354
Short Note

A Fast O(n?) Division Algorithm for
Multiple-Precision Floating-Point Numbers

KazuruMr Ozawa™®

A fast O(n?) algorithm is derived for the division of multiple-precision floating-point numbers, where 7 is the
number of digits in each of the numbers. This algorithm, which is a modification of the conventional pencil-
and-paper technique, is as fast as the conventional O(n?) multiplication and 2.67 times faster than the algorithm

based on the Newton method.

1. Introduction

Let X and Y be radix b multiple-precision floating-
point (MPF) numbers

X=(—1)5bEx b " +0b" 2+ - - +x,), a1.n
Y= (=D b),
S$,=8,=0, 1,
where the digits x; and y; are integers satisfying
0<x;<b, 0=y <b,
and in particular
x1#0, y#0;

that is, the mantissas of X and Y are normalized. In
what follows, we shall assume that the digits x; and y;
are single-precision (SP) numbers. Without loss of
generality we assume that

S$,=§,=0,

E.=E,=0.
Then, using the conventional notation for radix b
numbers, we have

X=0x2 %0000, Y=02* V.0, (1.2)
Z=X/Y=(20.222" " "Za" ")b (1.3)

The usual pencil-and-paper algorithm for the divi-
sion of MPF numbers is as follows:

begin
20:=XdivY; ro=Xmod Y;
for i:=1 to n do begin
zie=b*ri_,divY; ro=b*i-,mod Y (1.4)
end
end.

*Department of Computer Science College of General Education,
Tohoku University, Kawauchi, Aoba-ku, Sendai, Miyagi 980, Japan.

Journal of Information Processing, Vol. 14, No. 3, 1991

Setting br-,=X, we can find the relation equivalent to
Algorithm (1.4)

br[——l .
Li= T , r=bri_,—zY, i=0,1,2, -+, n.

(1.5)
It follows from Eq. (1.5) that
= ((X—2Y)b—2Y)b—2Y)b - ~2,.1Y)b
-z.Y (1.6)
=b"X—(b"%+b""'n+ - +z)Y.

In Algorithm (1.4), the ith digit z; of Z is calculated
by the divide-and-correct technique, in which a certain
estimate of z;, say Z;, is calculated from the first several
digits of b#*r,-, and Y, and is corrected to the exact
value z;. Various methods have been derived for obtain-
ing a good estimate z; that mininizes the number of cor-
rections [2-6).

It should be noted, however, that the probability of a
correction occuring is very small if the estimate Z; is
properly selected, and moreover that the correction, if
necessary, could be realized by at most two MPF addi-
tions or subtractions [1-3]. On the other hand, the
calculation of r; always requires » SP multiplications
and n SP subtractions for all i, since in practice r; is
calculated from the expression br;-,—z;Y, which con-
tains one subtraction of MPF and one multiplication
SP x MPF. Thus, in order to obtain a substantial reduc-
tion of the total time-complexity in the algorithm, it is
necessary to reduce the cost of the calculation of ;. The
new algorithm we propose here has a reduced complex-
ity and is as fast as the usual MPF multiplication
algorithm.

2. A Fast Algorithm

Before considering the modified algorithm we define
the truncated values of Y as follows:

A Fast O(n’) Division Algorithm for Multiple-Precision Floating-Point Numbers 355

YisY— (0" Yuoit1 0 2t -),
i=1,2,---,n—1. (2.1)
If we set
Y=Y(1—c¢b™ "), i=1,2, -+, n—1, (2.2)
then ¢; satisfies the inequality
0<c<b. (2.3)
By the use of Y; and for some m we define the following
new algorithm:
begin
Zo=XdivY;, f=Xmod Y;
for i:=1 to m—1 do begin
Zo=b¥,_,divY; F:=b*_,moed Y 2.4)
end;
for i:=m to n do begin
Zi=b*_, div Yiepm+1; Fi=b*i—y mod Y-+,
end

end.

