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Completeness of Logical Functions Realized
by Asynchronous Sequential Circuits

HisasHI SaTo*, AKIHIRO Nozaki** and GRANT PoGosyan***

This paper, concerns completeness problems for logical functions realized by asynchronous circuits that may

have feedback loops.

Its first aim is to give mathematical definitions of an asynchronous circuit and of the realization of a logical
function by means of an asynchronous circuit. For asynchronous elements, the definitions of circuit construc-
tion and initialization are very sensitive: a slight modification may have a considerable influence on the com-
pleteness. Several types of completeness are then formulated for a set of logical functions (LF-, GS-, GR-, and

NS-completeness).

The second aim is to give a completeness criterion for each tyupe of completeness. This aim is reatized for LF,
GS- and GR-completeness. A completeness criterion for NS-completeness is given under a strong condition.

1. Introduction

Digital computers are constructed from basic
elements called logical elements (or switching elements),
each of which performs an operation represented by a
logical function f: it receives imput signals xi, x», . . .,
Xxn, and emits an output signal y=f(x, X2, . . ., X»)
after a certain time-lag. Therefore we are led to ask
whether a given set of basic elements is complete, in the
sense that it realizes all logical functions. The classical
completeness problem deals with sets of logical func-
tions without time-lag. Since a loop of delay-less
elements is somewhat contradictory, feedback loops are
not allowed. Although the delays of actual logical
elements are usually very small in comparison with the
duration times of input signals, they are not absolutely
Zero.

K. Inagaki [1] thowed that use of feedback loops
could have a strong influence on the completeness of
delayed functions. For instance, after the simple circuit
shown in Fig. 1 has received the input signal 0 [in ad-
vance], it emits the stable output 0. We can easily show
that any loop-free circuit consisting of ‘‘AMD”
elements cannot realize a constant function. We
therefore consider the realization of logical functions
by means of sequential circuits. A. Nozaki [2] studied
the realization of logical functions by means of sequen-
tial circuits with unit delay gates, and introduced S-com-
pleteness. He also gave a powerful criterion for. . ..

In this paper, we give mathematical definitions of an
asynchronous circuit and of the realization of a logical
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function by means of an asynchronous circuit. We in-
troduce several types of completeness of a set of logical
functions realized by means of asynchronous circuits,
and give a completeness criterion for each type of com-
pleteness.

2. Logical Functions

Let M (X, Y) be the set of all mappings from a set X
to a set Y.
Definition 2.1 For the set B=1{0, 1}, let

(i) Q.,=M(B", B), where n is a positive integer,

(i) Q=Ux, Q..
We call an element of Q2 a logical function.
We represent one-variable logical functions in the
following way:

I(x) =x
NOT(x)=x=1—x
Co(x) =0
Cix) =1

Let us define some special classes of logical functions.
We introduce an order relation into the set B by letting
0<l1.

Let

X —»

C

Fig. 1 Realization of 0 by AND.

AND y
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aa=(o, 02, . . ., Qn)
and

ﬁ=(ﬂl! ﬁl’ LR aﬁn)

be binary sequences. We say that aa is not greater than
P(a<p) if and only if
o< B
for all i(1<i<n).
We use the following notations.
My={fe Q11(0,0,...,0)=0}
M ={feQlf(,1,...,1)=1}
S =the set of all self-dual functions
={feQifCa, ..., x)=fCx, ..., %)}
M’ =the set of all monotone non-decreasing
functions
L =the set of all linear functions
W ={fe Qlf0©,...,0=1,r71,...,1)=0}

3. Asynchronous Circuit

A circuit C is a system of simultaneous equations as
follows:

YI=HOL - Ym Xy oy Xn)

()

IYrn=fn(Ps o ooy Y X1y o o oy Xn)

where f; represents the input-output behavior of the i-th
element, whose current output is denoted by y;, and
X1, . . . » Xs represent the external inputs given from out-
side the circuit. The variable y/ represents the expected
output of the i-th element. The first output y, is taken
as the external output of circuit C.

Let F be a set of logical functions. Circuit C is called
a circuit over F if and only if all component functions f;
are in F,
Definition 3.1 A circuit is said to be loop-free if and
only if the following condition is satisfied:

The i-th function f; depends only on yiy\, ..., ¥m
and xy, . . . , X, for all i.
A loop-free circuit can be represented as follows:
B4 ITG 7R S T )
Yi=h(Ps o Yme Xty o oy Xn)
yr’n__—fm(xl) LY ,xn)

Definition 3.2 A circuit is said to be a restricted sequen-
tial circuit (or more simply, a restricted circuit) or a
short-loop circuit if and only if the following condition
is satisfied:

The output of an element may be connected to its
own input terminal, but no other feed-back loops are al-

lowed. (Informally speaking, all feed-back loops are
““short.”’)

