344

Regular Paper

How Neural Networks for Pattern
Recognition Can Be Synthesized

SHIGEO ABE*, MAsaHIRO KayaMA* and HIROSHI TAKENAGA™

This paper discusses synthesis of neural networks for pattern recognition. First the saturation characteristics
of the sigmoid function are shown to be essential for pattern recognition. Then neural networks for pattern
recognition are proved to be synthesized by the following steps: (1) If the input data are separated by k
hyperplanes, take k hidden neurons setting the weights between the input and hidden neurons as the coefficients
of linear equations that define the hyperplanes. (2) If a class is separated into a single region by hyperplanes
selected from the k hyperplanes, a three-layered neural network is synthesized to recognize that class; if not, a
four-layered neural network is synthesized. Finally, a method to accelerate learning is proposed and is verified
for a parity circuit, classification of two-dimensional patterns, and number recognition.

1. Introduction

Since the introduction of the backpropagation
algorithm (BP), [1] multi-layered neural networks have
been widely used for pattern recognition. Their major
advantage is that they can be constructed by giving the
BP a training data set that consists of the inputs and
their desired outputs. Thus the pattern recognition net-
work is generated without programming the classifica-
tion algorithm. But this advantage, that a neural net-
work can be handled as a black box, sometimes
becomes a problem in actual applications. For example,
if the neural network does not work properly for some
unknown input data, all that can be done is to add
those data to the training data set and reconstruct the
network by using the BP. Moreover, there is no way of
determining the structure of the network for a given
problem. In [2] a three-layered neural network was
proved to approximate an arbitrary continuous func-
tion, assuming an arbitrary number of hidden neurons,
while in [3] a four-layered neural network was shown to
be better than a three-layered neural network from the
standpoint of the accuracy of approximation and the
number of hidden neurons used. But these papers did
not discuss how the neural networks could be synthe-
sized. (Since neural networks for pattern recognition
are trained to approximate a function whose outputs
are only specified around 1 and 0, theories for function
approximation also hold for pattern recognition.) For a
training data set with only discrete inputs and outputs,
some algorithms [4, 5] for synthesizing neural networks
have been discussed, but no work has yet been reported
for analog inputs [6].

*Hitachi Research Laboratory, Hitachi, Ltd., 4026 Kuji, Hitachi,
319-12, Japan.

Journal of Information Processing, Vol. 14, No. 3, 1991

In this paper we discuss how neural networks for pat-
tern recognition can be synthesized. First, we study the
meaning of saturation in the sigmoid function, and
demonstrate that saturation is essential for pattern
recognition. Then we discuss how pattern recognition
networks can be synthesized, and derive an algorithm
that speeds up learning. Finally, we demonstrate the
validity of our results for some pattern classification
problems.

2. Essentiality of Saturation to Pattern Recognition

2.1 Definition of the Network

Consider a three-layered neural network as shown in
Fig. 1. The network consists of three layers of neurons.
The neurons in the first layer are called input neurons,
in the second, hidden neurons, and in the third, output
neurons. The input neurons output the input data
without modification, but input-and-output characteris-
tics of the hidden and output neurons are specified by a
sigmoid function, which has non-linearity and satura-
tion. The neurons between the two consecutive layers
are completely connected by synapses. Let the input
and output of the j-th neuron in the i~th layer be x; (i)
and z; (i), respectively. Then for the input layer,

x;()=z (7)) for j=1,...,n@),i=1 and
Znp+1(1)=1)
where n(i) is the number of inputs to the i-th layer
neurons and z.;+1(1) is a bias term. The output of the j-
th neuron for the second and third layers is given by
5 ()=fx@) j=1,...,n@), i=2,3 and
Zniy+1()=1 i=2,3, 2)

How Neural Networks for Pattern Recognition Can Be Synthesized

Training Data

| Zi(1) Xi2) Z212)

X1(3)
Xi(h) w(l) W(2)

- 713

[Z]

Li

Xa(ni(1)| Za(3)(3) | Snedri

Fig. 1 A Three-layered Neural Network.

where f(x)=1/(1 +exp(—x/T)) is a sigmoid function,

Zniy+1(f) are bias terms, and

T is a constant.
The value of x; (i) is given by

xi()=W;(i—z(i—1)

fori=2, 3, j=1, ..., n(i) 3)

where PVJ(I_ l)=(M|(i_ 1), c ey VV,-,,,(,-_I)H(I'— l)) is a
weight vector and Wj(i— 1) is a weight between the k-th
neuron of the (i—1)st layer and j-th neuron of the i-th
layer,

2(i—D=@@—-1), ..., Zoi-ni—1), 1) is an output
vector corresponding to the (i— 1)st layer neurons, and

t is the transpose of a matrix.

