292

Regular Paper

Approximate Greatest Common Divisor of
Multivariate Polynomials and Its Application
to lll-Conditioned Systems of Algebraic Equations

Masa-ak1 OcHI*, MATU-TAROW Nopa** and TATEAKI SASAKI

*kkt

Let F, F and D be multivariate polynomials and ¢ be a small positive number, 0< e« 1. If F=DF+ AF, where
AF is a polynomial with coefficients that are O(g)-smaller than those of F, D is called an approximate divisor of
F of accuracy €. Given multivariate polynomials F and G, an algorithm is proposed for calculating with ac-
curacy ¢ the approximate greatest common divisor (GCD) of F and G. The algorithm is a naive extension of the
conventional Euclidean algorithm, but it is necessary to treat the polynomials carefully. As an application of the
approximate GCD of multivariate polynomials, the solution of a system of algebraic equations {F\(x, y, - -, 2)
=0, ---, Fx, y, - -+, 22=0} is considered, where F; and F,, i#j, have a non-trivial approximately common
divisor. Such a system is ill-conditioned for conventional numerical methods, and is transformed to a well-con-
ditioned system by calculating approximate GCD’s. A method is also given for determining the initial approx-
imations of the roots for numerical iterative calculation. The proposed method is tested by using several

examples, and the results are very good.

1. Introduction

Recently, two of the present authors (T.S. and
M.T.N.) introduced the concept of the approximate
greatest common divisor (GCD) of univariate
polynomials, constructed a Euclidean algorithm for
calculating it, and described an application of the ap-
proximate GCD to solving ill-conditioned algebraic
equations with one variable [5]). See also Sasaki and
Sasaki [6] for a theoretical analysis of the Euclidean
algorithm. A concept similar to the approximate GCD,
named the ‘‘quasi-GCD,”’ was also introduced by
Schonhage [8]. The same equation is used to define
these concepts, but Schénhage is interested in
calculating the ‘‘quasi-GCD’’ quite accurately by using
approximate arithmetic; on the other hand, the authors
of [5] are interested in considering (x-o) and (x-«’)
to be approximately equal factors so long as la-a’l
=4, with J a given small positive number. The latter
need not necessarily be as small such as d=10"7, but
may be as large as 6=10"2 or 107, Consequently, close
roots whose mutual distance < J can be separated as ap-

*Computer Division, Information Equipment Sector,
Matsushita Electric Industrial Co., LTD., Kadoma-shi, Osaka 571,
Japan.

**Department of Computer Science, Ehime University,
Matsuyama-shi, Ehime 790, Japan.
***The Institute of Physical and Chemical Research, Wako-shi,
Saitama 351-01, Japan.

TCurrent address: Institute of Mathematics, University of

Tsukuba, Tsukuba-shi, 305, Japan.

Journal of Information Processing, Vol. 14, No. 3, 1991

proximately multiple roots by calculating an approx-
imate GCD.

The authors of [5] proposed not only an algorithm
for finding the approximate GCD of univariate
polynomials, but also an algorithm for approximate
square-free decomposition, and pointed out that such
approximate calculations could be performed on many
algebraic operations. In this paper, we generalize the
approximate GCD to multivariate polynomials and
show its application to solving a kind of ill-conditioned
system of algebraic equations.

The system we will consider is of the kind (for
simplicity, we explain the case of two variables)

{Fi(x, »)=0, Fi(x, y)=0}

where F, and F, are polynomials such that
Fi(x, »)=D(x, y)F\(x,)+ 4F\(x, y),
Fi(x, »)=D(x, y)Fy(x, y)+ AFxx,).

Here, D is not a constant and AF, and AF, are
polynomials whose coefficients are very small compared
with coefficients of F, and F,. If AF,=AF,=0, the
system {F,=0, F,=0} has an infinite number of solu-
tions corresponding to the roots of D=0, while it usu-
ally has a finite number of solutions if 4F;#0, i=1, 2.
This means that the system is ill-conditioned for
numerical methods. In fact, the absolute value of the
Jacobian becomes quite small around the roots of
D=0, and the conventional Newton’s method requires
very many iterations to converge, and may miss some

Approximate Greatest Common Divisor of Multivariate Polynomials and Its Application. . . . 293

roots. In this paper, a system is called ill-conditioned
only in the above-mentioned sense.

One way to attack such an ill-conditioned system is to
refine Newton’s iteration formula, as was done by
Tanabe [9]. Another way is to transform the system to
an well-conditioned system by using an algebraic
method, and the method proposed in this paper is
follows this path. As we will show in Section 4, such a
transformation can be made easily if the approximate
GCD of multivariate polynomials (namely, D(x, y) in
the above example) is calculated. Furthermore, know-
ing the approximate GCD allows us to determine good
initial approximations of the roots for a numerical
iterative method.

In Section 2, we define the approximate GCD of
multivariate polynomials, as well as other necessary
notation. A Euclidean algorithm for calculating the ap-
proximate GCD is presented in Section 3, where we will
see that we must treat polynomials very carefully. An
application to the above-mentioned kind of ill-con-
ditioned system of algebraic equations is described in
Section 4, and Section 5 gives several examples in which
ill-conditioned systems of equation are solved.

2. Approximate GCD of Multivariate Polynomials

The polynomials treated in this paper are included in
Clx, », - -, z], where C is the field of complex numbers
that may be represented by finite-precision floating-
point numbers, and x is treated as the main variable.
Let

F=fux"+ - +fo, fu %0,
G=g,x"+ - +go, gn %0,

where fie C[y, -, 2] and gie C[y, -, 2}, i=0, 1,
-+ -. The terms m, f,,, and f,,x™ are the degree, leading
coefficient, and leading term, respectively, of F and are
denoted as deg(F), lc(F), and It(F).