A restricted sequential circuit can be represented as
follows:

y1,=f1(y|! s Ymy X1y o e "x’l)
Yi=Hnm o Ym Xy Xn)

V=S (Ymy X5 - o Xn)
An m-tuple
Y= .., ¥m)
is called the state of circuit C. An n-tuple
X=X, . . ., X)

is called the input of circuit C.
Definition 3.3 Ler

X=X, ...,Xn)

be an arbitrary input of circuit C, and
y=(yl’ e yym)
Z2=(21y . o vy 2m)

be arbitrary states of circuit C. We say that the state of
circuit C can be transferred fromy to z by the input x, if
and only if

Vi
Zi= 4 or

S, ..

for all i(1<i<n). This transition of states is denoted as
Sfollows:

s Vs Xty o o oy Xn)

X
y — z.

If
Zi=ﬁ(}’1, ce s Ymy Xy - e )xn)

Sorall i(1<i<n), then we say that the transition is syn-
chronous and write

Z=Yyy.

Definition 3.4 An infinite sequence of state transitions

e

¥0) = y(1) = y@) = ...

is said to be admissible for an input x if and only if the
Sfollowing condition is satisfied:

Let ty be an non-negative integer and i a positive in-
teger not greater than m. Let ¢ be can element of B. If

Jily(1), x)=c
Sfor all t=t,, then there exists a moment T=t, such that
yi{t)=c

Sor any t=T, where y(t) denotes the i-th component of
y@®).
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Remark 3.5 In practice, we can assume the existence of
a positive constant k satisfying the following condition:

If
JSily(t), x)=c¢
for T<t<T+k, then
yi(T+k)=c.

4. Output Stability

Definition 4.1 A synchronous sequence for an input
X is a sequence of the form:

¥(0) = y(1) = y(2) => . ..
where

y(t+1)=[y()k

for all t=0.

Remark 4.2 A synchronous sequence is always admissi-
ble.

Definition 4.3 An infinite sequence

¥0) —> y(1) = y(2) — ...

is said to be output stable if and only if there exists a
non-negative integer to such that

Yi(t)=yi(to+ D=y (tc+2)= .. ..

The output y,(t,) is called a stable output of the se-
quence.
Definition 4.4 An infinite sequence

¥(0) —> y(1) = y@) — . ..

is said to be final state stable if and only if there exists a
non-negative integer to such that

y(t)=y(to+ D=yt +2)= . . ..

The state y(to))=(y:1(to), . . . , Ym(%)) is called the final
stable state, and the output y,(f) the final stable out-
put.

Definition 4.5 Let 1, be a non-negative integer. Let

¥0) = y(1) => y@) —> . ..

be an admissible sequence. If a state y(t,) in the se-
quence satisfies the following simultaneous equation

s Vs X1y « « 5 Xn)

B

=AU, ...
»=H0,. ..
.ym:fm(.yh e ey Ymy X1y . e 1x’l)!
then we have

Y(t)=y(to+1)=y(lo+2)= . . ..

We call such a sequence terminating, and the state y(t;)
a stable state.
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Remark 4.6 A terminating sequence is always output
stable.

Proposition 4.7 Every admissible sequence of a loop-
free circuit is terminating.

Proof. If outputs yi+i, Yx+2, ..., Vm become stable,
then output y, also becomes stable. 2.6.9.

5. Realization of Logical Functions by Asynchronous
Sequential Circuits

5.1 Realization

Definition 5.1 Let Y be a non-empty set of states. Cir-
cuit C realizes a logical function fin Q, with respect to
the set Y if and only if the following conditions are
satisfied for any input Xx=(xi, . . . , Xu).

(i) Every admissible sequence starting from a state
in Y for the input x is final state stable, its final stable
state is uniquely determined by the input x, and its final
stable output is always identical with f(xi, . . ., Xa).

(ii) Lety and z be states. If

yeY
and

x
y > Z

for some input x, then state z is also in Y.

