Invited Paper

237

Improving Software Productivity
with Upper CASE Tools

KivosH1 AGusa*

Since software engineering is not merely a set of programming techniques, a new software engineering
method should be properly evaluated and formalized before it is adopted. One recent topic in software engineer-
ing, process programming, is based on the assumption that software development can be formalized and de-
scribed precisely. Without formalization, a verification method cannot guarantee that the proper work is done
in a certain phase of software development. Nevertheless, human factors still remain important, especially in
the early phases. Upstream CASE tools are designed for close communication among people doing related
work. Technology designed to support human communication is called groupware. Although there is no
definite model of human interaction, many groupware sysems have been proposed. High-performance worksta-
tions make it possible to process voices, images, and even movies. A multi-media environment contributes to giv-
ing deep sight of software as well as close communication. This paper reports Japanese research/development
activities related to these current directions, focusing on upstream CASE tools.

1. Introduction

In the 20-year history of software engineering, the for-
malization of software processes has been a central
issue. Software engineering aims to make the software
development process an object of engineeering.
Engineering means

‘““the application of science and mathematics by
which the properties of matter and the sources of
energy in nature are made useful to human beings
in structures, machines, products, systems, and
processes.”’ [15]

Thus it is important to find the field of science or
mathematics on which software engineering is based.
The downstream of the software life cycle, namely, pro-
gramming, is being researched and examined as an
application of mathematics. In future, we can expect
several methods to support and validate activities in pro-
gramming, and even automatic systems for it.

However, such a method for downstream support
assumes that it is possible to capture and describe users
requirements correctly. Is this a feasible assumption?
The difficulty of software development will not be
solved simply by effective programming. The following
precepts should be observed in future software engineer-
ing [5]):

* portray systems realistically.
—View systems as systems (not as collections of
subsystems).

*Nagoya University.

Journal of Information Processing, Vol. 14, No. 3, 1991

—Recognize change as intrinsic.

+ Study and preserve software artifacts.

Since a software system, especially in the case of an ap-
plication program, has an interface with the end user,
discernment is necessary in judging the real re-
quirements of a wide variety of users. This may be a
problem of cognitive science and may require the help
of psychologists. Moreover, the analytical approach,
which is a basis of science, may be inadequate and may
need to be replaced with a philosophical approach.
Nevertheless, we cannot wait until the results of
research on human beings can provide us with fully
dependable requirements before making software
systems.

Our efforts to improve the productivity of software
have borne fruit although we have found few fundamen-
tal principles. A software system is designed with ap-
plication know-how as well as knowledge of hardware
components. By accumulating experience, we have im-
proved the productivity step by step. An example is an
application-specific language called 4GL (fourth genera-
tion language). It is said that Japan has a productivity
advantage in manufacturing industrial products. This
achieved by collecting proposals from actual workers
and acting on them, and is known as quality control
(QQC) circle activity. To improve productivity, it is
necessary for the people involved to reach agreement on
the key to creating high-quality products. Since soft-
ware engineering involves a management view, a soft-
ware factory has the potential for success in Japan.

Although many remarkable ideas, methods, and
tools originate outside Japan, it is not always possible
to adopt them as they are. Especially in the case of sup-

238

port for upstream phases, there is a problem of
language in addition to differences of culture. A natural
(or natural-like) language interface is desirable. So that
a user can feel comfortable using tools. Although the
translation of terms itself is not so difficult, there are
problems in graphical user interfaces, since they are usu-
ally tuned in a sophisticated manner. The sizes of
Japanese fonts are larger than those of alphannumeric
fonts. The display also needs to be redesigned.
Moreover, the way of guiding the user may also need to
be redesigned to match the Japanese way of thinking.
For these reasons, many Japanese manufactures have
developed their own tools rather than imported them
from abroad. They gather and amalgamate their tools
into an integrated software environment.

A supporting upstream environment functions to
enhance collaboration among the engineers involved in
a project. Groupware is a software system that is uti-
lized for collaborative work. A target system that re-
quires a software engineering approach is not small
enough to be implemented by a single engineer, but
needs a lot of manpower. Computer Supported
Cooperative Work is a very hot topic. A watchful eye
should be kept on CSCW, since one of its most suitable
applications seems to be software development.

