect to y-values,

(2) List of all left vertical edges of rectangles sorted
with respect to x-values, and

(3) List of all right vertical edges of rectangles
sorted with respect to x-values.

Without loss of generality, we assume that each pair
of the x-values (resp. y-values) has two different values,
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Fig. 3 Arrangement of horizontally extended rectangles. Each rec-
tangle R, (i=1, 2, . . ., 6) is extended to the right by the
width of R. The board W is shrunk to the right by the same
amount.
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since we can apply a perturbation method to a singular
case.

If we consider a special case where W is the entire
plane R?, we obtain the following corollary from the
theorem:

Corollary 2.3 The contour of union of the extended
rectangles is constructed in O(n log log n) time from the
three lists above.

Before dealing with the admissible region P.; we
consider the arrangement consisting of horizontally ex-
tended rectangles R,[a]=Ri[«, 0] (i=1, 2, ..., n)and
a horizontally contracted board W,=[l.+«, r.} X [bw,
t.] (see Fig. 3).

The following observation suggests the importance of
studying the arrangement constructed from horizontal-
ly extended rectangles in order to solve our problem.
Observation 2.4 Rect(a, ) can be placed in Po=W —
U R, if and only if the vertical segment of length B can
be placed in P,=W,— U Rila].

By adding vertical cuts to an orthogonal region, we
can decompose the region into a set of rectangular ver-
tical strips. This decomposition is called a (vertical) rec-
tangulation if we decompose the region into a minimum
number of strips (Fig. 4). The rectangulation is unique-
ly determined.

Suppose that we have obtained the rectangulation of
the orthogonal region P into vertical strips V,, V>, . . .,
V.. Without loss of generality, we can assume that each
pair of vertical (resp. horizontal) edges of P has two
different x-values (resp. y-values). Then each side of a
vertical strip is bordered by at most an edge of P. We
consider a directed graph G(P) called the rectangula-
tion graph associated with the rectangulation (Fig. 5).
The node set of G(P) is {a, a2, . . . , ax}, where a; cor-
responds to the vertical strip V;. Two nodes, a; and a;,
are connected by a directed arc <a;, g;) if and only if V;
and V; are adjacent in P sharing a vertical cut such that
V; is located to the left of V;. Each node has four edge
fields in which we store the names of edges of P border-
ing the corresponding four sides of the strip. In Fig. S,
an edge of P, is denoted by using the name of a rec-
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Fig. 4 Vertical rectangulation. The intersection of the horizontal-
ly shrunken board W with the outer region of the union of
the horizontally extended rectangles is decomposed into
vertical strips.

tangle or the board W. The node a6 corresponding to Vs
is bordered by RI_r (right edge of R,), R4_b (bottom
edge of R,), R5_I (left edge of Rs), and R3_t (top edge
of R 3).

In the following two sections, we design an O(n log
log n) algorithm to construct the rectangulation graph
G(P,) (mainly, we deal with the case in which W=R?.)
In the final section, we demonstrate the construction of
the admissible region P, from G(P,) in O(n) time.

3. FIFO Arrangement of Rectangles

Let A=(R,, R;,..., R;) be an arrangement of
rectangles, where R;=[l;, r] X [B,, ti]. A is called a FIFO
arrangement if it satisfies the following condition:
Condition 3.1 (FIFO property) If R; and R; overlap
and l;<l;, then r;i<r

If we place the rectangles of A on a plane in order of
the x-values of the left edges of rectangles, eliminating
hidden parts of previous placed rectangles, we get an or-
thogonal subdivision S(A) of Q(A):=UR,. S(A) is
called the visible skeleton of A (Fig. 6). We consider
S(A) to be a planar graph whose vertex is an intersec-
tion point (of edges) or a corner of a rectangle. If A is a
FIFO arrangement, each horizontal edge of a rectangle
contains at most three vertices of S(A). Hence, the total
number of vertices in S(A) is at most 6n. An upper
horizontal edge of a rectangle bounds at most two
regions (open connected components) of R*—S(A), and
each region is bounded by at least an upper horizontal
edge of a rectangle because of the FIFO property.
Hence, there are at most 2r regions in R*—S(A), and it
follows from Euler’s relation for planar graphs that
S(A) contains at most 8n2—1 edge segments. We have
obtained the following lemma:

Lemma 3.2 For a FIFO arrangement A, the complexi-
ty of the visible skeleton S(A) is O(n).