Lemma 5.2 We consider two circuits, C and C’, which
realize the logical functions h and k with respect to the
state sets Y and Y', respectively:

YIFADG o s Yme Xy o5 X))
)

I =fm(V1s o o s Yms X155 X)),

YI=gOn .o Ve Xt X)
<)

Y=g (Vs o s Y X1y o5 Xs)e

Circuit (C") realizes the function

h(k(x., c ey Xs)y Xs42y . v oy Xsn)
with respect to the set:
"={@,...,0m b, ...,b)(a,...,a,)e Y and
b,...,b)eY'}.
Y FADs o oo YmaYme1s Xst2y « + oy Xotn)
o) y? =fr(P1s o ooy Yms Yt ty Xsv2y o o 3 Xstn)
VYt r=G1(Vm+1s « o v s Vmtrs Xis o o o3 Xs5)
gyr’n+r=gr(ym+ly v ey VYmars Xty o o . ;-xs)-

Proof. After the output y,,+,(¢) of the circuit C’ in C”
becomes stable, the circuit C in C” evaluates the value
of
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h(ym-H: Xs+2y « + » yxs+n)a

which is equal to

h(k(Xl, o vey x:), X542y o o o Xs+n)

2.6.9.

5.2 Initialization

There are two contrastive initialization assumptions:

1. General Initialization Assumption
We can set the circuit in an arbitrary state by some
means.

2. Initialization-by-Input Assumption
We can change the initial state only by feeding a certain
input sequence to the circuit.

We can use a circuit C for evaluating a function A if it
realizes the function with respect to some non-empty set
Y of states under the general initialization assumption.
Let us consider a circuit C that realizes a function A
with respect to a set Y of states under the initialization-
by-input assumption. In practice, circuit C cannot be
used for evaluating the function A unless there is a finite
sequence of inputs that can convert all states of the cir-
cuit to some states in Y.

6. Various Types of Completeness

6.1 Classical Completeness Problem

Definition 6.1 Let F be a set of logical functions. We
denote by F the set of all functions constructed by com-
positions over F. The set F is said to be functional com-
plete if and only if F=Q.

E. L. Post gave the following powerful criterion:
Theorem 6.2 ([3)) Let F be a set of logical functions. F
is functional complete if and only if it is not contained
in any of the following five sets:

Moy, M, S,M’, and L.

Definition 6.3 Lef F be a set of logical functions.

(i) We denote by F the set of all functions realized
by loop-free circuits over F.

(ii) Fis said to be LF-complete if and only if F=Q.

(ii) F is said to be LF-incomplete if and only if it is
not complete.
Theorem 6.4 Let F be a set of logical functions. F is
LF-complete if and only if it is not contained in any of
the following five sets:

Mo, M\, S, M', and L.
Proof. Obvious from Lemma 5.2 and Theorem 6.2.
6.2 Completeness under the General Initialization
Assumption

Definition 6.5 Let F be a set of logical functions.

(i) We denote by [F] the set of functions each of
which can be realized by a circuit over F with respect to
some non-empty set Y of states.

(ii) F is said to be GS-complete if and only if [F]
=0.

(iii) F is said to be GS-incomplete if and only if it is
not GS-complete.
Proposition 6.6 Let F and F’ be sets of logical func-
tions.

(i) FcSFcIF]

(iiy FESF' = [Fl<[F’]

(i) F’'S[F] = [FUF']=[F]

@iv) [IFlI=I[F]
This proposition follows immediately from the defini-
tions.
Proposition 6.7 The set L of linear functions is GS-in-
complete.
Proof. Let C be a circuit over L. Let

¥0) —> y(1) => y2@) —=> . ..

be an admissible sequence of the circuit for an input x.
Suppose that y;(¢) is a linear combination of

20, ..., ¥m0),x1,...,x,
for all i (1 <i<m). Since
yi(®)
yit+1)=sor
Jin@), .o ym(@), X1, ., X)
and
fiel,
yi(t+1) is a linear combination of
20, .., Y0, X1, . ., Xne

By mathematical induction on ¢, yi(¢) is a linear com-
bination of

»n(), . .

for all non-negative integers z and all positive integers i
not greater than n. 2.6.9.
Proposition 6.8 The set M' of all monotone non-
decreasing functions is GS-incomplete.
Proof. Let C be a circuit over M. Let

s Ym(0), X1, . L, Xa

¥0) —> y(1) —> y@2) = . ..
by a synchronous sequence of the circuit for an input u,
and

2(0) — z(1) — 2(2) — . ..

the synchronous sequence of the circuit for another in-
put v, starting from the same state z(0)=y(0). Suppose
that

u<v.
Then by mathematical induction on ¢ we can show that

(=),
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Fig. 2 Circuit C’.

for all non-negative integers ¢ and all positive integers /
not greater than n. Therefore the stable output of the
circuit is always a monotone non-decreasing function
of the input. 2.68.9.
Lemma 6.9 Suppose that a set F of logical functions is
not contained in the set L. Then we can realize both of
the constant functions Coy and C, by circuits over F.
Proof. Let f be a function in F\L. Then f is surjective.
We write

f*(x)=f(x’ Xy oo s ,x).