In the early period of software engineering history,
much research was done on the problem of the lack of
drawing methods for software systems. In electronic cir-
cuit design, building design, and piping design, there
are established ways of drawing design results, that is,
blue prints, with which almost all engineers can imagine
the target system. Since the software is not static and is
abstract, it is very difficult to prepare a good and
common schematic description. The visualization of
invisible software is a worth-while task improving
productivity.

Many other systems superior to the ones described in
this paper may exist and be in use. This paper covers
only systems that have appeared in the last few years.
The rather detailed descriptions occupy a good deal of
space in the case of the system developed by our
research group.

2. Formal Methods

It is said that a formal specification with formal
verifications leads to reliable development. However,
some people claim that a formal and rigorous approach
can be applied only in academic research or in safety-
critical systems where cost issues can be neglected. Soft-
ware engineering is not a mere programming tool but a
support for a well-defined and well-recognized process
of software development. Once some process is defined
precisely, it is an object to be automated. Since the
main aim of software engineering is the improvement of
software productivity, formalization is indispensable
for process definition.

The automation-based paradigm proposed for soft-

K. AGgusa

ware technology in the *90s is based on the following
model for creating a concrete source program from in-
formal requirements [4]:

* Formal specification

* Prototyping standard

» Specification as the prototype

+ Validstion of prototype against intent

* Machine-aided implementation

* Elimination of testing

» Maintenance of formal specification

* Automatic documentation of development

* Maintenance by replay.

This model is focused on a formal specification that
bridges the human-oriented process, namely, re-
quirements analysis, and the mechanical (then
automatic) process. Thus, formalization is a key to the
success of software development.

2.1 Formal Approach to Software Development

The many paradigms proposed for solving problems
such as incomplete requirement specification and lack
of consistency checking between specification and pro-
duct include the prototype paradigm, the operational
specification paradigm, and the formal specification
paradigm. The formal specifications are categorized
into operational, algebraic, and logical approaches, cor-
responding to the imperative model, the functional
model, and the logic model of programming, respec-
tively.

Abstraction, localization, and information hiding are
key concepts in software engineering. Modules,
abstract data types, and classes are realizations of these
concepts. Abstract data types have been well researched
as a specification method that can be executed with term
rewriting systems [12, 24].

The formal approach is not limited to university
research. Joint System Development Corp. has carried
out the Formal Approach to Software Environment
Technology (FASET) project with the support of the
Information-technology Promotion Agency of Japan
[10]. The tools developed in this project are

* ASPELA (Algebraic Specification Language)

* FDSS (Functional = Description Supporting
System)
* DMCASE (Design Method based on Concepts
CASE tool)
* STEPERS (Stepwise-Refinement Supporting
tool)

* Graphtalk .

*» COORST (Communication Oriented Supporting

tool)

+ SPECPARTNER (Specification Partner).

These tools support a process for extracting formal
specifications from informal requirements, which has
been as the most important phase in future software
development.

Improving Software Productivity with Upper CASE Tools

2.2 Formal Model of Specification

We have developed a composite requirement model,
named the Requirements Frame. A requirement descrip-
tion based on the Requirements Frame can be
translated into another type of description based on
several different models, if required. It covers the data
flow model, the control flow model, the relational
model, and the predicate logic model. Derivation of
descriptions is needed for the investigation of correct-
ness, inconsistency, completeness, maintainability, and
so on. It helps to improve the readability of descrip-
tions by adopting the most appropriate form for a par-
ticular engineer [1, 2, 22].

2.2.1 Requirements Model

Let us assume certain requirements for a library
system. To simplify the problem, we focus on the
requirements for retrieving books. That is,

There exist human-type users, cards for retrieving
books, and identifier numbers for all books. Cards
and id numbers are data-type objects. Cards are
classified into authors-cards, which are sorted by
author’s name in alphabetical order, and title-cards,
which are sorted by title. Users can retrieve books by
means of these cards.

A requirement definer first identifies objects (nouns)
and object types (attributes) in a target system. He then
defines operations among objects (verbs) and roles of
the operations (cases), and constructs sentences bout re-
quirements. ‘‘Cases’’ mean concepts about an agent, an
object, or a goal of the operation [25]. A particular re-
quirement item may be defined in several sentences.

This explanation shows that a requirement statement
includes nouns and verbs as its components and that ob-
jects have roles as relations among the components.
From a broader viewpoint, a requirement description
includes several requirement statements as its com-
ponents. From a narrower viewpoint, a noun has a
type.

