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Brightness Information Processing
Based on a Human Visual Model

AkI0 YAMAMOTO*! and Mikio TAKAGI*

This paper describes brightness information processing within the framework of a human visual model. This
model consists of two hierarchical stages, which are functional modules representing the retina and the brain,
and provides mechanisms for lateral inhibition and for the filling-in process. Each module is constructed on the
basis of neurophysiological and psychophysical findings. The receptive field of a retinal ganglion cell is de-
scribed as the difference of two Gaussians (DOG), and spatial discontinuities of brightness can be detected by a
mechanism that connects an on-center cell and an off-center cell to an AND gate. The model of the filling-in
process, which was proposed to explain the phenomenon of ‘‘simultaneous contrast,”’ is formulated as an
iterative algorithm and implemented on a computer for image processing. Computer simulations of the propos-
ed visual model of some brightness illusions, such as the Craik-O’Brien-Cornsweet effect, are presented. Simula-
tion results indicate how the perception of these phenomena is affected by interactions among neighoring areas
or spatially organized contrasts. As an application of this model to image processing, the extraction of objects
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from Chinese brush paintings is described, and the effectiveness of this model is verified.

1. Introduction

Humans can extract many types of useful informa-
tion about their surroundings from measurements of
the light provided by their visual processing faculties.
Such information includes stereo disparity and depth,
motion, shape contours, surface texture, shading,
brightness, lightness, and color. Since the results of
processing this information depend on the properties of
human vision, it is very important to take full account
of these properties when we try to understand how
humans perceive their surroundings.

Physiological and anatomical studies have revealed
the structure of the retina and visual cortex, the inter-
connections in the visual pathway, and so on in human
or biological visual systems [1, 2, 3]. In the area of
psychophysics, on the other hand, many experiments
have been done to determine how humans perceive the
brightness of objects that are not actually present, or
how they perceive it depending on different bands of
spatial frequency. The experimental results have shown
several important features in human perception of
brightness, such as Mach bands, subjective contours,
simultaneous contrast, and spatial illusions [4, 5, 6]. It
also has been definitely shown that the visual system
consists of a hierarchy of functional modules that proc-
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ess specific information, and that these modules
cooperate with each other [7].

In this paper, brightness information processing is
considered mainly within the framework of a human
visula model. For example, two gray-level patches ap-
pear different in brightness when they are viewed
against different backgrounds, even if their brightness is
actually, or physically, the same. This phenomenon,
called ‘‘simultaneous contrast,”’ is an example of the
most familiar characteristic of brightness perception.
This is a perceptual effect in which what we see is
affected by spatial interactions among neighboring
areas.

From the engineering or computational point of
view, it is not necessary to imitate exactly the complete
human visual process; it is sufficient to model the fun-
damental function of each processing module. The
above-mentioned knowledge concerning biological
visual systems guides and motivates the construction of
a visual model.

Several models of brightness perception have been
proposed (8,9, 10, 11, 12], all of which follow the
above approach. They are constructed on the assump-
tion that the visual processing stages involved in
brightness perception may be modeled by mathematical
operations of differentiation and integration. The
differentiation of the original function is analogous to
the edge-detecting stage of visual processing, and in-
tegration is a model for the recovery of the shape of the
luminance distribution.

Although these models can explain some brightness
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perception phenomena, the following problems remain
[13]:

» Since the integration process transforms each
abrupt luminance change into a brightness step, the
difference in brightness between the first and last
members of the chain consisting of a linear conjunction
of more than two regions increases cumulatively.

» These models, based mainly on Horn’s theory
[10], cannot easily explain simultaneous brightness con-
trast. The reason for this is that, since simultaneous con-
trast contains no gradients, the thresholding stage has
no gradient effects, and no nonlinearities are introduc-
ed. Consequently, equiluminant surfaces are predicted
to appear equally bright.

As a new approach to these unresolved problems, this
paper proposes a brightness perception model that uses
a more physiologically oriented framework, introduc-
ing the dynamics of neural processing at various levels
of the visual system. The proposed model actually at-
tempts to reconstruct the exact neural architecture of
the eye-brain system, and consists of a hierarchy of
functional modules that provide the mechanisms of
lateral inhibition, detection of brightness discon-
tinuities, and the filling-in process. This model is for-
mulated as an iterative algorithm based on existing
knowledge of the human visual system, and can
therefore be applied to image processing and/or simula-
tions of the perception of brightness illusions.