Definition 1 [maximum magnitude coefficient]. Let F be
a polynomial in C[x, y, ---, z]. The maximum
magnitude numerical coefficient of F is denoted as
mmc(F)./

Definition 2 [numbers of similar magnitude]. Let a and
b be numbers in C, with b#0. By a=0(b), we mean that
1/c=a/bl =c, where c is a positive number close to 1.
(Usually, “‘0’’ denotes Landau’s notation, and we are
using ‘‘0”’ in a somewhat different sense.)/

Definition 3 [normalization of polynomial]. Normaliza-
tion of the polynomial F is the scale transformation
F-F' =qF, ne C, so that mmc(F’')=1. We denote this
procedure as F' =Normalize(F)./

Definition 4 [approximate GCD of accuracy €]. Let € be
a small positive number, 0<e« 1. Let F(x, y, ---, 2)
and G(x, y, - - -, 2) be normalized polynomial in C[x, y,
- 2L If

F=DF+ AF,
G=DG+4G,

mmc(AF)=0(¢),
mmec(4G)=0(e), 2)

then D is called an approximately common divisor, of
accuracy &, of Fand G. In particular, if D is the largest-
degree polynomial among the approximately common
divisors of accuracy ¢, it is called the approximate
GCD, of accuracy ¢, of F and G, and is denoted as

D=gcd(F, G; &)./ 3)

Note 1. We usually normalize D. Below, if either F or
G is not normalized, we denote the approximate GCD
of F and G as gcd’'(F, G; ¢) instead of gcd(F, G; ¢).
Note 2. If we change the value of ¢, ged(F, G; ¢) may
also change. Furthermore, for a given value of ¢, the
number of approximate GCDs is usually not one but in-
finite. For example, if D=gcd(F, G; ¢€) then D+ 4D,
with 4D a polynomial such that mmc(4D)=0(¢), is
also an approximate GCD, of accuracy ¢, of F and G.
These complications do not cause any serious problems
in actual application.

Difinition 5 [content and primitive part]. Let F be a nor-
malized polynomial in C[x, y, ---, 2] and let ¢ be a
small positive number. Among the approximate
divisors of Fthat are included in C[y, - - -, z] and are of
accuracy &, the polynomial of largest degree w.r.t. y,
-+ -, z is called the content of F, of accuracy ¢, and is
denoted as cont(F; €). With cont(F;), F can be decom-
posed as

F=cont(F; e)F+ AF,

mmc(4F)=0@¢). (@)

Fis called the primitive part, of accuracy ¢, of F and is
denoted as pp(F; €)./

Note 1. Like gcd(F, G; ¢), cont(F; €) and pp(F; ¢) are
not unique unless cont(F; ¢)=1.

Note 2. Let F be defined in (1); then cont(F; ¢) can be
calculated as

ged’(fm, ged’ (frn-s, -

-, ged’ (i, fo; €); -5 €); €)
®)
where gcd’ is a GCD operation for unnormalized

polynomials. The GCD of unnormalized polynomials
and its accuracy will be explained in Section 3.

3. Euclidean Algorithm for Approximate GCD

The classical method of calculating the GCD of
polynomials F and G, with F, Ge Clx, y, -, z] and
deg(F)=deg(G), is the Euclidean algorithm. This
algorithm calculates the so-called polynomial re-
mainder sequence (PRS) (P,=F, P,=G, ---, P«#0,
Py =0) by the iteration formula

BiP;+=remainder(a;P;- 1, P), i=2,3, ---,
a;, fie Cly, -+, z]. 6)

According to the subresultant theory of PRS (1, 2], P,
i=3, can be represented by F, G, and their coefficients
as

294

...... Frjens2 X"V

fmfm—l"' j}+l on

In Gn-t v G2j-me2 X" NG

» D

Gn Gn-1" " Gi+1 x*G

where die C(y, -, 2), deg(P,-))=/+1, and fi=g,=0
if k<0. The determinant in Eq. (7) is called the j-th
order subresultant of Fand G, and |4;| =1 if we choose

o;=lc(P)**!, di=deg(P;-\)—deg(P), ®
A=l »n=1,
Bi=le(Pi-)yf, yi=le(Pio)™ yic 7%, iz3. (9)

This choice of a; and ; is called the subresultant-PRS
algorithm [1, 2].

The following theorem is crucial in calculating the ap-
proximate GCD:
Theorem 1. Let P, and P; be normalized polynomials in
Clx, y, -+, zl, and let ¢ be a small positive number,
O<e«]1. Let (Py, P, P, ---) be the subresultant PRS
and deg(P)=deg(gcd(P,, P;; €)); then

mmc(Py+1) = 0(e). (10)
(Proof) Putting D=gcd(P,, P,; €), we have
P,=DPB,+¢P;, mmc(P/)=0(1), i=1, 2.

Assuming that ¢ is a parameter, we consider P, and P,
to be polynomials in ¢ also. By assumption, we have

Prii(e—0)=0.

Since the subresultant representing Py, is a determi-
nant whose elements are linear in ¢, and P, and P; are
normalized, the above equation gives Eq. (10)./

Note that the reverse of Theorem 1 is not true, as
Example 1 shows below.