We explain the relation of a FIFO arrangement to
our placement problem. Let I" be the set of horizontally
extended rectangles R(a)=[l;, ri+a] X [b;, ] (i=1, 2, . .
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Fig. 5 Rectangulation graph corresponding to Fig. 4. A node con-
tains the name of a strip and the edge of the (horizontally
extended) rectangle (or the frame of the board W) boun-
ding each side of it. A pair of nodes corresponding to adja-
cent strips are connected by an arc.
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Fig. 6 Visible skeleton associated with a FIFO arrangement.

- » n). Suppose an extended rectangle Ri(a) overlaps
with R;(a) so that /i</;and ri+a=r;— . Then, immedi-
ately, R; overlaps with R;, which is a contradiction. We
then have the following proposition:

Proposition 3.3 I is a FIFO arrangement.

From now on, we deal with a FIFO arrangement A.
Moreover, we assume that both the sorted order of the
set of y-values of horizontal edges and that of the set of
x-values of vertical edges are known. For our dynamic
placement problem, we can construct these sorted lists
for the arrangement of horizontally extended rectangles
in O(n) time from our dynamic data. Let G(P) be the
rectangulation graph of the complement space
P=R?—-Q(A) of Q(A). Then,

Theorem 3.4 G(P) is constructed in O(nlog log n)
time and O(n) space.

We give a proof of this therem in the following sec-
tion.
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4. Plane Sweep and O(log log n) Priority Queue

Let us recall the O(log log n) priority queue of Emde
Boas [3, 6, 7], which is an efficient data structure for
maintaining ordered lists dynamically. Let U be an or-
dered set of size n. An element of U s either active or in-
active. The set M consisting of all active elements is up-
dated dynamically. We define the operations FIND,
SPLIT, and UNION:

e FIND(u): Return the smallest active element
larger than the element u of U.

e SPLIT(u): Activate the element u of U.

e UNION(m): If m is an active element, inactivate
m (else nop).

Theorem 4.1[6,7] An O(n) mixed sequence of FIND,
SPLIT, UNION is executed in O(n log log n) time, us-
ing a data structure of O(n) space and O(n log log n)
preprocessing.

Further, we use the following two operations:

* PREDECESSOR(u): Return the largest active ele-
ment smaller than u.

» MEMBER(u): Return 1 if u is an active element,
else return 0.

The operations PREDECESSOR and MEMBER
need O(log log n) time and O(1) time, respectively. The
details of the data structure are explained by Mehlhorn
[3].

We design a plane sweep algorithm to construct the

rectangulation graph G(P). Let X(vert) be the sorted
set of the x-values of the vertical edges of rectangles.
We sweep the plane with vertical lines through the
members of X(vert) from left to right, maintaining the
list of horizontal edges of the visible skeleton S(A) in-
tersecting with the current weep line.
Definition 4.2 5#(6) denotes the set of all horizontal
edges of horizontally extended rectangles whose part
segments appearing in the visible skeleton S(A) in-
tersect the sweep line 6 at their interior points or left end-
points.

2#(0) is regarded as the set of active elements at the
sweep line @ in the set s consisting of all horizontal
edges of the horizontally extended rectangles sorted
with respect to their y-values.

