Regular Paper

301

The Applicability of Formal Specification
to Maintenance of Large-Scale Software

SEncHI KawaNO**, KouicHl ONo*, YosHiaki Fukazawa* and TosHio KADOKURA*

For over a decade, major reserach efforts have been devoted to formal specification techniques for system
development. As a result, many specification languages and their support tools have been developed. But not
much research has been done on the application of formal specifications to software maintenance.

We developed a formal specification language called Waseda Specification Notation (WSN), and have been at-
tempting to apply it to some existing large-scale software systems. One of these is the scheduler of the VM/SP
operating system, which was completely specified in WSN.

We tuned the scheduler on the basis of the formal specification described, and according to the current charac-

teristics of our computer environment.

This paper gives a detailed introduction to the benefits of applying formal specification methods during the
maintenance of large systems. Experiences obtained during the study are also described.

1. Imntroduction

The application of formal specification techniques to
software development has been researched for over a
decade [l1, 2, 3]. The specification of an existing soft-
ware system brings many benefits. Long-term benefits
result when specification is used as:

1. A basis for discussing and developing specifica-
tions for changes or additions to the system

2. A basis for selecting materials for reimplementa-
tion of the system in cases such as when the machine or
operating system is replaced

3. A model of the system’s functional behaviour for
use in educating new staff.

When changes or additions to the system are made, a
new specification can be developed with reference to the
previous specification. This process will give insight
into the effects of the changes and their interactions
with the existing parts of the system.

We are attempting to scale up formal specification
methods, so far used in a research environment, to
large-scale software in an industrial environment. For
this purpose, we defined the specification language
Waseda Specification Notation (WSN) and wrote many
specifications in the language [4, 5]. WSN shows how a
mathematically based notation can be used to capture
important aspects of the behaviour of a system that is
clearly not just a toy. In the design of WSN, we paid
special attention to the writability and readability of the
specification.

*Department of Electrical Engineering, School of Science and
Engineering, Waseda University.
Now with Yamato Laboratory, IBM Japan, Ltd.

Journal of Information Processing, Vol. 14, No. 3, 1991

This paper describes our experiences in applying for-
mal specification techniques to the maintenance of the
IBM Virtual Machine/System Product (VM/SP).

There have been some attempts to apply formal
specification techniques to existing real software [6, 7],
but the applicability of specification to the maintenance
phase has not been studied well enough.

We selected the Control Program (CP) of the
VM/SP operating system (Release 4.0) as our first
maintenance target. VM/SP [8) is an interactive and
multiple-access operating system. It has two basic com-
ponents: Control Program (CP) and Conversational
Monitor System (CMS). Each provides services of a
specific type. CP manages system resources and delivers
an individual working environment to each user. Of
CP’s many modules, the dispatcher and the scheduler
play major roles. Since the dispatcher’s activities
depend on the actual hardware and because of the
scheduler’s central position in CP, we first attempt a
formal specification of the scheduler.

2. The Specification Process

The starting point for our specification work was the
VM/SP System Logic Manual [9]. Very soon, we had
many questions that were not satisfactorily answered by
the manual, because of its incompleteness and
vagueness. Most of the questions that arose in the
specification process were subtle and required us to
refer to the source code of the module to find satisfac-
tory answers.

Moreover, the comments in the source code written
in the assembler language were also incomplete and
vague.



302

2.1 Notation

The specification language WSN developed by the
Study Group of Specification and Verification at the
Centre for Informatics, Waseda University, is the
primary notation that has been used in the specification
work.

The formal basis of WSN is elementary set theory.
WSN is a many sorted, type-free, and weak second-
order language. Those familiar with set theory should
have little trouble in reading and writing specifications
in WSN.

Specifications in WSN are written at two levels. One
is called a ‘‘high-level specification (HLS)’’ and the
other a ‘‘descriptive specification (DS).”’

An HLS describes the abstract function of a module.
This is achieved by providing a formal specification
notation and, where appropriate, natural language
specifications, figures, and diagrams. The main purpose
of an HLS is to assist the interpretation of a DS. We do
not intend to provide a mathematical verification of
HLS.

A DS formally specifies the structure and other con-
siderations crucial to the implementation. To improve
the readability, comments in a natural language,
figures, and other explanatory items can be added
where needed. A DS is used for implementing and veri-
fying the redesigned software. A short summary of the
notation used within this paper is given in Appendix 1.