The weights W, (i—1) are determined by the BP, us-
ing the following training data set given by m pairs of in-
puts and desired outputs:

{0 (1), s}
fori=1, ..., n(l),j=1, ..., n(3),
and I=1, ..., m ()

2.2 Pattern Classification When the Number of Hid-
den Neurons is Smaller Than Those of Inputs and
Qutputs

According to the Kolmogorov theorem, any arbitrary
continuous function is approximated by the composite
mapping of monotonic functions [2]. Therefore, it may
be better to take, as the input-output function of
neurons, a non-saturated monotonic function, since
saturation may siow down the convergence of learning.
This saturation problem was solved during the study of
a number recognition system. Using the BP to recognize
numbers, we generated a three-layered neural network
with 12 feature inputs, six hidden neurons, and ten out-
puts. A very fundamental question then arose: why
were we able to generate a network for pattern recogni-
tion when the number of hidden neurons was smaller
than those of input and output neurons? Let us now ex-
plain this question more specifically. From (2) the out-
put of the j-th output neuron is given by

345
z(A=;3), Jj=1,...,nQ3))
x(3)=W(2)z(2) 6

wi(2)
I w | .
where W2)=| " | is an n@)x (n(2)+1) matrix,
Wn(3)(2)J
and
x3)=0a(3), . . ., xaxn(3)).

For the number recognition system n(3)=10 and n(2)
+1=7. Select one training datum from each number,
and let ten sets of their output vectors of hidden
neurons and input and output vectors of output

neurons be (2i(2), x1(3), zi(3)), - . . , (210(2), X10(3), 210(3))-
Then we can assume
10 O]
01 0
@O), - zl= Q)
o0

Thus the rank of the above matrix is ten, whereas the
rank of

a3), - . x@)=WRN2Q), - .., 20(2) (B)

is at most seven, according to the number of hidden
neurons, since the ranks of W(2) and (z:(2), . . . , Z10(2))
are at most seven and the rank of the matrix multiplied
by two matrices does not exceed the rank of the matrix
of a smaller rank. Thus the input information of rank
12, assuming independent inputs, is degenerated as hid-
den information of a rank of at most seven. Our ques-
tion can then be rephrased as follows: why is it possible
to reproduce output information of rank ten by using
degenerated information of rank seven at most? (If the
output function f(x) is linear it is impossible.)

The answer to this problem lies in the saturation of
the sigmoid function. In the number recognition system
the outputs 1 and 0 were represented by 1—¢, and
&(e>0), respectively, and the convergence of learning
was tested by

12z3)=1—-2¢ for z(3)=1—¢
and
2e=z,(3)=0 for z(3)=e. 9)

Thus the finite intervals of convergence in z;(3) corres-
pond to the infinite intervals in x;(3) as follows (see Fig.
2):
0 >x3)=za and
where a=—Tlog(1/(1—2¢e)—1)=Tlog(l1/2e—1)>0.
Thus although the rank of (x(3), ..., x10(3)) is at

most seven, output information of rank ten is repro-
duced by saturation of the sigmoid function. Use of the

—azx/(3)>—o0. (10)

346

Zi(3)=1/(1+exp(-Xi(3)/T))

0 Xi(3)

Fig. 2 Regions of Convergence for Pattern Recognition.

X12) Z1Q2) Input Output

X1(1) [Z12) Z22(2) Z3(2)

cl 1 0 0

c2 0 1 0

c3 0 0 1
cl>c2>c3

Fig. 3 Separation of Three Components in an Input into Three
Outputs.

convergence tests given in (9) or (10) facilitates the con-
vergence of learning. Saturation is, therefore, essential
for pattern recognition, and to fully exploit saturation
characteristics, we need to adopt the convergence test
given by (9) or (10).

2.3 Classification Power of a Two-Layered Neural
Network

By adopting the convergence test given by (9) or (10),
we can clarify the separation power of a two-layered
neural network with a single input and » outputs. We
can show the following:

Two components in one variable x,(1)=[0, 1] can be
separated by a two-layered neural network, but more
than two components cannot.