We adopt the O(log log n) priority queue in order to
maintain 2#(8). We also consider a label L(k) for each
element A of 5#(#). Intuitively, we assign to L(h) the
name of the rectangle that covers the region in-
finitesimally higher than A at the current sweep line 6.
L(h)=0 means that the region belongs to the comple-
ment region R?—Q(A). We reset L(h) to —1 whenever
UNION(4) is done. Further, we equip a queue B; called
the saving box associated with each rectangle R; (i=1,
2, ..., n). As the algorithm sweeps to the left end-
point of an upper horizontal edge A, A is inserted into B;
if the region infinitesimally higher than the left end-
point of & belongs to R,; in S(A). B, is associated with
the complementary region.

At each sweep line, one of the operations INSERT

33

and DELETE below is done:
1. If the sweep line arrives at the /eft edge of a rec-
tangle Ry, then INSERT(R,).
2. Ifthe sweep line arrives at the right edge of a rec-
tangle Ry, then DELETE (R,).
Procedure INSERT(R));
begin
1. wu:=the lower edge of Ry;
2: v:=the upper edge of Ry;
3: p:=L(PREDECESSOR(v)); {The region above v
is covered by R,}
4: insert vin B,; {v is stored in the saving box associ-
ated with R,}
5: COMPLETE_STRIP(PREDECESSOR(u));
{call a subroutine}
6: w:=FIND(u);

7: while w<v do {climb up the current list}
begin
8: COMPLETE_STRIP(w);
9: UNION(w);
10: w:=FIND(w);
11: end;

12: SPLIT(u);

13: SPLIT(v);

14: Lu):=k;

15: L(v):=p;

16: MAKE_STRIP(PREDECESSOR(u)); {call a
subroutine}

17: MAKE_STRIP(v);

end;
Procedure DELETE(R));
begin
1: u:=the lower edge of Ry;
2: v:=the upper edge of Ry;
3: COMPLETE_STRIP(PREDECESSOR(1));
4: COMPLETE_STRIP();
S5: UNION(u);
6: UNION(®v);
7: MAKE_STRIP(PREDECESSOR());

repeat {draw from the saving box}

8: delete w from By;
9: if MEMBER(w)=1 then
begin
10: L(w):=0;
11: MAKE_STRIP(w);
end;
12:  until B, is vacant;
end;
Procedure MAKE_STRIP(2);
begin
1: if L()=0 then
begin
2: Create a strip between the horizontal edges z
and FIND(z) such that its left side is bounded by
the current sweep line;
3: Create a node of the rectangulation graph cor-
responding to the strip;
4: if the strip is adjacent to a strip at the current
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Fig. 7 Sweep algorithm. INSERT R,.

sweep line then

begin
S. Create the corresponding arc in the rec-
tangulation graph;
end;
end;
end;
Procedure COMPLETE_STRIP(z);
begin
1: if L(z2)=0 then
begin
2: Close the right side of the strip between z and
FIND(z) with the current sweep line;
end;
end;

We illustrate the procedure INSERT in Fig. 7, where
the sweep line comes to the left edge of R,. First, we
store the upper edge v of R; in the saving box B, corre-
sponding to R;. next, we FIND the lower edge u of the
rectangle R; and complete the strip ¥,. Then, we climb
up the current list to the upper edge v, removing the
horizontal edges A, h,, . . . , hs from the list, and com-
pleting V.. Lastly, we insert # and v into the current list,
and create a vertical strip V; adjacent to V;. We il-
lustrate the procedure DELETE in Fig. 8, where the
sweep line comes to the right edge of R,. The saving box
B, contains h, and h,. Thanks to the FIFO property,
only those regions whose lower edges are contained in
the saving box are created (except for the region con-
tiguous to the bottom-right corner of R;) when we
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Fig. 8 Sweep algorithm. DELETE R,.

delete R,. First, we FIND the lower edge 4 and upper
edge v of R, to complete the strips V; and V,. Next, we
update the current list, removing 4 and v from it. Then,
we create V3 adjacent to V. Finally, referring to the sav-
ing box B, we create strips V, and Vs whose lower edges
are h; and h; respectively. Vs is adjacent to V.