2.2.2 Requirements Frame

Our requirement model has been developed to allow
the above structures to be represented easily. It involves
several kinds of frame. The first is the Noun Frame,
whose components are nouns and their types. Table 1
shows the Noun types provided to specify file-oriented
software requirements.

A new noun appearing in a requirement description
will be classified into one of the types.

The second type of frame is the Case Frame, whose
components are nouns and verbs and cases. We provide
seven different cases: agent, goal, instrument, key, ob-
ject, operation, and source. We also provide 16
different concepts as verbs, including data flow, control
flow, data creation, file manipulation, data com-
parison, and structure of data/file/function. Several
verbs can be used to represent each of these concepts.
For example, to specify the verb type darta flow, we use

239

Table 1 Noun types in the Noun Frame,

Type meaning

human active object external to the target system
function active object internal to the target system
file passive object containing a number of instances of
an information set
data passive object containing a single information item

control passive object for specifying control transition
device passive object for specifying an instrument

source

verb cases entity type
DFLOW agent data
source function
or human
goal function
| or human
I
}
| instrument device

If the type of ‘‘source’’ is human or the type of ‘‘goal’’ is human,
then the ““instrument’’ case is indispensable; otherwise ‘‘instrument”’’
should not be assigned.

Fig. 1 Case Frame of Verb, DFLOW.

input, output, print out, display, send, and so on. A re-
quirement definer can use any verb as long as it can be
categorized in one of the 16 concepts provided.

The frame defines the case structure of a verb. For ex-
ample, a data flow verb has agent, source, goal, and in-
strument cases. The agent case corresponds to a data
item that is transferred from source case object to goal
case object. Thus, an object assigned to the agent case
should be a data-type object. An object in the source or
goal case should be either a human- or a function-type
object. If and only if a human-type object is assigned to
the source or goal case, some instrument should be
specified as a device case. This is illustrated in Fig. 1.

The Case Frame detects illegal usages of data and
missing cases.

The third type of frame is the Function Frame, whose
components are requirement sentences. Let us consider
a function, ‘‘output the result of retrieval,”” which con-
sists of two sub-functions: file retrieval and data out-
put. These two sub-functions are connected to each
other by the fact that the same data-type object is used
in the goal case of file retrieval and in the agent case of
data output. By providing ‘‘output the result of
retrieval’’ as an indispensable function, we can detect
an error when this function is absent. In the Function

240

Frame, there are ten essential functions, including data
processing, data input, data output, file definition, and
file manipulation [21]. We can check whether any of
them is missing in a certain requirements description.

3. Upstream CASE tools

CASE tools are used by programmers, analysts, and
designers, as well as business planners and executives at
all levels, and businesse of all sizes, shapes, and struc-
tures [30]. Although there is disagreement about
categorizing CASE tools into upper, middle, and lower
CASE tools, since many support several phases, we will
use the term upper CASE for tools that support
upstream software development. Here, upstream refers
to planning, describing a company’s current opera-
tions, and making a standard for anew system.

3.1 Office Work and Software Development

The development of software can be regarded as a se-
quence of rewriting documents. Examples inclade
rewriting a requirement description as an architectural
design description, and rewriting a module specification
as a source code. Tools for rewriting documents are not
the same in all phases of software development. In an
early phase, a tool may be very similar to an ordinaty
text editor, whereas a structure-oriented editor or an
editor combined with debugging environments may be
preferable in a later phase. An idea will remain am-
biguous until it is written down. The process of trying
to write down an idea helps to clearty it. Since this is a
trial-and-error process, a tool, namely an editor, should
provide a powerful back-tracking facility with an accep-
table speed.

3.1.1 Kanji Processing

Our model is primarily intended for documents writ-
ten in Japanese. The U.S.A. and Europe have a long
history of mechanized document processing with type-
writers, while Japan has lagged behind because of the
difficulty of processing Kanji characters. Kanji proc-
essing was hard to realize until extraordinary progress
in silicon technology made it passible to handle two
aspects of Kanji characters: the number of characters
and number of strokes in a each character.