This algorithm leads to the relations

Z~i=zia i’(:ri: I=07 1’ Y m_la (2.53.)
e
Zi=[Yi—m+lJ’ Fi=bFi-\=Zi Y-+,

i=m,m+1, ---, n, (2.5b)

where z; and r; are the quantities defined by Eq. (1.5).
From Eq. (2.5) we have

Fa=b"X— (0" 20+ 0" 5t 0T Z,)Y
—(b"_mfm Y1+bn_m_lim+]Y2+ e +inYn—m+1)
m—1 n
=p"X— { Z bn—:z-'i+ Z b"_iz.i(l —C,'—m+|b_"+i_m“)}
i=0 i=m
Y. (2.6)

The next theorem proves that Algorithm (2.4) gives a
result that differs from Z=X/Y by at most one unit of
the nth place.

Theorem. If we denote the quotient obtained from
Algorithm (2.4) by

Z'=(%.21 " 2y 2.7
then for any m such that
O<n—m+1«<bm3, 2.8)
the error of Algorithm (2.4) is bounded by
1Z'=Z1<b™"(1+0(1)). 2.9)

Proof. It follows from Eq. (2.6) that the error is given
by

Z'—Z:b‘"(—f,, Y+ c,v_,,,ﬂz',-b""'“), (2.10)

i=m

and using (2.3) and the inequalities

Yo-me1=Y, O0<F<Yi-m+1, (2.11)

we have

\Z'=ZI<b "1+ (n—m+1)b~""3]. 2.12)
Therefore (2.9) is valid for any m that satisfies (2.8).
Q.E.D.
Next we analyze the time-complexity of Algorithm
(2.4), and compare it with that of the usual MPF
multiplication algorithm. We define the time-complexi-
ty as the total number of SP multiplications and addi-
tions (subtractions) required for the algorithm; we
ignore the cost of inexpensive operations such as the
normalization of the mantissa or the releasing of car-
ries. Since the lengths of Y and Y-+, are n and
n+m—i—1, respectively, the numbers of SP multiplica-
tions required are n for ZxY and n+m—i—1 for
Zi*Yi-m+1. Therefore, in the overall computation of
Algorithm (2.4) the number of SP multiplications is
given by
n n2
D,,(n)smn+2 (n+m—i—l)=~2-+0(n). (2.13)

It follows that the total number of SP subtractions is
also given by Eq. (2.13), since the number of SP subtrac-
tions required for one MPF subtraction is equal to the
length of the MPF. It is easy to show that the time-com-
plexity given by Eq. (2.13) is half of that of Algorithm
(1.4).

We will now show that the complexity of Eq. (2.13) is
as same as that of the usual MPF multiplication
algorithm. Fox X and Y given by (1.2), the product
Z=X+xY is defined by

Z=X+Y=(2:22 -~

where the digits zx are given by

* Zan.0)p, (2.14)

{
zk=<2xyk_,»+carry) mod b, k=2,3, ---, 2n,
i=1

2.15)
I=min{n, k—1},
zi=carry mod b.

In order to avoid the accumulation of round-off errors,
we must compute the extra g(>0) digits, nemely, z,+1,
Za+2, "', Zn+gs although in floating-point arithmetic
only z,, ---, z, are necessary. Consequently, the
numbers of SP multiplications and SP additions are
given by
n+l n+gq nz
Mm=3 (k—1)+ >, n=—+0(n), (2.16)
k=1 k=n+2 2
for any g independent of n. This means that the time-
complexity of Algorithm (2.4) is as same as that of the
MPF multiplication, except for the O(n) terms.

356

Next we will compare the complexity of (2.13) with
that of the division algorithm [1] based on the Newton
iteration

un=u+4Aw), i=0,1, ---,

Aw)=u(l - Yu,).
Using (2.17) with an accurate initial value #, such that
the method converges quadratically, we will have a
sufficiencly accurate approximation to Y ™! after several
iterations. We then multiply it by X to obtain a
sufficiently accurate approximation to Z=X/Y. We
consider the total complexity of thie algorithm.