Proof To simplify the proof, let us consider separation
of ¢, ¢, €3, where 1 =2¢,>¢;>¢;=0, as shown in Fig. 3.
From (10) and Fig. 3, the following inequalities must
hold for x»(2):

Wanei+ Wan=<—a (11-1)

Wae+Wnza (11-2)

Waci+Wp<—a (11-3)
where « is given by (10).

From (11-2)

Wy=a—Wic,. 12)
Also from (11-1), and (11-3),

Wyp< —a—Wae 13)

S. ABE, M. KAvaMA and H. TAKENAGA

Input Output
X1 | Z1(2) " Z22)

cl 1 0

c2 0 1

c3 1 0
cl>c2>c3

Fig. 4 Classification of Different Components.

Class II

Fig. 5 Classification of Two-dimensional Points.

szs —-—a— WuCg. (14)
Thus from (12) and (13),
Wa< —2a/(ci—c)<0. (15)

Also, from (12) and (14),
Wauz2a/(c;—c3)>0. (16)

Since (15) and (16) contradict each other, we cannot
separate three or more components by a two-layered
neural network.

Next let us consider classification of two points ¢; and
¢:. In the same way as above, (11-1) and (11-2) must
hold for x3(2). Thus (15) needs to be satisfied. Then one
solution is

W2]="‘20/(C1_C2) (17)
Wau=a(ci+c)/ (€1 —). (18)

(End of proof)

The above property is similar to the proof by Minsky
of the separation power of a perceptron, and can be
rephrased as follows (see Fig. 4):

Different components in a variable x;(1)=[0, 1] cannot
be classified into the same class by a two-layered neural
network.

3. Pattern Recognition by a Three-layered Neural Net-
work

The weights of the neural network are interpreted as
the coefficients of a hyperplane. Assuming x;(i)=0 in

A,

How Neural Networks for Pattern Recognition Can Be Synthesized

W;(i—1Dz(i—1)=0 (19

represents a hyperplane in n(i— 1)-dimensional space.
The change of weight W), ,i—1y«1(i—1) causes a parallel
displacement of the hyperplane. From (2), the value of
z; (i) corresponding to x; (i) satisfying (19), which is on
the hyperplane, is 1/2. We say that the n(i — 1)-dimen-
sional point (z;(i—1), ..., Zwi-1n(i—1))" is on the
positive side of the hyperplane if

x;(H)>0o0rz(#)>1/2 (20)
and on the negative side if
x;({)<0or z;()<1/2. 21

A class is said to be singly separated by k hyperplanes
if all the training data in the class are on the same side
of the hyperplanes and no training data in other classes
exist in the separated region. If training data in a class
are divided into subsets such that each subset of the
data is singly separated by hyperplanes, the class is said
to be plurally separated.

Consider classification of three classes in the two-
dimensional space shown in Fig. 5. The arrows attached
to the three hyperplanes P1, P2, and P3 designate the
positive sides of the hyperplanes, and each dot in the
figure denotes a training datum. Since all the training
data for class I are on the positive sides of P2 and P3,
and no other data exist in this region, class I is singly
separated by planes P2 and P3. Likewise class III is sing-
ly separated by hyperplanes P1, P2 and P3. Class II is
plurally separated.

We can now prove the following:

Consider classification of the n(1)-dimensional data
into n(3) classes. If there are n(2) hyperplanes in n(1)-
dimensional space such that all the learning data in any
class can be singly separated by a subset of the n(2)
hyperplanes, the classifier can be synthesized by the
three-layered neural networks with n(1) input, 7(2) hid-
den, and n(3) output neurous.

Proof Let the n(2) hyperplanes be

W;()z(1)=0 for j=1,...,nQ) 22)
where W;(1) and z(1) are defined by (3). Now let
7 =1/ +exp(—x)/ T)),
and
X (2)=W;(1)z(1) for j=1,...,n(2) (23)

and let them correspond to the first and second layers of
the neural network shown in Fig. 1. According to the
assumption, z;(2) corresponding to the training data is
either

z(2)>1/2 or z((2)<1/2. 24)

Thus by multiplying the weight vector W;(1) by a
positive constant, we can set the values of z;(2) for the
training data as either

z(2)=1 or zi(2)=0. (25)

347

(The above restriction is imposed to simplify the
proof.)