Let us consider four cases:

(@) If f*(x)=I(x), then the constant function C, is
realized by the following circuit C’ with respect to the
state set

Y’ ={(a)}
(see Fig. 2):
(C'))’f=f(y1,}’|, s 9yl)'

(b) If f*(x)=NOT(x), then the constant function
C, is realized by the following circuit C” with respect to
the state set Y” ={(a, 1 —a)}:

(C”){yl,=f(y2: Y2y o v yyZ)

Yi=f(Vus Y. o s ))

(c) If f*(x)=Cs(x), then we can realize another con-
stant function C,(x) in the following way. Since f'is sur-
jective, there exists a binary sequence

a=(a|, Oy o v oy a,,)
such that
Slo, oz, . ..

The constant function C,(x) is then realized by the
following circuit C” with respect to the state set
Y7 ={{1, 0)}:

,an)=1.

(C,,,){.Vl:=f(J’2—u,,J’2-az, v s V2-a)
Yi=fl,x, ..., %).

d) If f*(x)=C(x), then we can realize another con-
stant function Cop(x) in a similar way.

H. Sato, A. Nozakl and G. POGOSYAN

In this way we can realize both of the constant func-
tions Co(x) and C;(x). 2.6.9.
Theorem 6.10 Let F be a set of logical functions. F is
GS-complete if and only if it is contained in neither M’
and L.

Proof. (only-if part) Obvious from Propositions 6.7
and 6.8. (if part) Suppose that F is not contained in L.
From Lemma 6.9, we can realize both Cy(x) and C,(x).

Co(x), Ci(¥)e [F]

On the other hand, the set FU{Cy(x), Ci(x)} is not con-
tained in any of the five sets.

My, M, S,M', and L.
Therefore,
[F1=[FU{Cy(x), C:(x)}] (. Proposition 6.6)
2FU{Co(x), Ci(x)} (. Proposition 6.6)
=0, ("’ Theorem 6.4)
~IFl1=0
2.6.9.

6.3 Completeness for Restricted Sequential Circuit
under the General Initialization Assumption

Definition 6.11 Let F be a set of logical functions.
(i) We denote by | F| the set of all functions that
can be realized by a restricted sequential circuit over F.
(ii) Fissaid to be GR-complete if and onlyif | F | =Q.
(iii) F is said to be GR-incomplete if and only if it is
not GR-complete.
Proposition 6.12 Let F and F’ be sets of logical func-
tions.
(i) FcFc |F|c[F]
(i) FEF' = |F|<|F’|
(iii) F’c|F| = FUF'c|F]
v LFlclLF]]
This proposition follows immediately from the defini-
tions.
Proposition 6.13 The sets M' and L are GR-in-
complete.
Proof. Obvious from Proposition 6.12 and Theorem
6.10.
We write

H=SNW.

From Theorem 6.10, the set H is GS-complete.
Proposition 6.14 The set H is GR-incomplete.

Proof. We consider a one-variable function A(x) realiz-
ed by a restricted sequential circuit ¥ over H, with
respect to a state set Y.

We will show that A(x) is either 7(x) or NOT (x), and
cannot be Cy(x) or C;(x). Assume that the circuit ¥ is
the ‘““‘minimum’’ one, having the smallest number of
elements among the circuits that realize h(x).
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Y=L Y o o s Ym—1s Ymy X)

@) yiff.(yz,ya,. e s Ym—1s Yy X)

Y n=Jm(Yms X).

(Step 1) We shall show that the value of the function
Jn(¥m, X) of the m-th element is equal to NOT (x). Two
cases are possible:

Case 1 £,(0, 0)=1.(1, 0)

Since f is self-dual, we have

Su(1, D=£n(0, 1).

Therefore, the first variable of f, is dummy, and we
have:

Sm(¥, )=NOT (x).