The object of an HLS is to help the reader of the
specification in WSN to understand the DS. It is not
possible to prove the correctness of an HLS, but formal
and informal specification can complement each other
well. This makes it quicker and easier for the readers of
the specification to understand it.

WSN does not confine the specifier to a particular
style of specification method. A software specifier may
choose a style suited to a given problem. The specifica-
tion may be written in a predicate logic style, a func-
tional style, a precondition-postcondition style, or any
other style suited to the problem. This is analogous to
choosing a programming language for a particular prob-
lem, such as Cobol for data processing instead of Lisp.

WSN was designed not for performance specifica-
tion, but for functional specification of required soft-
ware. Therefore the necessary execution time, the
capacity of main storage, and so on cannot be specified
in WSN. We asume that such items should be specified
as comments, and these are taken into consideration in
the implementation phase.

2.2 Sample Specification

As a sample of a specification, we will look in detail
at the specification of the CP scheduler. Note that the
specification is detailed enough to capture the
behaviour of the scheduler, yet can generalize from
issues of data representation and detail algorithms,
which might be used to implement the system.

S. KawaNo, K. ONo, Y. Fukazawa and T. KADOKLRA

vm_name = natural number

setofvms = set of vm

schedule : vm_name X setofvms -> setofvms
vm_name
setofvms
scheduler s dispatcher
> dispatcher
setofvms

The function of the scheduler is formally specified as follows:
scheduler : vm_name X setofvms -> vmlist
where vm_name = natural number

setofvms = set of vms

vm = vm_name X status

status = P1 X P2 X P3 ..... X Pn

Fig. 1 High-Level Specification of Scheduler.

define predicate virtualmachine( vm ) ¢==>
[ ( Exist! name in N )
Exist! runnable in { "Runnable”, *notRunnable' } )
Exist! queue in { *Q1", "Q2", Q3" })
Exist! type in { "interactive’, "compute’ } )
Exist! inQ in { "InQueue", "notIinQueue’ } )
Exist! wasrun in { "WasRunnable', "notWasRunnable' } )

~ A~~~

<
El
"
~

name, runnable, queue, type, inQ, wasrun, Elige,
priority, TE, QE, SS, AE, LW, CF, PGW, DBW, cnt,
page, time, UHS, FS, WE, RP, AEXP, DSP, logon,
logoff, idle, FVRF, noQ3, elg, dd >

Fig. 2 Definition of Virtual Machine in WSN.

2.2.1 High-Level Specification

CP manages the services required by each va as in
Fig. 1. Each vm can be thought of as a list of its name
and other control and status information.

The scheduler is called when the dispatcher requires it
to update the status of a vm. This situation, for exam-
ple, occurs when a vm is waiting for an 1/0 or runs out
of its time slice. The dispatcher passes the vm_name (a
natural number) and the list of vms (set of vms) to the
scheduler. The activated scheduler analyzes the status
of the vm in question, updates the vm status for the next
execution, and repositions the vm within the list of vms.
This activity is shown in Fig. 1. The dispatcher may
then choose a suitable vm for execution from the list of
vms and dispatch it.

The scheduler expressed in the function ‘‘scheduler’’
accepts a natural number signifying a vm_name and a
set of vms, and returns a set of vms. Each vn is represent-



The Applicability of Formal Specification to Maintenance of Large-Scale Software 303

define predicate runnable( vm ) <==>
[ element( vm, 2 ) = "Runnable’ ]

Fig. 3 Example of Predicate Definition.

define function vmMakeRunnable( vm ) =
changeElement( vm, 2, “Runnable” )

Fig. 4 Example of Function Definition.

ed by a list with its name and other information such as
its status.

2.2.2 Descriptive Specification

In the description of a DS, first of all, a virtual
machine (vm) that is an object of the scheduler must be
defined. In CP, a vm is viewed as a data block called
‘VMBLOCK,’ in which many dynamic properties of the
vm are recorded. Examples of these properties are
whether the vm is runnable and how much memory it
has used. The scheduler does not use all the data of each
vm. Some of them are used only by the dispatcher, or
other CP modules such as the memory control module.
We selected 32 properties of each vm necessary for effec-
tive scheduling.

We define a vm as a list structure of these 32 proper-
ties, which is the predicate ‘virtualmachine’.

The scheduler must manage these vm properties and
may change them dynamically. Some functions and
predicates are defined to access the properties or change
their values. For example, the definition of the predi-
cate ‘runnable’ is shown in Fig. 3.