This paper is organized as follows. Section 2
describes the two modules of the brightness perception
model and their implementation on a computer through
the use of existing findings in neurophysiologics and
psychophysics. In Section 3, the application of this
model to some computer simulations of visual illusions,
such as simultaneous brightness contrast phenomena, is
described. As an example of the application of this
model to image processing, Section 4 presents the result
of the extraction of objects from a Chinese brush-pain-
ting in ink by the perception model, comparing it with
that of another method using an intensity histogram of
an image. In Section 5 we make some concluding
remarks and outline plans for future research in this
area.

2. Description of the Model

It is not easy to obtain precise models of the proc-
essing and transmission of visual information in the
eye-brain system. In particular, visual information proc-
essing is so complex that no neural network model yet
exists that can explain the brain function competely.
From the computational point of view, however, it is
sufficient to model the fundamental function of each
processing module.

In this paper, information processing in the human
visual system is considered as a two-stage hierarchy, il-
lustrated in Fig. 1. One is the retinal stage, in which the
spatio-temporal variation of the incoming light is
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Fig. 1 Overview of the brightness perception model.
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Fig. 2 Conceptual figure of the retinal model. This model consists
of a two-layer hierarchy receptors and ganglion cells. A
ganglion cell receives the convolution of the receptor signal
with the receptive field function and transmits the signal to
the LGN through the optic nerve.

measured. The other is the brain stage, in which a
perception code or symbolic output is obtained by proc-
essing the data from the lower stage. We now give a de-
tailed description of each processing module.

2.1 Lower Stage—Retinal Model

After the light striking the eye has been transformed
into electric signals by a layer of rods and cones, it is
transmitted to ganglion cells, which perform the last
stage of the retina’s precessing. The retinal model is
based on existing knowledge of the ganglion cell.

The organization of the receptive field of an on-
center cell is modeled as the result of superimposing a
small central excitatory region on a large inhibitory
‘““‘dome”’ that extends over the entire receptive field.
These domes are described as Gaussians, and the recep-
tive field is therefore described as a the difference of two
Gaussians (DOG) [14, 15, 16]. Off-center cells have op-
posite properties.

The input signal to a ganglion cell is a convolution of
outputs from receptor cells with the receptive field func-
tion, as shown in Fig. 2, and the corresponding output
signal is transmitted to the optic nerve. The model of
the ganglion cell can be considered as a neuron-like ele-
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ment. The state of an element is represented by a scalar
x, called the potential. The dynamic behavior of the
potential is generally described by the following differen-
tial equation [17]:

J
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where y;(¢) is the value of the ith input at time #, w; is the

synaptic weight of the ith input, and A is the threshold

value of excitation. The output z(¢) of an element is de-

termined as a function of the potential x(¢):

2(N=1Ix(), @

where f is an output function. When we consider the
macroscopic behavior as a whole, the following equa-
tion is derived from equation (1):

X(O)=Swy)—h, )

T

on the assumption that small variations of the potential
x can be ignored and that time ¢ is considered as discrete
(17].

For a more realistic and precise model, we assume
that the threshold value of excitation 4 is not constant
but increases in proportion to the output z. Moreover,
when perceptive signals are dealt with, the linear
behavior of the output function fis concerned [18], and
thus the function f is given by

fm={" *% @

x =
0, x=0.

Suppose that receptor cells and ganglion cells are ar-
ranged on a two-dimensional grid and that the output
of a receptor cell at location (i, j) is denoted as [;;. The
average membrane potential of an on-center cell, X",
is given by the following equation, which is derived
from equation (3) by replacing the term of summation,
Z,'W;y,'(t), with DOGU:

AXU=DOGU—hij, (5)
where A is constant. DOGj; is a convolution of outputs
from receptor cells with the receptive field function, and
hy; is the threshold value of excitation. These terms are
obtained as follows:

DOGy= ¥, B(G5ii— G ailpas 6)
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Gri=D exp{—((i—pY+(j—q)1/20}}, 8)

hy= 23 (G GpadlpXiss &)
r.q)
where B, C, D, 0., and g, are constant. Geg; and G y;
denote the excitatory and inhibitory regions of the recep-
tive field, respectively.
By solving equations (5), (6), and (9), we get

o= E(p‘ q)B(GZflij - Gzlqij)lpq
YA+ Z,, (Gt Gl

(10
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Fig. 3 Positional relationship between discontinuity elements and
on/off-center cells. The symbols ‘x>’ and ‘‘®°’ denote
discontinuity elements and on/off-center cells, respec-
tively.