Case 2 f.(1, 0)=0
We then have

fa(1, D=0, fn(0, N=1.

Obviously, the output f,, is ‘‘unstable’’ for any input, 0
or 1. This is a contradiction.

(Step 2) Let us examine the function f,-1. Since f» is
identical with NOT, three cases are possible:

Case 1 f,,—1(0, 1, 0)=fr-1(1,1,0)=a

We then have:

fm—l(19 0’ l)=fm—l(0a O’ 1)=d'

Hence the output of y,,—, will eventually become a for
input 0, and a for input 1.
a=0
The stable output of f,,—, is identical with 7(x).
sa=1
The stable output of f,— is identical with NOT (x).
Since NOT(x) is given by y., the (m—1)-th element
is redundant, contradicting the assumption.
Case 2 f,—1(0, 1,0)=1, fn-1(1,1,0)=0
We then have:

Sn1(1, 0, 1)=0, fn-1(0,0, H=1.

In this case, the output of f,,—: is ‘‘unstable’’ for any in-
put. This is a contradiction.

Case 3 f»-1(0, 1,00=0, fn1(1,1,0)=1

We can show that it can be assumed without loss of
generality that y., is identical with NOT(x).

Thus the (m — 1)-th element is redundant, contradictory
the assumption.

Up to now, we have shown that

@) Sfm(y, )=NOT(x)

(i) Sfm-1(y, NOT (x), )=1(x).

(Step 3) If m is greater than 2, then we can replace
the variable y,—; by x, against the minimality assump-
tion of the circuit ¢. Thus the number of elements is
not greater than two. Therefore,

NOT(x) if m=1

h =
) {I(x) if m=2

This completes the proof of the proposition.
Lemma 6.15 Suppose that F is not contained in L and
H. Then we can realize both of the constant functions
C, and C, by circuits over F.

Proof. (Step 1) Let f be a function in Q\H. Suppose
that fis a non-constant function. Then fis a surjection.
We specify that

FOO= 0, x, ..., %).

If f(x) is the constant function C,(x), we can realize the
constant function C,(x). Therefore we can assume that
fis a non-constant function.

Case 1 f(x)=I(x)

By the same argument as in the proof of Lemma 6.9,
we can realize the constant functions C, and C.

Case 2 f(x)=NOT (x)

We then have:

f0,0,...,0=1,f1,1,...,1)=0.

Since fe/H, fis not in S. There then exists a binary se-
quence

a=(a1, Qz, - - -, On)
such that
flog, az, . - s an)=f(au, a2, . . ., an)=a.
We specify that
SO, X2)=f(X2-a,s X2-ap « + -5 X2-a,)-

The constant function C,(x) is realized by the following
&' with respect to the states set Y={(a, 1), (a, 0)}:

(g,){yli=f(yz, x)
yi=f(x).

(Step 2) Let g be a function in F\L. Then g is a surjec-
tion. We specify that

g*)=g(x, x,...,%).

Case 1 g*(x)=1(»)

By same argument as in the prrof of Lemma 6.9, we
can realize the constant function Cy(x) and Ci(x).

Case 2 g*(x)=NOT(x)

In Step 1, we have shown that a constant function
C.(x) is realized by the circuit over F. Therefore we can
realize another constant function Ca(x).

Case 3 g*(x)=Co(x) or Ci(x)

By same argument as in the prrof of Lemma 6.9, we
can realize the constant functions Co(x) and Ci(x).

In this way, we can realize both of the constant func-
tions Co(x) and Ci(x). 2.6.9.
Theorem 6.16 Let F be a set of logical functions. F is
GR-complete if and only if it is not contained in any of
the three sets:

M’ L, and H.

Proof. (only-if part) Obvious from Propositions 6.13
and 6.14. (if part) Suppose that F is not contained in L
and H. From Lemma 6.15, we can realize both Co(x)
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and C(x):
Co(x), Ci(¥)e | F|

On the other hand, the set FU{Cy(x), Ci(x)} is not con-
tained in any of the five sets:

My, M, S, M and L.

Therefore,
LF | 2FU{GCo(x), Ci(x)} (. Proposition 6.12)
=Q. (*."Theorem 6.4)
2.6.9.

6.4 Completeness under the Initialization-by-Input
Assumption

Definition 6.17 A circuit C is said to be terminating if
and only if (1) every admissible sequence of the circuit
C for every input starting from any state is always ter-
minating, and (2) its stable state is uniquely determined
by the initial state and the input.