Now determine the weights between output and hid-
den neurons. Let the inputs to the output neuron x;(3)
be given by

x:(3)=Wi(2)z(2) for , n(3). (26)
The weight vector W;(2) should be determined so that

xi(3) is 1 —¢ for the i-th class and ¢ for classes other than
i. This can be achieved by satisfying

W.2)x(2)z« for class i 27N
Wi(2)z(2)< —« for classes other than i. (28)

If class i is separated by less than n(2) hyperplanes as
class I in Fig. 5 we can cancel the effect of the planes not
contributing to the separation by setting the corre-
sponding weights to zero. Thus we assume that class i is
singly separated by n(2) planes. According to this
assumption, the outputs z)(2), . . . , Z.(2) for class i are
uniquely determined. Therefore, assume that

(i(2), . . ., Zu22))=(,...,1,0,...,0)
for class i, (29)

i=1,...

namely, assume that the first s outputs are 1, and the re-
maining outputs are 0.

Now let
Wi(2)=2a for j=1,...,s 30)
W;(2)=—-2a forj=s+1,..., nQ2). 3hH
Thus (27) and (28) become
Winn+1(2)=a~—2sa for class i (32)

n(2)

—a=2a2z;(+2a X, ;)= W az+1(2)
= j

j=s+1

for classes other than i. (33)

Since class i is singly separated, z;(2)=0 holds for some
JJj=1 ...,sor z;(2)=1 for some j, j=s+1, ...,
n(2). Therefore, we can select weights W, ,+1 that
satisfy (32) and (33); for example, Wi n2)+1(2)=a(l —2s).
(End of proof)

From the proof we can see that if class / is plurally
separated, we can synthesize a four-layered neural net-
work where the third layer classifies each of the
separated regions and the fourth layer simply sums up
the outputs of the third layer.

To simplify the proof, the outputs of the hidden
neurons are assumed to take the values 1 and 0. Allow-
ing the hidden neurons to take analog values, we can ex-
tend the scope of the solution. Therefore, it may be
possible to generate a three-layered network even if a
class is plurally separated.

Now apply the above procedure to the classification
of the two-dimensional points shown in Fig. 5. Deter-
mine the weights between the input and hidden neurons
as the coefficients of the hyperplanes shown in the
figure. The signs of the weights are taken so that the

348
Table 1 Hidden Neuron Outputs for Three Classes.
Output Class [Class I1 Class 111
Z1Q2) 10 o1 1
Z2(2) 11 10 1
Z3(2) 11 01 0

Fig. 6 A Neural Network Classifier for Fig. 5.

positive sides of the planes correspond to the regions in-
dicated by arrows in the figure. Then by multiplying the
weights by positive numbers, the outputs of the hidden
neurons for each class are as shown in Table 1. For class
1, z1(2) assumes the values 1 and 0, but since 2(2) and
z3(2) do not change, z,(2) does not contribute to separa-
tion. Thus class I is singly separated by planes P2 and
P3. Likewise, class III is singly separated by planes P1,
P2, and P3, while class II is plurally separated. Thus the
neural network is synthesized as shown in Fig. 6.

4. Speed-up of Learning

The synthesizing algorithm discussed in the previous
section suggests the following new learning algorithm:

1) Determine the weights between the input and hid-
den neurons by finding the hyperplanes that separate
classes.

2) Determine the weights between the hidden and
output neurons by solving a set of simultaneous linear
inequalities.

There is an algorithm [7] for determining the
hyperplanes that separate classes, but it is not clear
whether it is more powerful than the BP. A general way
of solving a set of simultaneous linear inequalities is to
use linear programming, but again it is not clear
whether this is more powerful than the BP. Therefore,
in this section we discuss a method of speeding up learn-
ing that is applicable to the BP, and the parallel for-
ward-propagation algorithm (PFP) that we have pro-
posed [8].

The easiest way to speed up learning is as follows:

If
zu(3)> 1/2+£1 or x;(3)>¢ fors;=1 (34
2@)<1/2—& or x;3)<—& fors;=0 (35)

hold for all i=1, ...,nQ3),I/=1,..., m, where ¢ and
£, are zero or positive values, and s, is a desired output

S. ABE, M. KavamA and H. TAKENAGA

defined in (4), stop learning.
Let
M= min m{ lxa(3)1} (36)

and if M;<a, change W,;(2) as follows:
Wi(2) <— (a/ MYW(2) k=1, ..., n(Q)+1. (37)

If M;> «, there is no need to modify W.(2).