Moreover, from equation (4) for linearity, the output
from an on-center ganglion cell at location (i, j) is the
nonnegative part of x;,

X {"=max(x; 0). (11)

The output of an off-center cell, X§”, is obtained in the

same way.

2.2 Higher Stage—Brightness Perception

Visual information from the retina or the ganglion
cells is transmitted to the lateral geniculate nucleus
(LGN) and visual cortex, where some pattern features
are extracted. After this, it is sent to the so-called
‘““higher center’’ of vision, and brightness, color,
texture, motion, and shape are perceived by complex
processes.

The objective of this paper is to explain the percep-
tion of spatially organized brightness information. It is
important to understand two functions in human
perception of brightness; one is the detection of spatial
discontinuities of intensity and the other is the filling-in
process of brightness signals. This section describes the
current physiological and psychophysical knowledge of
these functions and the mechanisms of a perception
model needed to realize them.

2.2.1 Mechanism for Detecting Brightness Discon-
tinuities
Spatial discontinuities in brightness are detected by
orientationally sensitive cells in the visual cortex to
which visual information is transmitted from the LGN.
There are two classes of orientationally sensitive cells:
simple cells and complex cells. Simple cells are sensitive
to orientation and to direction-of-contrast. Complex
cells are also sensitive to orientation, but insensitive to
direction-of-contrast in area 17 of monkeys and cats
[19, 20, 21, 22).
First, simple cortical cells can be modeled as follows.
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When an adjacent on-center and off-center cell of the
LGN are both active, spatial discontinuities in
brightness are detected between the two cells [7]. As il-
lustrated in Fig. 3, these discontinuity elements may ex-
ist between cells that receive signals from the LGN; the
discontinuities are denoted by the symbol “ X’ and the
cells by the symbol ¢“ ®°’. Thus, the output of each sim-
ple cell at the location (i, j) can be obtained by
calculating the following four terms:

X?/'n+X?‘f{lJr Xg'n+X?,/;[+l9 XZ'/f+X?£|,j, XZ”+X,D';+|
(12)
Next, the activities of complex cells, which are insen-

sitive to contrast polarity, are obtained as the sum of
the output signals from simple cells:

w=XT+ XY )+ X+ X0 ), 13)
vi= (X X)X+ X0, (14)
Finally, the output signals of complex cells are

generated if the activities, #; and v;, exceed the
threshold L:

1, w;=L,

U= (15)
0, u,;,<L,
1, V,'I'ZL,

V= (16)
0, V,‘,<L.

2.2.2 Brightness Filling-in Mechanism

Gerrits and Vendrik proposed a theoretical model
called a ““filling-in process’’ to explain the phenomenon
of ‘‘simultaneous contrast,”” which is the result of
spatial interactions between neighboring areas. The
basic idea of this theory is that the brightness of the in-
teriors of homogeneous regions is determined by a proc-
ess of lateral spread of neural activation initiated by
units responding to abrupt changes of luminance [23].

According to the model, brightness information is
perceived as follows. When a cortical on-center cell
activates a highert-center brightness neuron, the
generated brightness activity (B-activity) is not limited
to the location of this one higher-center neuron but
spreads around it. The same holds for the off-center
cells and the generated dark activity (D-activity).
However, the activity generated from a complex cell
functions as a barrier to antagonistic spread activity.
Thus the strong D-activity in the higher center always
halts the further spread of B-activity.

In this section, a model of a filling-in mechanism is
formulated and implemented as a local iterative opera-
tion. Initial inputs to the model are the signals from
ganglion on-center cells of the retinal model, denoted
for simplicity, as X, instead of X§" (B-activity), and the
discontinuity segments of brightness, U; and Vj; (bar-
rier signals), as illustrated in Fig. 4. The filling-in pro-
cedure is given by the algorithm shown in Fig. 5.

The value of each pixel is replaced in such a way that
the brightness level in the neighborhood illustrated in
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Fig. 4 Coordinate system of the filling-in mechanism model.

Algorithm:

procedure FILLING-IN
begin
M = Number of pixels on a grid
repeat
=0
replace = NO
while (I < M)
begin
Select a point at local (i, j) on a grid arbitrarily but only once
if (Need to be replaced) then
Replace pixel value to be uniform within four-neighbors,
Xijx(k =1~ 4), in consideration of barrier signal
replace = YES
endif
I=1+1
end
until (replace = NO)
end

Fig. 5 Iterative procedure for the filling-in mechanism. For exam-
ple, in Fig. 4, if ¥;=1 then X, is excluded from the can-
didates for replacement.