Since it is not feasible to provide a large keyboard
with more than 6000 keys corresponding to the most fre-
quantly used Kanji, Japanese sentences are usually
entered by using a kana-kanji conversion system, in
which an input kana sentence is converted into a kana-
kanji composite sentence. For conversion, we need to
find the syllables to pick a phrase and output Kanji and
okuri-gana (kana added to a Kanji character to show its
Japanese declension) successively. This is multi-phrase
conversion. Since there are many homonyms in
Japanese—for instance, the word a#sui has many mean-
ings (thick, hot, tender, serious, and so on)—and
different Kanji are used to convey different meanings,

K. Acusa

not only syntactical analysis but also semantic analysis
is necessary for correct conversion. Some kana-kanji
conversion systems have a special dictionary, usually
called an AI dictionary, for identifying the most
suitable Kanji.

3.1.2 Documentation management

Once the mechanization of document processing has
been achieved, it can be used for many purposes.
Documents produced with upper CASE tools can be
used for reference by all project members in successive
phases of development. As the number of documents in-
creases, the management of documents becomes more
important. The basis of document management is a
kind of data dictionary that records what kind of data
is stored where, in what form, and for what purposes.

A dedicated data base for software development is
called a repository and sometimes an Information
Resource Dictionary System (IRDS). This may contain
some information on constraints between two
documents such as that some requirements should not
be modified before some other documents have been
changed. We asume the existence of such a feature for a
software engineering data base [17]. Hyper TEXT is a
non-sequential writing system using directed graphs, in
which each node contains some amount of text or other
information and is connected by a directed link with
other [19]. Hypertext is becoming a popular approach
for retrieving on-line documentation. Since it describes
the actions needed to preserve the consistency of
documents, the appropriate action will be activated
when required.

3.2 Evolution Process

As mentioned before, we should recognize change as
intrinsic and follow the cycle of requirement analysis
and formal specification. The software evolues with
each rotation. In other words, it is not possible to create
an excellent progran without rewriting it several times.
Every time we rewrite it, we can adopt new advanced
technologies, fix bugs, and meet the actual requirements
of users, since we learn to use it through actual opera-
tions. Users have some reaction when a target system is
installed. Even though we take account of this reaction
during requirement analysis, it can happen that the user
behaves in an unexpected way. To make the evolution
process easy, we reuse some part of the previous
development. Resue should cover a whole life cycle of
software, that is, reuse of the requirement specification,
resue of the design process, and reuse of source codes.

A well-organized document can be expected only if
the previous system was developed by using some well-
recognized and well-defined methodology and associ-
ated CASE tools. The history of software engineering,
especially CASE history, is not long enough for us to
expect such documents. We therefore need a reverse
engineering tool with which to rebuild a document of
early stage of the previous development from source

Improving Software Productivity with Upper CASE Tools

241

Rutomatic documentation path

DOCGEN
Source ‘Automatic
program ‘documen-
library tation

El CONV
Empiricai
information

generation

ICODGEN,

FMPGEN
parameter
generation

Program specifications

)
System design
documentation

System installation
and run

System

est
-

Visualized dagigh

| Code and
I
F |
SYSDES|—---+
S =
= e
design parameter

SYSTES

| [METMNG

PRGDES][oot

Progam ||
structure
design

parts

COBSYN

System
integration

T

)
Load _J .
modules) X

&

Program
synthesis

Compile
and link

---—= A refers to B

L—' Interaction
L.B—‘ Data flow

Fig. 2 Automation of OA software production by SEA/I.

codes. The word reverse engineering has negative im-
plications that it helps to look for a hidden technology
surreptitiously. Reengineering may be more suitable,
since the old software is reconstructed by means of
engineering.

3.3 Integrated CASE Tools

It is said that 25 to 30 percent of middle CASE
specifications are transportable to lower CASE systems.
Lower CASE systems generate 60 to 80 percent of pro-
gram code in the system [30]. A CASE tool that covers
the stages from requirement specification to coding is
called an integrated CASE tool. Efforts are being made
to standardize repositories, which are a basis for in-
tegrated CASE tools.

SEmate is an integrated CASE tool developed by
Toshiba that covers the middle to downstream stages of
development. A Modules Components’ Connection
Diagram (MCD) tool supports the design of modules by
allowing an engineer to define the caller-callee relation
visually. It also supports detailed design of modules by
using flow charts and PAD charts. The Extended Editor
(EDT) tool consists of a structure-oriented editor, a
parts browser, and a syntax checker. The Software Test

and Analysis (STA) tool generates a report on the com-
plexity of modules, a cross-reference table, a test stub,
and a prfile.