Definition 6.18 Let C be a terminating circuit. We
denote by

C(y, a(1), a(2), a3), . . ., a(?))
the final output of the circuit for the input sequence
a(1), a(2), a(3), . . ., a(),
which is given to the circuit in the following way.

() The first input a(1) is given to the circuit that is in
the state y.

(ii) The i-th input a(i) is fed to the circuit after the
circuit has reached the stable state for the input a(i—1).
The final output means the first component of the stable
state for the final input a(t).

Definition 6.19 Let C be a circuit. The circuit C
evaluates a logical function h by an initial sequence

x(—d),x(—=d+1),...,x(—1)

if and only if the following conditions are satisfied:

(i) The circuit C is terminating.

(i) For any input sequence

x(0), x(1), . . ., x(?)

and any state y of the circuit C,

hx()=C(y, x(—d), x(—d+1),. ..,
x(—1), x(0), x(1), . . ., x(?)).

Lemma 6.20 Let C be a circuit. if the circuit C
evaluates a logical function h by means of an initial se-
quence

x(—d), x(—d+1),...,x(—1),
then
hx@)=Cy,x(—=T),x(=T+1),...,x(—d-1),
x(—d), x(—=d+1),...,x(—1),x0),x(1), ...,
x(1)).
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for any state 'y and any input sequence
x(—T),x(—T+1),...,x(—d—1)

and

x(0), x(1), . . ., x(2).

Proof. Obvious from Definition 6.19.
Definition 6.21 Let F be a set of logical functions.

(i) Wedenote by {F) the set of all logical functions
that are evaluated by a circuit C over F by some initial
sequence.

(ii) F is said to be NS-complete if and only if {F>
=Q.

(iii) F is said to be NS-incomplete if and only if it is
not NS-complete.

Proposition 6.22 Let F and F’ be sets of logical func-
tions.

(i) FESFc<(F)c[F]

(i) F'SF = (F'Y)<LlF)

This follows immediately from the definitions.

Proposition 6.23 The sets M’ and L are NS-incomplete.
Proof. Obvious from Theorem 6.10 and Proposition
6.22. 2.6.9.

We now have the following theorem.

Theorem 6.24 Let F be a set of logical functions. Let
Co(x), Ci(x)e F.

F:NS-complete <> F:complete

Proof. ( <= ) Obvious from Proposition 6.22.
(=) Suppose that F is incomplete. Since Co(x) and
Ci(x) are in F,

FCM'or FCL.

From Proposition 6.23, F is NS-incomplete.
2.6.9.
The logical functions Co(x) and C;(x) are not in S.
For the binary sequence y=(yi, 3, . . . , Vn), We specify
that

Y=L Y2 e o oy Ya)-

Proposition 6.25 The set S is NS-incomplete.
Proof. Let C be a circuit over S that evaluates a logical
function he Q, by means of an initial sequence

x(—d),x(—d+1),...,x(—1).

We consider the synchronous sequence of the circuit C
for an input x, starting from a state y(0):

yl(t+1) =f1()’l(’),.}’2(f), oo ’ym(t)a X)

Y+ D)=Fa(1(8),32(0), . . ., Yyul(£), X)

for all £=0. Let y’ be the stable state for this input x.

Since fi, f3, . . ., fm are in S, we have:
N+ =L 0),0:00, - . ., yu(D), X)
In(t+ D=L (O 22(10), . . ., Ym(?), X)
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for all £= 0. Therefore the synchronous sequence of the
circuit C for the input x, starting from y(0), has stable
output y’. From Lemma 6.20 and the assumption,

h0)=C(y(0), x(—=d), x(—d+1),...,x(—1),
x(—d), x(—d+1),...,x(—1),0)
=Cy(0), x(—d), x(—d+1),...,x(=1),
x(—d), x(—d+1),...,x(=1),1).
On the other hand,
h(1)=C(y0), x(—d)x(—d+1),...,x(—1),
x(=d), x(=d+1),...,x(—D), 1)

=h(0).

Therefore the constant function cannot be evaluated by
means of circuits over S. The set S is hence NS-in-
complete. 2.6.9.

7. Conclusion

We formulated the notion of completeness for asyn-
chronous circuits, and discussed some variations. We
gave completeness criteria for LF-completeness, GS-
completeness, and GR-completeness, and gave
sufficient conditions for a circuit to be NS-complete.

It is highly desirable to give a general NS-com-
pleteness criterion.
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