Fig. 4 becomes uniform. If any barrier signals are ac-
tivated, corresponding pixels are excluded from the can-
didates for replacement. In algorithmical or computa-
tional terms, the following value determines whether
any of the pixels is replaced:

4
kz.( 1=BARNX,;— X ), 17

where BARk= I/,',j-“ ljjj, V,',', (ji-l,j (k=1, 2, 3, 4) In
other words, if the change of X or Xj; increases the
sum expressed by equation (17), the replacement is not
performed.

The algorithm for the filling-in mechanism appears to
have the same computational operation as that propos-
ed by Geman and Geman [24], which is based on
simulated annealing [25]. Although it is necessary for
annealing-based approaches that images should be
modeled as a limited class, that is, as a random Markov
field, our approach requires no such limitation.
Moreover, the filling-in algorithm is independent of ex-
ternal parameters, such as a temperature parameter for
the simulated annealing.



Brightness Information Processing Based on a Human Visual Model
3. Simulations of the Perception Model

In this section, we present computer simulations of
illusory brightness phenomena, such as the Koffka-
Benussi ring [5] and the Craik-O’Brien-Cornsweet effect
[6), using the proposed model to illustrate the function
of brightness perception.

In all the following simulations, the stimulus input
data are on a two-dimensional grid of 40x 40, and as a
way to present two-dimensional signals or activity pro-
files we use three-dimensional graphs in which the x-
and y-coordinates represent the spatial variables and
the z-coordinates the strength of the signals or neural ac-
tivity.

Before making simulations, we give the parameters
used in the model. On the basis of studies of the recep-
tive fields of retinal ganglion cells [26], we use the
following parameters: A=1, B=90, C=17, D=0.33,
6=0.5, 6;»=2.0. These are the average values of the
receptive field size and sensitivity for X cells. Since the
actual receptive field size increases with retinal eccen-
tricity, these parameters of the model, especially a.. and
o of the receptive field size, should be varied according
to the retinal position. By introducing variable
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parameters, this model can be extended to include a
capability for multi-resolution analysis, but this pro-
cedure is not implemented in our current model. Lastly,
the threshold value for discontinuity detection, L, used
in equations (15) and (16) is determined on the basis of
perceptual experiments to find whether the adjacent
areas can be distinguished. The criterion for such
distinction is obtained from a characteristic of human
behavior known as Weber’s law [2]. All simulations in
this paper use the value L=15.

3.1 The Koffka-Benussi Ring

The ring has an intermediate luminance level and is
superimposed on a bipartite background, with one half
having a high luminance level and the other half a low
level, as shown in Fig. 6(a). The effect of such a
stimulus is that the ring appears approximately uniform
though gently inclined, as shown in Fig. 6(c). Figure
6(b) illustrates the barrier signal used in the process of
the filling-in mechanism. The brightness signal diffuses
freely within this single connected compartment,
generating a region of averaged brightness.

The brightness perception is changed by the introduc-
tion of a black line dividing the ring into two halves.

Fig. 6 Simulation of the Koffka-Benussi ring—undivided ring. (a) Two-dimensional stimulus distribution. (b) Output from complex cells, or
barrier signal. (c) Output after filling-in operation, indicating the perceived brightness.
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Figure 7(a) shows the strength of the stimulus. The
brightness signal diffuses within the two compart-
mnents created by the barrier signals illustrated in Fig.
7(b). Thus, the ring is divided into two regions with
homogeneous but different brightness levels, as shown
in Fig. 7(c).

3.2 The Craik-O’Brien-Cornsweet Effect

The Craik-O’Brien-Cornsweet effect is a most attrac-
tive phenomenon [6]. When humans see two rectangles
whose luminance is actually equal, except for an abrupt
change of luminance overshoot on one side and an
abrupt change undershoot on the other side of the
midline, they perceive the former rectangle as brighter
than the latter.

Figure 8(a) shows the two-dimensional stimulus
distribution of this brightness phenomenon. Figure 8(b)
shows the barrier signal and Fig. 8(c) the final perceived
brighness level. It can be found that there is a difference
in the perceived brightness level between the two
regions across the midline.

3.3 Discussions
.Computer simulated results of brightness perception
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can explain how brightness illusions are perceived, and
therefore it can be considered that the proposed
mechanism works in the same way as human vision.
This is because the model does not merely attempt to
perform image processing by means of neural techni-
ques, but actually to construct the neural architecture
used by the eye-brain system.