The predicate ‘runnable’ is true if the second element
of a vm (list structure) is ‘‘Runnable,’’ which means that
the vm is runnable. When the predicate is false, the vm is
not runnable; in other words, the vm is in an idle state or
an I/0 blocked state.

The built-in function ‘element’ returns an element
from a list. Element (L, n) yields the n-th component of
the list L. For example, element ([a, b, c], 2)=b.

The function ‘vmMakeRunnable’ (in Fig. 4) sets the
vi’s second element to ‘‘Runnable.’”’ This means that
the function makes a vm runnable. The function chan-
geElement (L, n, x) returns a new list, whose n-th ele-
ment is Xx. For example, changeElement ([a, b, c], 2, d)
=[a, d, c].

Up to now, we have only described the predicate and
function definitions for checking or modifying the sec-
ond element of a vm, which indicates whether the vm is
runnable. We now define some other functions and
predicates for checking or modifying other elements
(properties) of a vm.

The set of vms is now defined. vms are roughly clas-
sified into the following thre types. Each type of vm be-
longs to one of three lists: the runlist, the eligiblelist, or
the nonActivelist.

vms in the runlist: runnable and candidate for dis-
patch

[@1] [02] [q3] [eligibleqilist] [eligibleqalist]

Fig. 5 Structure of VM List.

nonActivelist

/* Specification of VM/SP Scheduler %/
specification of scheduler
( Creation! vm )[ virtualmachine( vm ) ]
( Creation! VM )[ setofvms( VN ) )
( Creation! systemData )[ dataOfSystem( systemData )]

scheduler( < vm, VM, systemData > )
= <vm', V¥, systemData’ >
end of scheduler

Fig. 6 Specification of scheduler.

vms in the eligiblelist: runnable but not candidate for
dispatch

vas in the nonActivelist: not runnable

According to their characteristics, all runnable vas (in
the runlist or the eligiblelist) are divided into three class-
es, regardless of the list they belong to. The types are in-
teractive (or I/O bound), compute bound, and heavy
compute bound. The classes are called Ql-type, Q2-
type, and Q3-type correspondingly.

The eligiblelist is further separated into two parts, the
‘eligbleQl1list’ and the ‘eligibleQ2list.’ The first contains
‘QI’-type vms and the other ‘Q2’ and ‘Q3’-type vnms.
These classifications are illustrated in Fig. 5.

In all, it is necessary to define four lists (the runlist,
the eligibleQllist, the eligibleQ2list, and the nonAc-
tivelist). The list that consists of the above four lists is
called ‘setofvms.’

We must also define other information crucial for
effective scheduling. These data are defined as a list
named systemData. The components of this list include
memory usage, CPU usage, and the number of active
vms.

After the necessary auxiliary function and predicate
definition, the main part of the scheduler is specified in
a top-down manner.

In the specification of the scheduler, the objects of
specification must first be ‘created.” These objects are
one vm, a set of vms, and system information.

The scheduling function is represented by the func-
tion ‘scheduler.” A single quotation mark means that
the quoted object is modified by the function. For exam-
ple, v’ is a modified vm. As described in the HLS, this
function receives a vm, the set of vms, and some informa-
tion on the system, and updates them (Fig. 6).

The definition of the function ‘scheduler’ is shown in
Fig. 7. This means that if the vm is runnable, then the
function scheduler is to call the function ‘runstate’;
otherwise, it is to call the function ‘waitstate.’



304

define function scheduler( < vm, VM, systemData > )
= [ runnable( vm ) --> runstate( < vm, VM, systemData > ) :
waitstate( < vm, VM, systemData > ) }

Fig. 7 Definition of Function scheduler.

define function makeDrop( < vm, VM, systemData > ) =
promote - reEntry « dropQueue -
dropFromRunList( < vm, VM, systemData > )

Fig. 8 Definition of Function makeDrop.

define function reEntry( < vm, VM, systemData > ) =
{ assuredExecution{ vm ) -->
addToRunList - addQueue( < vm, VM, systemData > ) :
addToElglList( < vm, VM, systemData > ) )

Fig. 9 Definition of Function reEntry.

define function checkPage( < vm, VM, systemData > )
= [ ( vaCkPage( vm ) > vmPageRead( va ) ) -->
( < vm, VM, systemData > ) :
[ delaybrop( vm ) -->
checkTotalPage( < vm, VM, systemData > ) :
checkStealPage( < vm, VM, systemData > ) ] ]

Fig. 10 Definition of Function checkPage.