In actual computations, the magnitude of the
coefficients of the subresultant PRS may vary widely
even if the initial polynomials are normalized and have
no approximately common factor. In particular, such a
phenomenon occurs in abnormal PRS, which is defined
as follows:

Definition 6 [abnormal PRS]). Let (P,, P, P, ---) be a
PRS generated by (6). The PRS is called abnormal if
mmc(lc(P))) « mme(P;) for some i./

Example 1. Abnormal subresultant PRS.

Pi=(+ 1D+ (3 +1.001)x2+ 2y + 1),
P=(y' = DX’ +(y* = 1.001)x* +(y—3),
Py=(y’=1)P,—(y*+)P,
=(0.002p)x2+ (> +4y2 -3y +2),
Py=[(0.002y’)’P,— Qs P3] / (y*— 1)
=—(0.002y%)(y*+4y*—3y+2)x

M. OcHI, M. Noba and T. SasakK!

~(0.002y%)(y* +4y>— 3.003y +2.002),
where Q;=(0.002)%)()*— 1)x
+(0.002y%)(y*—1.001),
Ps=[(0.002y*(y’ +4y* =3y +2)’P,— Q,P.]
/(0.002y%)?
=)"+12.002y*+39.016y" — 1.98001y°+ 69.04y°
+ 168.05006y* — 159.02404)" + 102.00801y*—36y+8,
where Qu= —(0.002)?)(y* +4y*— 3y +2)x
+(0.O()2y2)(y’+4y2—3.003y+2.002)/

We see mmc(lc(Ps)) « mme(P3), which makes mmc (Ps)
=0(107") although ged (P, P;; 1073 =1./

Theorem 1 suggests that we may decide P,ocged(P,,
Py; €) if mmc(Pi+1)=0(¢). Example 1 shows, however
that this criterion is wrong if (P, Py, P, - - -) is chosen
to be the subresultant PRS, and we must calculate re-
mainders (and quotients) carefully. In the case of
univariate polynomials, [5] presents a clever normaliza-
tion of remainders so that mmc(P;.;) decreases
markedly compared with mmc(P) only when P;is an ap-
proximate divisor of P, and P,. We generalize the nor-
malization to the multivariate case.

Rule 1 [normalization of remainders in PRS). Let Fand
G be polynomials in Clx, y, - -, z], with deg(F)
=z deg(G). Let R and O be polynomials such that

R=Ic(G)"*' F—QG, deg(R)<deg(G),

where d=deg(F)—deg(G).
(R and O are called the pseudo-re_malinder and pseudo-
quotient, respectively, satisfying R, Qe Clx,y, ---,2])

In the division of 1¢(G)**'F by G, we calculate the re-
mainder R by normalizing R as

R=R/max{mmc[lc(G)!*], mmc(Q)}. an

The remainder R is called the normalized pseudo-re-
mainder of F and G, and is denoted as

R=prem’ (F/, G)./ (12)
By Rule 1, Theorem 1 is elaborated as follows:
Theorem 2. Let P,, P,, and ¢ be defined as in Theorem
1. Let PRS (P, P,, P;, - -) be calculated as
BiPiv,=prem’(P;_,, P), i=2,3, -,
where d;=deg(P;-,)—deg(P) and

p=y.=1,
Bi=Normalize[lc(P;-,)yé], i=3,
y,:lc(P,-_.)""‘y}__.””', lg 3.
Then, mmo(Py+)/mme(P;) decreases markedly only
when Py is an approximate divisor of lc(P)%*!P,_,.
In particular, if deg(P,)=deg(gcd(P), P;; €)) then
mmc(Pk+1)§0(6).
(Proof) F, G, and R in Rule 1 satisfy

Approximate Greatest Common Divisor of Multivariate Polynomials and Its Application. . . . 295

R=[c(G)**!/ pIF—1Q/ pG,

where p=max{mmc(lc(G)**', mmc(J)}. Since max
{mmc(c(G)**'/p), mmc(Q/p)}=1, we see that
mmc(R)=max{mmc(F), mmc(G)} unless cancellation
occurs. We have, however, mmc(R)<« max{mmc(F),
mme(G)} iff the main parts of Ic(G)**'Fand § G cancel
each other out. Note that P, and P, are polynomials
whose coefficients are linear in ¢ and that P(e—0)
o« gcd(P,(e—0), P,(¢—0)). Furthermore, the above for-
mulas for PRS show that mmc(P)=<0(1), i=1, 2, ---.
Hence, we see that mmc(Py+,)=0(g). /

Let us see how well Rule 1 works for PRS in Example
1.
Example 1’. Normalized PRS of Example 1.

P;=(0.002y)x*+(y*+4y*—3y+2)
Pi=—(0.002y°)(y’ +4y* =3y +2)x
—(0.002y%)(y* +4y*—3.003y +2.002),
P.=P,/max{(0.002)% 0.002 x 1.001}
= —(0.999y3)(y* +4y*—3y+2)x
—(0.999y%)(y*+4y?—3.003y+2.002).
We see that, although mmc(P,)=0(10"%) in Example 1,
mmc(P,) in Example 1’ is 0(4) on account of the nor-
malization of remainders by Rule 1. /
Let us give another example in which ged(P,, P»: €)

#constant.
Example 2. Normalized PRS with approx-GCD=x+1.