First, stimulus inputs are transmitted through the
mechanism of lateral inhibition as initial inputs to a
higher processing stage. These are data whose
brightness level is enhanced in the same way as in
human perception. By combining the data, then, spatial
discontinuities in brightness are detected and used as
barrier signals. Finally, the perceived brightness level is
obtained by the filling-in process, in which is a lateral
spread of iniial activations up to barrier signals. Lateral
inhibition and the filling-in process do not work in-
dependently, but brightness perception is performed by
the interaction between these modules.

4. Application to Image Processing

In order to verify the functioning of the proposed
model, we demonstrate its application to achromatic

Fig. 7 Simulation of the Koffka-Benussi ring—divided ring. (a) Two-dimensional stimulus distribution. (b) Output from complex cells, or barrier
signla. (c) Output after filling-in operation, indicating the perceived brightness.
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Fig. 8 Simulation of the Craik-O’Brien-Cornsweet effect. (a) Two-dimensional stimulus distribution. (b) Output from complex cells, or barrier

signal. (c) Output after filling-in operation, indicating the perceived brightness.

gray-level histogram are represented by black regions.

Fig. 10 Objects extracted from the original image by using its

Fig. 9 Example of an original image with a signal magnitude
range of 256 gray levels.
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image processing. Chinese brush-paintings in ink are
adopted as images to be processed by the model.
Satisfactory results are not obtained by applying con-
ventional processing methods to such paintings. This is
because, in visual art, the effect of brightness enhance-
ment induced by visual properties has been used for the
illusory production of bright and dark areas by means
of faint differences beyond contours [27].

Application of this perception model to extracting ob-
jects from Chinese paintings is a significant way of
analyzing and interpreting the paintings in terms of
their layout structure [28, 29].

In general, objects are extracted in such a way as to
segment the image into two classes, the object and the
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background, by converting an original image into a
binary image with a threshold value selected from a
histogram of the original image. Since there is a
difference between the actual gray level and the perceiv-
ed level, extracted objects in the binary image do not
always correspond to those that humans perceive as ob-
jects. Thus, such images should be processed at the
perceived level of image intensity, which is computed as
the output of the brightness perception model.

The example of an original image shown in Fig. 9 was
taken with a CCD array camera and digitized to 8
bits/ pixel, or 256 gray levels. Figure 10 is the associated
binary array for the original image after a thresholding
operation with a threshold value selected from a

Fig. 11 Experimental results of object extraction using the proposed model. (a) Barrier signal. (b) Output after filling-in operation. (c) Objects

extracted from the image (b).
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histogram of the original image [30], in which extracted
objects are denoted as black regions. The results show
that some regions on the right side of the painting were
extracted incorrectly and that details of the structure of
objects were lost.

We now present the results obtained by using the
perception model. Figure 11(a) shows the barrier
signals, which are detected as brightness discontinuities
in the image. As a result of the filling-in process, the as-
sociated perceived brightness is computed as shown in
Fig. 11(b). A threshold value is selected from a
histogram of the output of the model, namely the
perceived brightnes level. Figure 11(c) shows the
resulting thresholded image, in which objects are also
represented as black regions.

The experimental results presented in this section in-
dicate that objects can be extracted more easily than in
conventional methods by introducing the properties of
a biological visual system into the scheme of digital im-
age processing.

5. Concluding Remarks

This paper has described a visual model of brightness
perception that deals with two-dimensional properties
of brightness. This model is based on existing
knowledge of neurophysiology and psychophysics and
is constructed as a hierarchy of two functional modules,
one a mechanism for detecting spatial variation and
discontinuity in brightness and the other a mechanism
for diffusing brightness signals, in other words, the fill-
ing-in process. The receptive field is modeled a a DOG
filter and the filling-in mechanism is formulated as an
iterative operation.

Computer simulations of brightness enhancement
phenomena induced by human visual properties are car-
ried out and the adequacy of the model is
demonstrated. The simulation results indicate how
these phenomena are perceived as a result of the interac-
tion among surroundings or spatially organized con-
trasts. Moreover, as an example, the model is applied to
extracting objects from Chinese brush-paintings in ink
and the results are much better than those obtained by a
conventional method.

Our approach still poses interesting and important
problems. Since the model described in this paper deals
only with achromatic brightness effects, extensions, for
example, to chromatic and multi-scale processing have
to be considered. From the computational point of
view, this algorithm should be implemented on parallel
computer architectures, because it is highly parallel and
can operate in real time on such architecture.
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