NEC’s SEA/I (Software Engineering Architec-
ture/One) has been used for more than five years in the
field of EDP and office automation [18]. It is widely
used on office computers and mainframes. SEA/I has
11 subsystems, as shown in Fig. 2. From a software
specification that a user can define with reuse, the
system synthesizes the full specification and automatical-
ly transforms it into executable codes.

For business applications, SEWB (Software Engineer-
ing Workbench), based on EAGLE (Effective Ap-
proach to Achieving high-Level Software Productivity),
was developed to aid development with diagrams (SDF,
or Structured Data Flow Diagram, and PAD, or Prob-
lem Analysis Diagram), a distributed development en-
vironment, and a seamless integrated environment [16].

In the field of communication software design, many
automated development systems have appeared since
the undespread acceptance of the specification language
SDL (Functional Specification and Description
Language). In other fields, there is no definite specifica-
tion language.

242

4. Groupware and Negotiation

The development of a successful software system re-
quires intelligent integration of the creative genius of im-
aginative and ordinary engineers. A software system in-
volves complementary individuals such as user and
developer, analyst and integrator, and director and pro-
grammer.

Groupware consists of a software tools for suppor-
ting cooperative work by team members. The collabora-
tion is supported by sharing a common workspace to
remove constraints on both time and space. The
environment that makes Computer-Supported
Cooperative Work (CSCW) possible is based on
multimedia workstations and an intelligent network.
Although CSCW is a key to effective development of
not only large-scale but also small-scale software, since
software evolves substantively, the state of the art of
CSCW still to be at an elementary level. This means
that only the hardware architecture and communication
tools have ween discussed. A group model of when,
what, who, and how members of a group communicate
should be properly defined. It may vary from applica-
tion to application. The most difficult problem of soft-
ware development lies in its generality, namely, the
variety of application areas.

4.1 Environment for Groupware

Recent progress in hardware technology, especially
silicon technology, has made it possible to utilize or-
dinary communication media on a workstation. Work
stations have a common work space for distributed
groups. Network-transparent window systems such as
X-windows, Andrew, and GMW make it possible to
provide a common work space on networked worksta-
tions. Other advances in Digital Signal Processors have
made it possible to utilize not only voice, but even video
on a workstation.

The Team Work Station (TWS) developed at NTT’s
Human Interface Laboratories has a CCD camera to
capture desktop images, which are overlaid on com-
puter screens. TWS has a microphone, a headphone,
and a small liquid crystal display to allow face-to-face
meetings. Face windows on the computer screen can be
opened if required. Beside a workstation, conventional
office tools such as pencils, papers, and rulers are also
used. Software products written with these devices are
transferred via a CCD camera. From individual work to
collaborative work, the system should bring users
together smoothly. This kind of environment is called a
““‘Seamless Shared Workspace.’’ There are six collabora-
tion modes in TWS, namely Tele-Screen mode, Screen-
Overlay mode, Computer-Sharing mode, Tele-Desk
mode, Desk-Overlay mode, and Screen-and-Desk-
Overlay mode as shown in Fig. 3 [9].

The distributed multiparty desktop conferencing
system named MERMAID was developed at NEC’s C

K. AGusa

collaboration without
compulers

computer-mediated
collaboration

Loosely-Coupled (1) Tele- Scwsn (4) Tele-Desk

Collaboraton
@@

RQ_.-R R

(2) Screen-Overlay (5) Desk-Overlay

AEEER "B TR

{6) Screen and Desk-overlay

(3) Computer-Sharing Tele-Screen +
Tele-KBD / Mouse

R BB R

Fig. 3 Levels and Collaboration Modes in TWS Environment.

Tighty-Coupled
Coliaboraton

& C Systems Research Laboratories. It is intended to
proride group collaboration support when group
members work together in geographically separate loca-
tions. Like TWS, the UNIX-based EWSs used in MER-
MALID have a video camera, microphone, and speaker.
An electronic writing pad and image scanner are attach-
ed for communication via still images and handwritten
figures. EWSs are connected to each other by a high-
speed data network for video. A basic ISDN line with
2B+ D (B: 64 Kbps, D: 16 KBps) can be also used. A
conference can be held with four modes for transferring
the right to speak, or floor-passing modes. They are the
designate mode, the baton mode, the FIFO mode, and
the free mode. One of these is chosen before the con-
ference by the chairperson. This system was used to
develop a software system on a supercomputer with
programmers who are separated by up to 60 miles. Pro-
grammers who have used it prefer ordinary communica-
tion methods such as hand drawing and voice. A more
powerful scheme for computerized communication is re-
quired to make CSCW realistic.