The main work of the scheduler is to manage three
lists: the runlist, the eligibleQllist, and the eligible-
Q2list. A vm is usually first entered into the eligiblelist
(the eligibleQllist or the eligibleQ2list), then added to
the runlist, and held until it can run for a certain term
(time slice). These vms are sorted by ‘Dead-Line
Priority,” and usually the first va in the runlist will be
able to run. If the status of the running vm changes, the
scheduler is called and reorganizes the three lists. One
of the status changes is to make a vm not-runnable. This
may occur as a result of an I/0 request or for some
other reason.

If the vm requests a long term I/O or runs out of time
that it can stay in the runlist, the scheduler drops the vm
from the runlist. This is defined by the function
‘makeDrop’ (Fig. 8). The symbol ‘-’ is the operator for
function composition. The function ‘dropFromRunlist’
describes the operation of dropping the vi from the run-
list, and the function ‘dropQueue’ performs the opera-
tion of changing the condition of the vm, for example,
to priority or projected working-set. The function
‘reEntry’ defines the operation of adding the vm to a list
(the runlist or the eligiblelist). The function ‘promote’
defines the operation of searching the eligiblelist for the
vn to be added to the runlist.

The runnable vms are added to one of three lists (Fig.
9). If the ve has the option of ‘assuredExecution,’
which means that it can always stay in the runlist, then
the function ‘addQueue’ updates the conditions of the
vm and the ‘addToRunList’ adds the vm to the runlist.

S. KawanNo, K. ONo, Y. Fukazawa and T. KADOKURA

Ordinary vms are added to the eligiblelist by the func-
tion ‘addToElgList.’

As described, the vms in each of three lists are sorted
according to priority, which is calculated on the basis of
the user priority, page usage, CPU usage, and so on.
The function ‘checkPage’ in Fig. 10 checks these proper-
ties. The definition of ‘checkPage’ contains the follow-
ing description.

If the vm does not use some predicted number of
pages, then the function ‘checkPage’ does nothing.
This condition is checked by ‘vmCkPage(vim)>
vmReadPage(vm)’. If this condition does not hold, and
the vm is marked as ‘delayDrop’ by the function
‘delayDrop,’ then its page usage must be estimated by
the function ‘checkTotalPage.’ If neither of the above
conditions holds, the page usage of the vm should be esti-
mated by the function ‘checkStealPage.’

3. The Maintenance process

3.1 Decision on the Modification of the Scheduler

We attempted to tune the VM/SP system for our en-
vironment. For this purpose, we investigated the cur-
rent utilization of our VM/SP by using the system
monitoring tool VM/RTM (SMART [10]). VM/RTM
was designed as a real-time monitor and diagnostic tool
for short-time monitoring, analysis, and problem solv-
ing. It is used for installation of hardware or software
to help in validating the system components and estab-
lishing requirements for additional hardware or
software. Some of the results are shown in [11].

After considering the results, we decided to modify
the scheduler in the following two respects:

1) The eligiblelist should be removed.
2) vms that consume very long periods should be given
an initial time-slice of 200 ms.

The eligiblelist plays two roles. One is to prevent the
system performance from dropping because of paging.
As described, a vm in the eligiblelist is runnable but not
a candidate for dispatching. This is because the parts of
these vms’ memory-space do not exist in real main-me-
mory. When a vn is executed, some parts of its virtual
space must exist in real main-memory. But if all virtual
space parts of runnable vm exist in main-memory, the
paging ratio will increase. In order to keep the system
performance high, it is necessary to restrict the number
of vams.

Another role of the eligiblelist is to make the
response-time (turn-around time) shorter. The
eligiblelist is separated into two lists, the eligibleQ1list
and the eligibleQ2list. The first contains Ql-type vms
and the other contains Q2- and Q3-type vms. When
there is room in the runlist, the vas in the eligibleQ1list
are first chosen to be added to the runlist. The vm’s type
is Q1 when it becomes runnable, so this method makes
the response-time shorter.