If (34) and (35) hold, all the classes are separated.
Therefore, by multiplying positive values with the
weights between hidden and output neurons as shown
in (37), we can satisfy the convergence criterion. This
method is applicable to the BP and the PFP.

5. Numerical Calculations

We now show how the PEP is speeded up by using
the convergence test given in (34) and (35), setting
&1=¢,=0. (Hereafter we call this algorithm the MPFP.)
The initial values of the weights between inputs and hid-
den neurons are taken so that the corresponding
hyperplanes do not overlap, as follows:

| Wi (1)| =Bias+ BRand (38)

where Bias and f# are constants, Rand is a uniformly
distributed random variable in [—0.5, 0.5], and the
signs of the weights are given as follows:

Wl.l(l)’) Wl,ﬂ(l)(l)=+y =, =+,
ulz.l(l)y ce ey WZVH(I)(I)z—v +1 T +1 Ty e e

Table 2 Average Numbers of Steps for a Parity Circuit (100

Trials).
B Number of Number of
Steps for PFP Steps for MPFP
0.001 3.97 6.45
0.0! 5.47 6.38
0.1 6.77 5.51
0.2 5.79 4.40
0.3 5.49 3.83
0.4 4.82 3.39
0.5 4.60 3.41

Bias=0.5, Converged 100 times

e :PFP
+ :MPFP

Mean Square Error

1 2 3 4
Number of Iterations

Fig. 7 Convergence Process of a Parity Circuit.

How Neural Networks for Pattern Recognition Can Be Synthesized

Table 3 Convergence Characteristics of Two-dimensional
Points (Three Hidden Neurons, 100 Trials).

Three Classes Four Classes

Bias B

Convergence Steps Convergence Steps
0.3 0.5 2 335 3 32.7
0.5 0.5 0 — 8 28.5
0.7 0.5 3 32.7 1 41.0
0.5 0.9 4 26.5 2 22.0
0.5 0.3 1 12.0 2 30.0
0.5 0.1 0 — 7 30.3
0.5 0.001 3 27.3 2 37.0

Convergence: The number at which the solution was obtained
within 50 iterations
Steps: Average number of steps needed for convergence

Table 4 Convergence Characteristics of Two-dimensional
Points (Four Hidden Neurons, 100 Trials).

Three Classes Four Classes

Bias B — —— —_——

Convergence Steps Convergence Steps
0.5 0.5 17 23.3 8 24.6
0.5 0.3 13 26.8 14 323
0.5 0.1 14 22.3 21 28.9

0.5 0.001 13 27.1 18 34.7

Table 5 Convergence Characteristics of Two-dimensional
Points (Five Hidden Neurons, 100 Trials).

Three Classes Four Classes

Bias B ——— - _—

Convergence Steps Convergence Steps

0.5 0.5 40 21.9 40 21.6

0.5 03 36 26.3 42 27.3

0.5 0.1 47 23.1 41 24.1

0.5 0.001 39 24.0 61 19.3
Wi, ..., Wia(D=+, +, —, —, +, ...
Wa(), ..., Wouy()=—, —, +, +, —, ...

The weights between hidden and output neurons are
given by

W(2)=Bias+ BRand (39

This initial value selection makes the PFP converge in
one iteration under the best condition for the exclusive-
or circuit. In the following, € in (9) is set to 0.01 and the
calculation is stopped when (34) and (35) are satisfied.

5.1 Parity Circuit

The parity circuit [9] outputs one when the inputs are
all zero or the number of inputs that are one is even.
Otherwise it outputs zero. Thus it can be viewed as a pat-
tern classifier. Table 2 shows the average numbers of
steps needed for convergence for the PFP and the
MPFP in 100 trials with two hidden neurons. Solutions
are obtained for all the initial values tried. The con-

349

Class IV
0.8

0.6
0.4

02 . a
Class II 1 P2

n L

0.2 04 06 08

Fig. 8 Hyperplanes Learned with Four Patterns and Three
Hidden Neurons.

Class I

0.8
0.6
0.4
0.2
Class II
/ Pl
A n)

0.2 04 06 08

Fig. 9 Hyperplanes Learned with Three Patterns and Three
Hidden Neurons.