Let u; be an approximation to Y~! that is correct up
to the nith digit of Y~'. Then the relation

1A@) VY " =lu=Y "I /1Y " =bm

(2.17)

(2.18)

holds. In view of this relation, it is sufficient to compute
A(u,) up to the nth digit in order to get the next iterate
u;+ being correct up to the 2n;(=n;+)th digit. To com-
pute the upper »; digits of 4(u;), we must compute Yu;
and u(1—Yu,) up to the 2nth digit and up to the nith
digit, respectively. If n is an integer such that the ratio
n/ny can be represented exactly by an integral power of
2, the time-complexity of the method, that is, the
number of SP multiplications and additions (subtrac-
tions), is given by

p—1

1 1 1
Dpn)= :20 {E(Zni)2+5 nﬁ} +5 n+0(n)

4
5 n*+0(n)=2.61Dn),

where p is an integer given by p=log, (n/ n).

(2.19)

3. Numerical Experiments

We performed dividions using actual random data to
confirm the validity of our new algorithm. The radix b
for the MPF is 10 and the MPF number is represented
in these computations as an array of integers. The first
and second cells of the array contain the sign and the ex-
ponent of the number, respectively. The remaining cells
contain integers < 10° to represent the mantissa. For ex-
ample, the number

—0.12345678901234567890000 - - - x 10°

is represented by the array —1, 8, 12345678, 90123456,
78900000, 0, - - -, 0. The values of 7 in the experiments

K. Ozawa

Table 1 CPU-time for the division algorithms.

New algorithm Newton method Multiplication

n time (ms) ratio time (ms) ratio time (ms) ratio
1024 9 1.29 52 7.43 7 1
2048 34 1.26 110 4.07 27 1
4096 129 1.17 325 2.95 110 1
8192 507 1.17 1172 2.69 435 1

16384 2028 1.17 4535 2.62 1734 1
32768 8174 1.18 18130 2.61 6952 1

Table 2 Relative error of the algorithms.

n New algorithm Newton
1024 5.44E- 1024 -7.61E- 1025
2048 5.97E- 2048 -1.77E- 2048
4096 2.94E- 4096 -1.70E- 4096
8192 3.96E- 8192 -2.23E- 8192
16384 1.77E-16384 -1.33E-16384
-7.10E-32769

32768 -7.10E-32769

are 1024, 2048, - - -, 32768, while m in Algorithm (2.4)
is 24. The computer used for these computations was
the ACOS-2020 at the Computer Center of Tohoku
University. The experimental results in Tables 1 and 2
show that our new algorithm is as fast as the multiplica-
tion, and gives results whose accuracy is comparable to
machine €.

Acknowledgement

The author is grateful to Dr. K. Kaino of the Sendai
National College of Technology for his helpful sugges-
tions.

References

1. BRenT, R. P. Fast Multiple-Precision Evaluation of Elementary
Functions, J. ACM 23 (1976), 242-251.

2. KNnutH, D. E. The Art of Computer Programming,
Seminumerical Algorithms, 2nd ed., Addison-Wesley, 1981.

3. KRISHNAMURTHY, E. V. On a Divide-and-Correct Method for
Variable-Precision Division, Comm. ACM, 8 (1965), 179-181.

4. ONAKA, K. and Yasut, H. Multiple-precision Arithmetic with Er-
ror Estimation (in Japanese), Trans. IPS Japan, 15 (1974), 110-117.
5. SEMBA, I. An Algorithm for Division of Large Integers, J. Inf.
Process., 9 (1986), 145-147.

6. Topa, H. and Ono, H. On Algorithms for Multiple-Precision
Division (in Japanese), Bul. Electrotech. Lab. 42 (1978), 66-71

(Received October 26, 1990)