Pi=(x+D[(y—1)x+1]+0.001(x+y)
=(y—1)x2+(y+0.001)x+(1+0.001y),

P=(x+D[(y+Dx—1]1+0.001(yx—1)
=(y+1)x*+(1.001y)x—1.001,

Py=(y+ 1P —(y— P,
=(—0.001y%+2.002y+0.001)x
+(0.001y%+2.002y —0.001),

B,=(—0.001y%+2.002y +0.001)*P, — Qs P;
=0.000002)* +0.004002y* — 0.000002y* — 0.00801 -

3

P,=P,/max{(2.002)%, 1}
=0.0009985)° —0.0019985y + (small terms). /

Example 2 reveals another problem in calculating the
approximate GCD, that is, the appearance of many
small terms in PRS; in Example 2, P;~gcd(P,, Ps; €)
=x+1, while P; contains four small terms. If we in-
clude these small terms in the GCD, the approximate
GCD will become an ugly expression. Fortunately, the
approximate GCD is not unique, but is ambiguous up
to terms of magnitude 0(g). We therefore discard such
small terms in order to get approximate GCD’s in sim-
ple forms, by imposing the following rule:

Rule 2 [rounding of P,]. Let P be an element of PRS
such that P,=const X gcd(P,, P; €). Then, after nor-

malizing P, as mmc(P)=1, we round off the
coefficients of Py at 0(¢). (In the following, rounding is
made at 2¢.) This rounding procedure is denoted as
Roundoff (Py, 2¢). #

Example 2’. Application of Rule 2 to P; in Example 2.
Normalization of P; gives

P}=P;/2.002
=(—0.00049y* + y +0.00049)x
+(0.00049y2 + y — 0.00049).

We see that Py(x)=0(e(x)) with £=10"3, and therefore
we round off the coefficients of Pj at 2e=2x 1073, ob-
taining Py =Roundoff(P;, 2 x 10~ *)=yx+y. This gives

gcd(Py, Py: 1073)=pp(P{; 107 =x+1. /

Now, we state a Euclidean algorithm for calculating
the approximate GCD. Note that, in the actual com-
putation, the value of ¢ is not known in advance but is
usually determined by the PRS calculation. Consider-
ing this, as well as Rules 1 and 2, we modify the conven-
tional Euclidean algorithm (the subresultant PRS
algorithm) as follows:

Algorithm Approx-GCD(P,, P,, &)

Input: normalized polynomials P, and P, in Clx, y,

-+, 2, with deg(Py) z deg(P»),
a small positive number &, 0< gy« 1;

Output: D=gcd(P,, P3; €¢) and ¢, where deg(D) is the
largest possible number satisfying 0 <é& =<eéo;
let di=deg(Py) —deg(Pi-1), below;

Step 1: k<2; y«1; Py—prem’(P,, P);

Step 2: if mmc(Py+) <& then goto Step 3;

if deg(Py+1)=0 then return (1, &);
ke—k+1; plc(Pe-)%y ~%;
B<Normalize(lc(Px-)y*-);
Piii—prem’(Pe-1, Pi)/ B; goto Step 2;
Step 3: e~mmc(Py+1); Pe—Normalize(Py);
Pi.+—Roundoff(Py, 2¢);

Step 4: D’ < pp(Py; €);

C\+<cont(Py; €); Co—cont(P,; €);
return (D’ X gcd(Cy, Cs; €), €) /

Note. In the calculation of pp and cont in Step 4, we

cannot apply Approx-GCD recursively, because some

coefficients of P, and P, may be unnormalized.

Let us now consider the calculation of cont(P; ¢) and
pp(P; &), where we assume that P is normalized, i.e.
mmc(P)=1, and the value of ¢ is given. Let cont(P; &)
=c, ce Cly, -, z], mmc(c)=1. Then ¢ must be
calculated so that it satisfies

P(Xa}’,"‘,z)=c(y, "',Z)P.(X,y, ...,z)
+4Px, y, -, 2), 13
mmc(4P)=0(¢).

This means that, for every pair (f, g), where fand g are
two different coefficients of P, we must calculate ¢ so
that

f=cf+A4f, mmc(Af)=0(e),

296

g=cj+A4g, mmc(dg)=0(e). (14)

Using the algorithm Approx-GCD, we can calculate ¢
to satisfy Eq. (14) as follows. Let mmc(f)=a and
mmc(g)=p and assume that o= . Since P is normal-
ized, we may further assume that 1 == . If <€ then
we can choose ¢=f, so we consider only the case in
which f>¢. Putting f=f/c and g’'=g/B, we first
calculate ¢’ to satisfy

mmc(c’)=1,
f=cf+afr, mmcAf)=0e/p),
g'=c'§’+4g’, mmc(dg’) =0/ B).

The vaku of ¢’ satisfying these equations is calculated
by Approx-GCD(f", g’, &/8). We see that the second
equation in (14) is satisfied by c=c¢’ or c=(any approx-
imate divisor of ¢’). Therefore, we can calculate ¢ as

(c, €')=Approx-GCD(f/a, ¢’, &/ a).

The above discussion is summarized in the following
algorithm, which may be used to calculate cont.
Algorithm Approx-GCD'(f, g, €)

Input: f, ge [y, - - -, 2} such that mmc(f) =1, mme(g)
=1,
a small positive number ¢, 0<e«1;
Output: c=gecd(f, g; €’), where deg(c) is the largest
possible number satisfying 0<¢’ <¢;

if mmc(g) >mmc(f) then return Approx-GCD’(g, f,
)

if mmc(g)=<¢ then return f;

(¢’, &")=Approx-GCD(f/ mme(f), g/ mmc(g),

&/ mme(g));

if ¢’=1 then return 1;

(¢, &’)—Approx-GCD(f/ mmc(f), ¢’, &€/ mmc(g))

return c. /

Example 3. Approximate GCD of unnormalized
polynomials:

f=(+2(y+z+0.01)+0.001(y—2z),

mmc(f)=2.0,

g=0.1(y+2)*+0.001 (y— 1),

e=2%x1073.