In our computer system, the memory utilization ratio



The Applicability of Formal Specification to Maintenance of Large-Scale Software 305

define function makeDrop( ¢ vm, VM, systemData > ) =
reEntry - dropQueue -
dropfromRunList( < vm, VM, systemData > )

Fig. 11 Modified Specification of Function makeDrop.

define function reEntry( < vm, VM, systemData > ) =
addToRunList - addQueue( < vm, VK, systemData > ) :

Fig. 12 Modified Specification of Function reEntry.

define function checkPage( < vm, VM, systemData > )
= [ ( vnCkPage( vm ) > vmPageRead( vm } ) -=>
( < vm, VM, systemData > ) :
checkStealPage( < vm, VM, systemData > ) )

Fig. 13 Modified Specification of Function checkPage.

is very low. Even if the main memory is used most heavi-
ly, its utilization ratio is less than 30% of total memory.
In such an environment, the scheduling method based
on the eligiblelist is not effective. It seems better to re-
move the eligiblelist.

However, some of our computer system users often
execute very compute bound tasks, such as structural
analysis of buildings and simulation of turbulence. It is
an attractive idea to give such users (vms) time-slices that
are as long as possible. This is the reason for the second
proposed modification.

In the current VM /SP system, when vas are added to
the runlist from the eligiblelist, all types are given time-
slice of about 50 ms. When a vm has spent its first time-
slice and can still stay in the runlist, it will be given
about 200 ms the next time.

As Q3-type vams tend to be in compute bound state, es-
pecially in our computer system environment, the sec-
ond method seems to be more effective. As a result, the
CPU time that the CP uses can be reduced, and the
CPU time that the users (vms) use will consequently
increase.

3.2 Modification of the Scheduler

Of the two kinds of modification, only the removal of
the eligiblelist is discussed in this paper. In what fol-
lows, a portion of the modification is described, and the
effects of the modification on other descriptions are also
explained.

If the eligiblelist is removed, it becomes unnecessary
to state that some vm in the eligiblelist is removed from
the list and added to the runlist. This is defined in the
function ‘promote’ and its sub-functions.

Consequently, these functions and the ‘promote’
function calls, including the function ‘makeDrop’ in
Fig. 11, become unnecessary. The ‘promote’ function
call is thus deleted.

Now there exists only one list, namely, the runlist.
When a vm becomes runnable, it is added to the runlist
immediately. The function ‘reEntry,” which described

the addition of runnable vms to the runlist or the
eligiblelist, is modified as follows. The function is
changed to append directly to the runlist without check-
ing the attributes of the vm.

Similarly, all descriptions of adding vms to the
eligiblelist have been changed to adding vms directly to
the runlist, and the ‘promote’ function calls have been
deleted.

These modifications are rather easy, but it is necessa-
ry to check the side-efects caused by the removal of the
eligiblelist.

In one of the deleted function definitions, there is a
description that changes the vm ‘delayDrop’ property,
which means that this vm should be dropped from the
runlist. This ‘delayDrop’ property is used so that the
highest-priority vm in the eligiblelist can be executed
sooner. This is easily understood from the specification.

As the eligiblelist is not used, deleting this
‘delayDrop’ property presents no problem. The proper-
ty is referred to the function ‘checkPage,” which was
modified as follows.

3.3 Code Generation

The system for translating from the specification in
WSN to Prolog code has already been implemented [12].
This system has generated the Prolog code from the
modified specification discussed in the previous section.

The generated predicates (Prolog codes) are classified
into two types. One has only one arity that is bound
when the predicate is called. These type predicates are
referred to here as Type-1. Calling a Type-1 predicate
results in success or failure.

The other type has two arities. One of them is bound
and the other unbound variable returns or passes the
value. These type predicates are referred to here as
Type-2. Calling this type of predicate always results in
success.

For example, the following predicate prd2 is Type-1,
while prdl and prd3 are Type-2.

prd1(X, Y): —
prd2(X),
prd3(X, Y).

The generated Prolog code is manually translated to
assembler code (IBM System/370 Assembler Language).
Most of the Prolog code is translated into pseudo-Mac-
ro code, and the rest of the code is translated into assem-
bler code with reference to the interface between the
scheduler and other modules in the CP of VM/SP. The
strategy of the translation is as follows:

1. A type-1 predicate is translated into a conditional
instruction or a subroutine call instruction, which sets
the truth value in its condition flag.

2. A Type-2 predicate is translated into a subrou-
tine call instruction. As all variables are global, formal
parameters are not used.