We remark that if we do not use the saving box, we
can climb up the list naively in four steps from u to A, in
this example; however, such a strategy increases the
complexity to O(n?) in the worst case.

We now analyze the complexity of the algorithm.

Proposition 4.3 During the sweep algorithm, the
number of iterations is O(n) for each of the operations
FIND, UNION, SPLIT, PREDECESSOR, MEMBER,
MAKE_STRIP, and COMPLETE_STRIP.
Proof When we execute INSERT(R;), the number of
iterations in the while-loop is equal to the number of
horizontal edges touching the left horizontal edge of R,
in the visible skeleton S(A). Therefore, the total
number of iterations in all the INSERT procedures is
not more than the number of vertices of S(A), which is
known to be O(n) from Lemma 3.2. When we execute
DELETE(R;), the number of iterations in the repeat-
loop is equal to the number of elements stored in the sav-
ing box By. Since an (upper) horizontal edge of a rec-
tangle is contained in at most one saving box, the total
size of the saving boxes is less than n. Hence, the total
number of iterations in all DELETE procedures is O(n).
This proves the proposition.

COMPLETE_STRIP is done in O(l) time.
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Fig. 9 Graphical representation of the admissible region.

MAKE_STRIP needs O(log log n) time, excluding the
time spent searching for adjacent strips in step 4. We
can design the procedures INSERT and DELETE so
that they pass at most two candidates of adjacent strips
to the subroutine MAKE_STRIP, since two strips are
adjacent at a sweep line only if the boundaries of both
strips share a vertex of the inserted (or deleted) rec-
tangle. Thus, a MAKE_STRIP can be executed in
O(log log n) time in our algorithm. We have shown that
each single operation in the procedures INSERT and
DELETE needs at most O(log log ) time. Hence, it
follows from Proposition 4.3 that the algorithm con-
structs the graph G(P) as a planar graph in O(n log log
n) time, using O(n) space. The proof of Theorem 3.4 is
complete.

Note: If we use a dynamic balanced tree [3] instead of
an O(log log n) priority queue to maintain 5 (6), we ob-
tain a simple O(n log n) algorithm.

5. Construction of Admissible Region

Proposition 3.3 and theorem 3.4 ensure that we can
obtain the graph G(P) for P=R*—U Ri(a) in O(n log
log n) time. Our target is the admissible region P, 5. We
obtain G(P.ps) (Fig. 9) from G(P) in O(n) time as
follows:

1. For each node @ of G(P), compute the intersec-
tion of the strip V(a) stored in a with the horizontally
contracted board W,.

2. V(a):=V(aNW, (change the information of the
strip stored in a).
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3. Erase each node a for which the height of V(a) is
less than £.

Finally, we show the construction of the amissible
region from the rectangulation graph. G(P, ;) is decom-
posed into its connected components in linear time by
using depth-first search, and each connected compo-
nent corresponds to a connected component of the ad-
missible region. Since G(P, ) is a planar graph, it sub-
divides the plane into cells (i.e. connected regions).
Inside each cell, we walk along each connected
component of the boundary of the cell, forgetting the
direction of arcs. At each visited node, we walk around
it inside the cell from the current adjacent side (associ-
ated with the current arc) to the next adjacent side,
reporting the contents of edge fields. Thus, we obtain a
list of edges of rectangles. Abridging it by removing im-
mediate repetitions, we obtain the edge list is a con-
nected component of the boundary of the corre-
sponding connected component of the admissible
region P,4. In Fig. 9, there is only one cell (external
cell). If we walk around the connected component of
the graph corresponding to the union of strips Vs, Vs,
Vs, and V,, we get the edge list (R2_r, RI1_b, RI_r,
R4_b, R5_I, R5_b, R6_Il, W_b, R3_r, R3_t) of the corre-
sponding connected component of the admissible
region (see Fig. 2). This process takes O(n) time. Hence,
we have obtained Theorem 2.2.
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