(¢’, e')=Approx-GCD(f/2.0, g/0.2, £/0.2)

=(*/2+yz+22/2, 0.01).
(c, £')=Approx-GCD(f/2.0, ¢’, €/2.0)
=(y+z, 0.01). 7/

Using cont(P; €), we can calculate pp(P; &) easily.
However, it should be noted that P usually contains
small terms, as the above examples show. Hence,
Q=P/cont(P; ¢) will also contain small terms. We
want to discard such small terms so as to obtain pp(P;
€) in a simple form. We therefore impose the following
rule:

Rule 3. Given normalized polynomials F and G such
that F=QG +AF,
mmc(4F)=0(¢), we calculate Q as

Q=Roundoff(F/ G, 2¢). #

Thus, given Fand Gin C[x, y, - - -, 2], we decompose
F and G as in (2) in the following way:

mme(g)=0.2,

M. OcHi, M. Nopa and T. SAsAk1

Algorithm Decompose(F, G, &)
Input: normalized polynomials Fand Gin Clx, y, - -,
zl,
a small positive number &, 0<é&<« 1;
Output: (F, AF, G, AG) such that
F=DF+AF, mmc(4F)=0(¢),
G=DG+A4G, mmc(4G)=0(s);
(D, &)« Approx-GCD(F, G, &);
if D=1 then return (F, 0, G, 0);
F—Roundoff(F/ D, 2¢); AF—F-DF;
G+ Roundofi(G/ D, 2¢); AG+G-DG;
return (F, AF, G, AG). #

4. A kind of Ill-Conditioned System of Equations

Let us now apply the approximate GCD calculation
to solving an ill-conditioned system of algebraic equa-
tions, such as the one given in section 1. Since the
system may be given in an arbitrary form, we first con-
sider how to regularize it.

Definition 7 [regular set of polynomials]. Let F;, i=1,
---, r, be polynomialsin C[x, y, - - -, z] and let F;=2; f;
(y, -+, 2)x/. The set {F,, - -+, F.} is called regular if

mmc(lc(F)=0(1), i=1, ---, r, 15)
max{mmc(f)li=1, - -, r, j=0, -+ -,
deg(F)}=0(1) or 0. #

Any set of polynomials {F, ---, F} can be
transformed into a regular set {Fj, ---, F/} by the
transformation

F'(x,y, -, enFx, y, -+, 2, i=1, -, r,

(16)

where #, i=1, ---, r, and ¢ are suitably chosen
numbers. We determine the values of »; and ¢ as
follows:

Algorithm Regularize({F,, - -, F.})

Input: a set of polynomials {F,, -- -, F,}e Clx, y, - -,

2}
Output: regular set {F}, - -, F/} by the transformation
(16);
for i=1, ---, r, determine &; so that

if Ic(F))=F; then £+0
else mmc[lc(F;(& x,
—ItFi&x, - N
Eemax(&y, -, &) if =0 then £« 1;
for i=1, ---, r, determine #; so that
mme[n; lc(Fi(éx, - -)]=1;
return {n Fi(Ex, -+ -), -, nF(Ex,)}
Example 4. Regularization of {Fi, F»}.
Fi=(y*+1)x2+ (5y—3)x +(100y*+ 50y + 3),
FE=Qy—D)x2+(y+2x+(y*+y+1).
The &, and &; in the algorithm Regularize are deter-
mined as
Fi(&ix, y): §=max{5¢,, 100} —¢,=10,
Fx(&x, y): 28=max{2&, 1} -&=1.
Hence, ¢é=max{¢&,, &}=10 and we find #,=0.01,
7.=0.005. Thus, we obtain

o NI=mmc[Fi(& x,)

Approximate Greatest Common Divisor of Multivariate Polynomials and Its Application. . . . 297

Fi=(?+1D)x*+(0.5r—0.3)x+ ()*+0.5y+0.03),

F3=(y—0.5)x*+(0.05y+0.01)x+0.005(y*+y+1).
V4

Before discussing the general case, we consider a
system of two equation {F=0, G=0}, where we
assume that {F, G} is regular and satisfies

F=DF+AF, mmc(4F)=0(¢),
G=DG+AG, mmc(4G)=0(¢). an

Suppose that we have already decomposed F and G as
above, and that we wish to consider the system {F=0,
H=0}, where

H=FG—~GF=GAF—-FAG. (18)

Since H=FG— GF= — GF when F=0, we can decom-
pose the system {F=0, H=0} as

{F=0, H=0}={F=0, G=0}V{F=0, F=0}.

Hence, the system {F=0, H=0} contains all the roots
of the original system {F=0, G=0} and the roots of an
extra system {F=0, F=0}. Although the system {F=0,
G=0} is ill-conditioned for numerical methods, as we
have mentioned in Section 1, we may reasonably expect
the system [F=0, H=0} to be no more ill-conditioned
than [F=0, G=0}, because F and G have no approx-
imately common factor.

The above transformation of an ill-conditioned
system gives us a useful method of determining good ap-
proximations of the roots; in solving a system of
algebraic equations by Newton’s iteration method, giv-
ing good initial values of the roots is quite important
but not easy in practice, particularly for ill-conditioned
systems.

We assume that the system {F=0, H=0} is no more
ill-conditioned than {F=0, G=0}. Then, we may deter-
mine the approximations of the roots of the system
{F=0, G=0} by neglecting AF in F, that is, by setting
F=DF. This gives us

{DF=0, H=0}={D=0, H=0}Vv{F=0, H=0}.
Since H=FG— GF=FG when F=0, we have
{F=0, H=0}={F=0, F=0}Vv{F=0, G=0}.