For example, the following codes (Fig. 14(b)) are



306
prdl( X, Y ) :-
prd2( X ),
prd3( X, Y ).
prdl( X, Y ) :-
prd4( X, Y ).
(a) Generated Prolog Code
PRD1 DS CH
CALL PRD2
CONDF  PRD2,PRDI_2
CALL PRD3
RETURN
PRD1_2 DS CH
CALL PRD4
RETURN

(b) Manually Generated Assembly Code

Fig. 14 Manual Translation of Prolog Code.

translated in Fig. 14(a). In Fig. 14, CALL, CONDF,
and RETURN are pseudo-Macro-operations. CALL is
a subroutine call, and RETURN means returning to the
caller. CONDF is a kind of IF-statement. Calling a
subroutine PRD2 sets a true or false value in its condi-
tion flag. The above CONDF means that if a false value
is set in the condition flag of PRD2, then goto label
PRDI1_2. Similarly, the pseudo-Macro-operation CON-
DT means that if a true value is set in the condition flag,
then goto label.

4. Evaluation and Discussion

During this case study of tuning an OS, we found
three advantages in using formal specifications.

One is readability. This allows the user to find the
parts to be modified. In the present case study, the
modifications of the scheduler are very simple. This is
because we are interested not in the tuning of the OS it-
self, but in the usefulness of formal specification in the
maintenance phase. Consequently, the parts to be
modified were found very easily.

A second advantage is that WSN is based on predi-
cate logic. Therefore the user can take account of the
influences of the modification only by drowing up a
specification.

In maintenance activities, it is important to ascertain
the influences of changes on other modules. For exam-
ple, the changes in the scheduler described above
consist of the removal of functions relevant to the
eligiblelist or the addition of a new function to give the
Q3-attributed vm a constant time slice. The former
influenced the other functions and predicates because
of the deletion of some functions and predicates. For
the latter, however, it is sufficient to modify an existing
function.

Actually, the specification of the existing scheduler
consists of 272 function definitions and 55 predicate
definitions. The changes in the scheduler influence 47
function definitions and 9 predicate definitions. Of the

S. KawaNo, K. Ono, Y. Fukazawa and T. KADOKURA

47 influenced function definitions, 6 were modified and
41 were deleted. Of the 9 predicate definitions, 2 were
modified and 7 were deleted.

The performances of the original and tuned
schedulers were measured [11]. The system throug-
hputs, that is the CPU usage rates of users for the work-
ing ratio of the CPU, were 0.50 for the original
scheduler and 0.60 for the tuned scheduler. Therefore
the tuning improves the performance.

In traditional software development processes, which
do not adopt formal specification techniques, modifica-
tion points must be detected by careful checking of the
source code, with a little guidance provided by informal
specification. It is very difficult to detect influences on
other modules in this approach.

In our experiences based on a formal specification
method, it is easy to remove a function relevant to the
eligiblelist and to effect a relevant modification of the
delayDrop attribute. Moreover, the modification of the
corresponding source code is facilitated by referring to
the modified formal specification written at a higher
abstraction level than the source code in assembler
language. The abstraction level of the specification can
be sufficient to effect the above changes.

However, we also found the problem that software
maintenance based on the formal specification ap-
proach cannot be applied to changes that are not writ-
ten in the specification. In order to cope with this
difficulty, it is necessary to write a specification near the
source code level.

The third advantage of formal specification is that
this specification can be used as a communication
method.

In the maintenance of large-scale software, the im-
plementer and maintainer are different people. Person-
to-person communication is therefore very important,
and formal specification is thus required to be
understandable and rigorous. To meet this demand, it
is necessary to raise the abstraction level and improve
the understandability.

These are very difficult trade-offs. But in our ex-
perience, the larger the scale of the software, the more
important the person-to-person communication. One
of our conclusions is that in software maintenance, a
high abstraction level and an understandable formal
specification are very useful. If necessary, efficient
maintenance can be realized by providing a more de-
tailed formal specification.

The actual workload of modifying the existing system
was as follows. It took about 6 person-months to draw
up a specification of the existing scheduler, 4 person-
months to investigate the university computer environ-
ment and decide the points that required modification,
and about 1 person-month to translate from Prolog to
assembler code and introduce the modified system.

We consider that there are no general methods for
finding the correspondence between a user’s original re-
quirement and a given specification, or between the



The Applicability of Formal Specification to Maintenance of Large-Scale Software 307

specification and its program. Our principles are as
follows: to draw up a readable and understandable
specification, and to offer support tools for under-
standing a specification and program. We are studying
support tools for understand specifications and pro-
grams [13, 14]. This work supports the verification of a
given specification by transformation, and the under-
standing of a program by both specification and cliche
assignment.