Class IV
08 | +

P3
0.6

0.4
Class III
o~

-~
Class II P2
P1

02 04 06 08

0.2

Fig. 10 Hyperplanes learned with Four Patterns and Four Hidden
Neurons.

vergence characteristics are almost the same for the two
methods. Figure 7 shows the best convergence process
for the two methods. One iteration consists of correc-
tions of the weights between input and hidden neurons
followed by those of the weights between hidden and
output neurons. Using the MPFP, the convergence test
given by (34) and (35) holds at the second iteration.

5.2 Separation of Points in a Plane

The original PFP does not converge for pattern
classification of the two-dimensional points shown in
Fig. 5. A test case is added in which class II is divided
into two different classes, so that all four classes become

350

Table 6 Convergence Characteristics of Number Recognition

(100 Trials).
Bias B No N(;{]si:sden Convergence Steps
0.3 0.001 4 0 —
0.3 0.001 6 21 26.1
0.3 0.001 8 49 21.8

0.3 0.001 10 93 15.1

singly separated. Tables 3 and 4 show the convergence
characteristics for three and four classes, changing the
hidden neurons from three to five, where the maximum
number of iterations is 50. When the number of hidden
neurons is three, the convergence is very bad, but a solu-
tion is obtained for three classes. Figure 8 shows
hyperplanes obtained by learning for four classes and
three hidden neurons. By moving planes P1, P2, and P3
in parallel, that is, by changing the weights corre-
sponding to the bias terms, the planes become separa-
tion planes. Figure 9 shows the hyperplanes for three
classes and three hidden neurons. In this case the planes
do not correspond to the separation planes. Figure 10
shows the hyperplanes for four classes and four
neurons. The hyperplanes P1 to P3 become separation
planes by changing the weights which correspond to the
bias terms.

5.3 Number Recognition

To recognize ten different numbers, 12 features are ex-
tracted from the original image. The neural network
with 12 inputs and 10 outputs are learned by using 100
training data, changing the number of hidden neurons
from four to 10. For this problem the original PFP does
not converge. Table 6 shows the results. The maximum
number of iterations was set to 50. With four hidden
neurons we cannot obtain a solution. As the number of
hidden neurons increases, solutions are obtained more
frequently.

The size of the problem used in our study is relatively
small. In a future study we need to clarify the con-
vergence characteristics for large networks.

S. ABE, M. KayaMA and H. TAKENAGA

6. Conclusions

We discussed how to synthesize multi-layered neural
networks for pattern recognition. First the saturation
characteristics of the sigmoid function were shown to
be essential for pattern recognition. It was then shown
that, if a class is separated by hyperplanes into a single
region, three-layered neural networks can be synthesiz-
ed to recognize that class, and that if a class is separated
by hyperplanes into several regions, the class can be
recognized by a four-layered neural network. As a
result of this analysis, a method to accelerate learning
was proposed and its validity was tested by a parity cir-
cuit, classification of two-dimensional points, and
number recognition.

Acknowledgements

We are grateful to Dr. J. Kawakami and Dr. Y.
Morooka for their helpful discussions and encourage-
ment.

References

1. RUMELHART, D. E. et al. Parallel Distributed Processing, 1 and 2,
MIT Press, Cambridge, MA., 1986.

2. FunaHasHI, K. On the Approximate Realization of Continuous
Mapping by Neural Networks, Neural Networks, 2, 3 (1989), 183~
192.

3. CHESTER, D. L. Why Two Hidden Layers Are Better Than One,
Proc. IJCNN-90-WASH-DC, 1 (January 1990), 265-268.

4. MakHoOUL, J. et al. Formation of Disconnected Decision Regions
with a Single Hidden Layer, Proc. IJCNN-89, I (June 1989), 455-460.
5. RuJaN, P. A Geometric Approach to Learning in Neural Net-
works, Proc. IJCNN-89, Il (June 1989), 105-109.

6. LippMANN, R. P. An Introduction to Computing with Neural
Nets, IEEE ASSP Magazine (April 1987), 4-22.

7. SIMURA, M. Pattern Recognition and Learning Machines,
Syoukoudou (in Japanese), Tokyo, 1972.

8. ABE, S. Learning by Parallel Forward Propagation, Proc.
IJCNN-90, 3, San Diego (June 1990), 99-104.

9. BaBa, N. A New Approach for finding the Global Minimum of
Error Function of Neural Networks, Neural Networks, 2 (1989), 367-
373.

(Received September 25, 1990; revised January 24, 1991)