The system {F=0, F=0} is irrelevant to the system
{F=0, G=0} as we have noted above, and therefore we
discard it. Thus, we determine the approximations of
the roots by solving

{D=0, H=0} and {F=0, G=0}. (19)

The solutions of the first system in (19) correspond to
the roots of the original system that are very difficult to
obtain by conventional numerical methods, while the
solutions of the second system correspond to the roots
that can be obtained by conventional methods without
much difficulty.

It should be noted that the above method does not
always give the approximations of all the roots. For ex-

ample, consider the system {F,=0, F,=0}, where

Fi(x, y)=x(y—1)—0.01(y—1),
Fy(x, »)=xy(y—1)+0.01y(y+0.001x).

We see that (x=—1000, y—1) is a root of this system.
Using the algorithm Decompose, we find

Fi=x(y—DF,+4F,
F=x(y—1)F;+4F,

where £\, AF,, £, AF, are given by
Fi=y—1, AF,=-0.01(y—1),
F=y, 4F,=0.01y(y+0.001x).

According to the above scheme, the approximations of
the roots are determined by {£,=0, F,=0} and {D=0,
H=0}, where

D=x(y—-1),
=y(y—1)(y+0.001x+1).

The system {F,=0, F,=0} has no root, and [D=0,

H=0} has an infinite number of roots on the plane

y=1. This means that the system {D=0, H=0} does

not give good approximations of the root (x= — 1000,

y=1). The method mentioned above will, however, give

good approximations for roots whose magnitudes are
less than 0(1), because we may reasonably ignore AF in

F in this case.

We now consider a system of r equations {F,=0, -- -,
F,=0}, where we assume that {F\, ---, F,} is regular
and that the system is ill-conditioned in the sense men-
tioned in Section 1, namely that for some i and j, i#}/,
F; and F; have an approximate GCD D;;, D;;# constant.
Generalizing the method mentioned above, we
transform {F), - - -, F,} in the following way. Using Fi,
we first transform F;, - -+, F,to F3, - - -, F, successive-
ly, as mentioned above. Then, using F;, we transform
F;, ---, F;, and so on.

Algorithm Trans-Eqs({F,, - - -, F.}, &)

Input: regular set {F,, -+, F,}e Clx, y, -+, 2],

a small positive number &, 0< g« 1;

Output: set of polynomials {Fi, - - -, F/}, where
{F{=0, ---, F/=0} will be mostly well-con-
ditioned (F! and F/, 1 i#j=<r, do not have an
approximately common factor of accuracy &o);

for i=1, ---, r—1 do begin
for j=i+1, ---, r do begin
(F, AF, G, AG)—Decompose(F;, F;, &);
If AF#0 then F;«Normalize (GAF—FAG)}
end;
end;
return {Fy, ---, F.}. /

The system {F{=0, - - -, F/ =0} calculated by Trans-
Eqs may still be ill-conditioned in the sense mentioned
in Section 1, but we may well expect that it is mostly
well-conditioned. If, however, the transformed system
is not well-conditioned, we can apply Trans-Eqs fur-
ther.

298

5. Examples of Ill-Conditioned Algebraic Systems

Let us see how well the method described in Section 4
works. We show two examples, one in C[x, y] and the
other in C[x, y, z]. For each system, we calculate the
roots by the following three methods:

Method 1. A mostly algebraic method, described in Ref.
3. We derive a univariate polynomial G(x) by
calculating the Grobner basis of the ideal (F, - - -, F)).
Then, we solve G(x)=0 by subdividing the two-dimen-
sional space of a complex variable x. The roots of G(x)
=0 are substituted into the other elements of the
Grobner basis to determine the roots of {F\=0, -,
F,=0}. Since this method can calculate the roots quite
accurately (we calculate them to 15 significant digits
below), we use this method to check the correctness of
numerical methods.

Method I1. A numeric method using the conventional
form of Newton’s iteration. Determination of the in-
itial values for the iterative calculation will be explained
in each example below.

Method IIl. A numeric-algebraic method using our
technique for transforming an ill-conditioned system to
a well-conditioned one. The initial values of the roots
for the iterative calculation are determined as explained
in Section 4.

Example S.

Fi=(x+y?—1)(xy—0.25)+0.0001xy,
=(x*+y*— D(x—y)—0.00001(x+1).
Using the algorithm Decompose given in Section 3, we
can decompose F; and F> as
Fy=DF\+AF,, F;=DF,+ AF,,
D=x*+y*—1,
Fi=xy—0.25, AF,=0.000lxy,
Fo=x—y, AF,=—0.00001(x+1).
Hence,
=Normalize(F,AF, — F\AFy)
=Normalize[0.0001(1.1x2y —xy*+0.1xy
—0.025x—0.025)}]
=(l. 1%y —xp?*+0.1xy—0.025x—0.025)/ 1.1.

The initial values for Method II are determined by
solving the following systems of equations:

{F~|=0, Fz=0}, {D=0, F1=0}, {D=0, Fz=0}-
Note that the first system gives the same initial values as
those for Method 111, and that the roots of the second
and the third systems make F,—A4F, and F,—~A4F,.

Hence, the initial values are quite good in the practical
sense.