It may seem a waste of time to draw up a formal
specification, because it involves such a lot of work. But
once the formal specification has been made, it seems to
make it very easy to maintain an existing system. The
fact that the abstraction level of the specification coped
with the modification points proves that a maintenance
process using formal specification is more useful than a
traditional maintenance process without formal
specification.

WSN is intended for the reader who can decide on the
implementation from the specification. For other
readers, a system for generating a program from a
specification in the DS is provided [15]. However, the
generated program leaves some room for performance
improvement.

WSN makes no assumptions on the relation-ship of
an HLS and DS. Therefore, both the HLS and the DS
are modified individually when the modification of the
specification affects the HLS. During our case study,
such modification of an HLS was comparatively
straightforward because no restrictions were imposed
on the representation form of an HLS.

5. Conclusion

We have described the formal specification approach
to maintaining a large system and our experiences in
adopting this approach. The usefulness of formal
specification was confirmed, but some problems re-
main. One is the abstraction level of the specification. If
the required modification is at a lower level than the
abstraction level of the specification, a detailed aux-
iliary description is needed. This problem must be fur-
ther researched.

Our experience has led us to recognize that some

Appendix 1. Descriptive Specification of WSN

Definitions

maintenance tools are very useful. In the future, a
maintenance environment corresponding to these
techniques must be realized.

Acknowledgement

The contents of this paper are some of the research
results of the Specifications Study Group at Waseda
University. The authors are greatly indebted to the
other members of the group and to many others who
gave us helpful suggestions.

References

1. GeHaNI, N. and McGETTRICK, A. D. Software Specification
Techniques, Addison-Wesley Publishing Company (1986).

2. CHi, U. H. Formal Specification of User Interface: A Com-
parison and Evaluation of Four Axiomatic Approaches, IEEE Trans.
on SE, SE-10, 2 (1985).

3. HENDERSON, P. Functional Programming, Formal Specification,
and Rapid Prototyping, IEEE Trans. on SE, SE-12, 2 (1986).

4. Fukazawa, Y. et al. The Reconstruction of an Operating System
Using a Formal Approach, Proc. of the Third International
Workshop on Software Specification and Design, IEEE Computer So-
ciety (1985).

5. Nasu, H., HosokAwa, K. and YAMADA, S. WSM and Its Applica-
tion: Design of an Elevator Control System in WSN, Bulletin of
Centre for Informatics, Waseda Univ., 2 (1985).

6. MELLIAR-SMITH, P. M. and SCHWARTZ, S. Z. Formal Specifica-
tion and Mechanical Verification of SIFT: A Fault-Tolerant Flight
Control System, IEEE Trans. Comput. C-31, 7 (1982).

7. Haves, L. J. Applying Formal Specification of Software Develop-
ment in Industry, IEEE Trans. on SE, SE-11, 2 (1985).

8. IBM “‘Virtual Machine/System Product: General Information,””
GC20-1838-4 (1984).

9. IBM ‘‘Virtual Machine/System Product: System Logic and Prob-
lem Determination Guide,’’ LY20-0892-2 (1983).

10. IBM *‘VM Real Time Monitor Program: Description/Opera-
tion Manual,”’ SH20-2777—35 (1986).

11. KAawaNoO, S., Fukazawa, Y. and KADOKURA, T. Tuning of an
OS for a University Environment and Related Experiences, Bulletin
of Centre for Informatics, Waseda Univ., 6 (1987).

12. YooN, S. et al. Translator Description Language (TDL) for
Specification Languages, Proc. 37th. Conf. IPS Japan (1988).

13. Ono, K., YamMamoto, T. et al. Specification Debugging by
Transforming Representation, Report of SE, IPS Japan, 90-SE-73
(1990).

14. FukupA, T., Fukazawa, Y. and KADOKURA, T. Extraction of
Design Decisions from Programs and Specifications, Proc. 41st.
Conf., IPS Japan (1990).

15. YooN, S. A Translator Description Language (TDL) for
Specification Languages and Automatic Generation of Their
Translators, Journal of Information Processing, 13, 3 (1990).