Example 6.
=(x?+y*+z2— 1)(x—y—2)—0.000001(x+z+1),

M. OcHi, M. Noba and T. SAsakl
=(x?+y?+ 22— 1)(x+y+z+0.5)—0.000001(x+ 1),
=+ y*+ 22— 1)(xyz—0.25) — 0.000001 xyz.

We can decompose Fi, F,, and F; as

=DF\+AF,, F,=DF;+ AF,, F,=DF;+ AF,,
D=x*+y*+7*—1,
Fi=x—y—z, AF,=-0.000001(x+2z+1),
F2 =x+y+z+0.5, AF,=—0.000001(x+ 1),
Fy=xyz—0.25, AF;=0.000001xyz.
Hence,
F;=Normalize(F,AF, — F\AFy)
=(—2y+3z+0.5)x—(p+2)(z+2)

—0.5z—0.5)/2,
Fi=Normalize(F;AF, — F.AF)
=2xYyz+(—y*2+yz—0.25)x—0.25z—0.25)/ 2.
Instead of the original system, we may solve
{F1=0, F;=0, F;=0}, 20)

which contains all the roots of the original system. Put-
ting AF,=0, we approximate this system as

{F\=, F;=0, F;=0}={F,D=0, F;=0, F;=0}
={F,=0, F;=0, F;=0}v{D=0, F;=0, F;=0}
Using the relation F{=F;F,— F,F;, j=2, 3, we have
{F,=0, ;;=0, F{=0}={F,=0, F,F,=0, F;\F,=0}.

The r.h.s. system can be split into four subsystems,
three of which are irrelevant to the original system.
Hence, we determine the initial values of the roots by
solving

{F] 0, Fz—o F3 0}v{D=0, F;=0, F;=0}. (21)

We use two types of initial values for Method I1. The
first type consists of the same initial values as those for
Method I11, which are rough solutions of the systems in
(21). The second type consists of random numbers
distributed in the real domain —1=<x, y, z=1.

The results of root calculation are shown in Tables 1
and 2, where no result is given for the calculation of Ex-
ample 6 by Method I. We found that calculation of the
Grobner basis of Example 6 took too many hours, so
we gave up attempting to solve Example 6 by Method I.
As this experience shows, algebraic methods often take
too long to be used in solving practical problems. Let us
explain Tables 1 and 2 separately.

Table 1 shows that the problem is very ill-conditioned
for the conventional numeric method (Method II),
although some roots are not very hard to calculate
(roots corresponding to the solutions of {F,=0, F,=0}).
In fact, Method II missed some roots (those of Nos. §
and 6), and the accuracy of the roots around D=0 is
not good in spite of so many iterations. On the other
hand, Method III calculated every root quite easily with

Approximate Greatest Common Divisor of Multivariate Polynomials and Its Application. . . . 299

Table 1 Results of root calculation by three methods. Method 1 is
algebraic (to check the correctness of the roots calculated
by Methods I and III); Method II is numeric, using the
conventional form of Newton’s method, and Method 11
is algebraic-numeric, using our technique for transform-
ing an ill-conditioned system to well-conditioned one.
The numbers in parentheses in the right-hand columns
for Methods 11 and III show the numbers of iterations
before convergence. The calculations were done by using
Maple on a SUN-4.

Method I Method I Method W
0.9990732 | 0.9990724 ! 0.9990732 !
0.0432840 | 0.0433031 : (19) | 0.0432840 : (2)
-0.0262280 | -0.0262224 -0.0262280 !
0.9996512 | 0.9996513 | (17) | 0.9998512 & (2)
-1.0000000 | -1.0000000 : -1.0000000 :
0.0 -3.3942D-5 | (17) | 3.428D-22 | (1)
-0.0227383 | -0.0227343 | -0.0227384 .
-0.9997464 | -0.9997465 | (18) | -0.9997464 | (2)
0.6645091 : 0.6645091 :
0.7471453 : 0.7471453 | (3)
-0.7141434 : -0.7141434 |
-0.6998564 : -0.6998564 | (3)
0.5000350 | 0.5000350 0.5000350 !
0.5000650 | 0.5000650 | (3) | 0.5000650 : (2)
-0.5000550 | -0.5000550 -0.5000550 |
-0.5000450 | -0.5000450 1 (2) | -0.5000450 : (2)
549.9 sec 0.352 sec 122.89 sec

good accuracy. We show the computation elapsed times
in Table 1. Compared with Method I, Method III took
a considerable time, most of which was spent in
calculating an approximate GCD. As we will note in the
next section, our current GCD algorithm is quite in-
efficient, and we have a good chance of reducing the
computation elapsed time of Method III by employing
a better GCD algorithm.

We show only the results of real root calculation in
Table 2. The table shows the usefulness of our method
even more clearly. Solving (21) roughly, we obtain 7
real solutions. Among them, five solutions are shown in
Table 2. Other two are

(x, ¥, 2)=(—0.2113, 0.5773, —0.7886)
and
(—0.7886, —0.5773, —0.2113).

Solving (20) by Newton’s method with these roots as in-
itial approximations, we obtain the following solutions:

ex—1: (—0.2113247, 0.5773506, —0.7886753)

and

Table 2 Results of real root calculation by Methods II and Il
(Method 1 did not terminate within a reasonable time).
Two types of initial values are used for Method I1: values
of the first kind are determined by Eq. (21) and are the
same as those for Method 111, and the results are shown
in the left three columns for Method 11; values of the sec-
ond kind are chosen randomly, and the results are shown
in the right two columns for Method 1I. We have chosen
100 sets of random numbers as initial values of (x, y, 2)
and performed Newton's iteration. Among them, 31
cases converged to the No. 1 root with an average of
24.90 iterations, 36 cases converged to the No. 2 root,
with an average of 29.53 iterations, and so on. However,
32 cases did not converge within 100 iterations. The
numbers in parentheses show the (average) numbers of
iterations before convergence.

Method I Method I
No. root initial=Eq.(21) | initial = random
L ST [omemmpenmmnnees final
initial . iter |trials. iter viter
value 100 ' (average) value :
1:x= | ~0.2500 : -0.2499989
ty =) -11327: (3 31 (24.90) -1.1327841 [(2)
vz = 0.8827 - . 0.8827837
2ix= | -0.2600 | : -0.2499998 :
iy= 0.8827 ¢ (3) | 36 i (29.59 0.8827823 . (2)
iz= | -1.1327 ! : -1.1327818 |
3ix= | -1.0000: | ; -1.0000000
ly = 0.0000: (1) | 1 : (76.00 3.3951D-9 :(1)
2= 0.0000 | ; | 2.779D-17 |
: : | . :
4'x= | -0.8639 | : -0.8639101
ly= | -0.4941: as | o - 1-0.4941624 (2
iz= | -0.0972: | | -9.7276D-2 |
5ix= | -0.5239 ' -0.5230150
'y= | 04336 (& | o — [=0.4336388 ' (2)
iz= | -0.7331 . i (-0.7331236 :

Table 3 Final check of the roots of Eq. (20): Substitute each root
into the original system {F,=0, F,=0, F,=0} (and F,, F,
and F,). Roots ex-1 and ex-2 are not the roots of the
original system.

Residuals after substitution of 'roots' to

RoOt [---m-mmmmmmmmmmm e
No. F1 Fz Fs 3 Fa Fa
1 0.59D-15 0.52D-15 -0.62D-15 0.14D-56 0.66D-6 -0.22D-6
2 0.93D-15 -0.46D-16 -0.63D-15 0.34D-6 0.66D~6 -0.22D-6
3 -0.26D-16 -0.13D-16 -0.66D-17 -1.0 -0.5 -0.25
4 0.31D-15 0.11D-14 0.34D-15 -0.2724 -0.9553 -0.2195

5 -0.13D-14 0.25D-14 0.89D-15 0.6428 -~0.1190 0.6428
ex-1 | -0.37D-21 -0.74D-6 0.17D-15 0.16D-14 -1.077 -0.3462
ex-2 | -0.156D~20 0.88D-7 0.67D-15 0.2 D-14 -1.077 -0.3462

ex—2: (—0.7886750, —0.5773501, —0.2113249).

As mentioned above, we must check each root of (21)
whether or not it is also a root of the original system
{F,=0, F,=0, F;=0}. The results of substitutions of
the roots obtained into the original system are shown in
Table 3. It is apparent that the roots No. 1 to No. §

300

satisfy the original system but the roots ex-1 and ex-2 do
not. As we can see from the results for Method II, it is
very hard to obtain roots No. 3 to No. 5 by conven-
tional Newton’s iteration with random number initial
values. Thus, with conventional Newton’s method,
finding all the roots is extremely difficult if the system is
ill-conditioned. On the other hand, with our Method
111, even such ill-conditioned systems as Examples 5
and 6 are easily solved. This means also that our
method gives very good initial values for the iteration.

6. Final Remarks

The system of algebraic equations considered in this
paper is of a special kind and does not appear very
frequently in practical problems. However, we may
claim to have clearly demonstrated the usefulness of the
approximate GCD operation for multivariate
polynomials, and that of approximate algebrain opera-
tions in general.

In order to handle more general kinds of ill-condition-
ed systems of algebraic equations than that considered
in this paper, we are now investigating approximate
algebraic computation more widely in other algebraic
operations.

For the computation of the multivariate polynomial

M. OcHi, M. NopA and T. SAsaki

GCD, the Euclidean algorithm that we employed in this
paper is much less efficient than the EZ GCD algorithm
[4] and the PC-PRS GCD algorithm [7]. If we can use
such efficient GCD algorithms to calculate the approx-
imate GCD efficiently, it will become possible to handle
large systems of algebraic equations.

Reference

1. BrowN, W. S. and Traus, J. F. On Euclid’s Algorithm and the
Theory of Subresultants, J. ACM, 18 (1971), 505-514.

2, CoLLins, G. E. Subresultants and Reduced Polynomial Re-
mainder Sequences, J. ACM, 14 (1967), 128-142.

3. Davenport, J. H., Siret, Y. and TouNier, E. Computer
Algebra, Academic Press (1988), 95-122.

4., MosEks, J. and Yun, D. Y. Y. The EZ GCD Algorithm, Proc.
ACM Nat. Conf. (1973), 159-166.

§. Sasaki, T. and Nopa, M. T. Approximate Square-free Decom-
position and Root-finding of Ill-conditioned Algebraic Equations, J.
Int. Proces. 12 (1989), 159-168.

6. Sasakl, T. and Sasaki, M. Analysis of Accuracy Decreasing in
Polynomial Remainder Sequence with Floating-point Number
Coefficients, J. Inf. Proces. 12 (1989), 394-403.

7. Sasakl, T. and Svzuki, M. Three New Algorithms for
Multivariate Polynomial GCD, J. Symb. Comp., 12 (1991), in press.
8. SCHONHAGE, A. Quasi-GCD Computations, J. Complexity, 1
(1985), 118-137.

9. TaNABE, K. Centered Newton Method for Solving a System of
Nonlinear Equations: Global Method, preprint of Inst. Statistical
Math. (1988).

(Received November 8, 1989)