(Received February 9, 1990; revised November 9, 1990)

Let s be a specification name; p a predicate name; x, xi identifiers; S, Si sets; Logic_Formula(x) and Logic_For-
mula(x1, - - -, xn) logic formulas that include x and x1, - - -, xn as their arguments; and Expression(x) and Expression
(x1, - -+, xn) expressions (functional terms) that include x and x1, - - -, xn as their arguments.

specification of s - -+ end of s
Definition of specification s
define predicate p(x) << [Logic_Formula(x)]

Definition of predicate p(x) as equivalent to Logic_Formula(x)
define predicate p(x1, - - -, xn) <) [Logic_Formula(xl, -- -, xn)]



308 S. KawaNO, K. ONo, Y. Fukazawa and T. KADOKURA

Definition of n-ary predicate p(x1, - -, xn) as equivalent to Logic_Formula(x1, ---, xn)
define function f(x)=[Expression(x)]
Definition of function f(x) as equivalent to Expression(x)
define function f(x1, - - -, xn)=[Expression(x1, - - -, xn)]
Definition of n-ary function f(x1, - - -, xn) as equivalent to Expression(x1, - - -, xn)
Creations
Let p be a predicate name; x an identifier; and S a set.
(Creation! x in S) [p(x)]
Creation of a unique object named x:
‘‘create a unique x in S, such that p(x) holds.”

Logic

Let P, Q be predicates or logic formulas; p predicate name; x, xi identifiers; S, Si sets.
~P

Negation: ‘‘not P’
P& Q

Conjunction: “P and Q”’
P|Q

Disjunction: ‘P or G’
g<-P
P->Q

Implication: ‘‘P implies Q”’
P<—>Q

Equivalence: ‘‘P is logically equivalent to Q*’

(xin S) [p(x)]
Universal quantification:
“for all x in S, p(x) holds.”
(=vxe S p(x))

(Exist x in S) [p(x)]
Existential quantification:
‘“‘there exists an x in S, such that p(x) holds.”’
(=3xe S p(x)

(Exist! x in S) (p(x)]
Unique existence:
‘‘there exists a unique x in S, such that p(x) holds.”
(=3lxe S'p(x)
(=axe S:(p(X)A~3ye S (y#xAp(»)))

(x1 in S1)-- -(xn in Sn) [p(x1, - - -, xn)]
Universal quantification:
““for all x1 in S1, --- and xn in Sn, p(x1, ---, xn) holds.”
(=vxle Sl; -+ - xne Sn-p(x1, ---, xn)]

(Exist x1 in S1) - - - (Exist xn in Sn) [p(x1, - - -, xn)]
Existential quantification:
‘“‘there exists and x1 in S1, - -- and xn in Sn, such that p(x1, ---, xn) holds.”
(=3xle Sl; - -+ xne Sn-p(xl, - --, xn))

(Exist! x1 in S1) - - - (Exist! xn in Sn) [p(x1, - - -, xn)]
Unique existence:

“‘there exists a unique x1 in S1, - and xn in Sn, such that p(x1, ---, xn) holds.”
(=3 xle Sl; -+ xne Sn-p(xl, ---, xn))
x1=x2

Equality between terms x1 and x2 (after evaluation)
(x1 equals x2)
x1="*x2
Identity between terms x1 and x2
Sets
Let S, T, and Si be sets; x terms.
nul, { }, [ 1
The empty set



The Applicability of Formal Specification to Maintenance of Large-Scale Software

xin S
Set membership: ‘‘x is an element of S’
(=xe8)
Ssub T
Set inclusion: ¢S is a subset of T’
(=SCT)
(=vxe S'xeT)
Scap T
Set intersection:
(=8SNT)
Skup T
Set union:
(=SUT)
S-T
Set difference
S1XS82X: - XS8n
Cartesian product:
the set of all n-tuples such that the i-th component is in set Si
min(S)
Minimum of set S
max(S)
Maximum of set S
Lists
Let xi be terms.
{xl, x2, ---, xn)
Ordered list of x1, x2, -+, xn
Numbers
N
The set of natural numbers:
(non-negative integers)
Zz
The set of integers
Functions

Let x, E, Ei, F and Fi be expressions (functional terms); f function.

E— >Fl: F2
If term:
“If E holds then the value is eval(F1) else eval(F2)”’
El — >F1 && E2 —>F2 && - && En —>Fn
Case term:
““If E1 holds then the value is eval (F1),
else if £2 holds then the value is eval(F2),

else if En holds then the value is eval(Fn)”’
E-F

Functional composition:

given E: S—=>T; F: R—>S; x: R,

E-Fx)=EFx)(eT)

Jx)
The function f applied to x
Comment
JX %)

Comment

309