4.2 Model of Collaboration

Increasing the size of software products requires
close communication among the members of a project
team. This should be supported with software devel-
oped on the initative of the engineers. For this, we need
a model of how engineers collaborate in software
development.

The electronic secretary system is a kind of process
program that defines which development tool is used
and how it is used [27]. An engineer works in accor-
dance with the task definition. The dependency of tasks
and the hierarchy of subtasks are maintained by the
management support system. In the description of the
task, two types of communication support are provid-
ed: notification and request. The communication is in-

Improving Software Productivity with Upper CASE Tools

tended to send some message to a colleague. This is a
simple electronic message asking a colleague to perform
some task and waiting for the result. This is done by sen-
ding a task definition, which consists of a task pro-
cedure, a tool definition, and task result information.
By sending requests, the waiting task item is added to
the description of the requester’s task definition. A new
task is added to the task definition of the person re-
quested, and will be refined so that it can be executed.
The electronic secretary collects these communication
requests, dispatches them, and records them in order to
control the progress of the software development.

4.3 Negotiation and Coordination

The process for defining the specification of the target
software system involves collaboration between users
and developers. What kind of collaboration is the key
to success? When we can divide a task of developing
software into fully independent subtasks, collaboration
is not needed during development. We usually set up
milestones to mark stages in the progress of develop-
ment, so that we can backtrack if we find that the cur-
rent state is wrong. If we collaborate it is possible to
work independently between two milestones. To set up
a new milestone, we may need negotiation or coordina-
tion, since each subtask is executed independently. The
trace of communication for negotiation plays an impor-
tant role in decision making. Many alternatives are in-
vestigated and evaluated from many viewpoints. There
are many tools for communication but few for negotia-
tion.

5. Visualization

Many problems in software development are caused
by its invisibility. Increasing the power of workstations
makes it possible to handle multimedia and to show the
extent to which the software development has progress-
ed.

5.1 Graphic User Interface

The window system is beyond multidisplays on a
single display. It should be regarded as the basis of a
user interface. The window system releases a program-
mer from the complicated task of managing the display
of overlapping windows. Nevertheless making a pro-
gram with a graphical user interface is still a tedious
job, since the primitive functions provided by the win-
dow system are very simple ones such as opening/clos-
ing/resizing window and selecting keyboard and mouse
events. The X tool kit is a library for reusing window
parts. Using standard window parts makes it possible
not only to shorten the development period but also to
obtain the benefits of a unified user interface.

Such tool kits should be able to handle Kanji
characters. Canae, which was developed as a user inter-
face management system at NEC, is an environment in
which a programmer can easily design and implement a

243

GUI for an application program by means of software
parts and textual description. Editor pats can handle
several visual media such as text (Japanese), pictures,
bitmaps, graphs, tables, and hierarchies. These media
are selected for CASE applications. The ratio of usage
of Canae parts to a whole target CASE system is about
60 programs of CASE utilize editor parts to about 30 to
40 interface functions.

5.2 Iconic Programming

Requirements of software may vary from one user to
another. Even if the requirements of a user can be
represented precisely, a commonly used software may
not satisfy everyone. The problem can be solved fun-
damentally if each user writes his own programs. One
approach to this is visual programming. The User can
select an icon that corresponds to a primitive function,
and arrange it in the stream of a program. This type of
programming is effective in CAD and simulation.

Icons can be divided into two types: data icons and
function icons. Since the number of data types is
restricted and since we can see the data as they exist, it is
not difficult to design icons for data. However, the
number of functions can increase very rapidly. Both
designing and recognizing icons quickly becomes
difficult to understand.

Hi-Visual 88, developed at Hiroshima University,
adopts a framework in which only data icons are used
to define a program. For example, the total sales-
amount can be defined by using a calculator icon
overlapping a sales-book icon. The result of a function,
a sales-amount-report in this case, is iconized as a data
icon. To show a graph of the sales amount, we place a
ruler on it. These overlapping operations are continued
until the desired output is obtained. A sequence of these
operations is iconized for futurere use (as a secretary
icon in this case) [8].

In the system sequence design method SSDESIGN,
developed at Toshiba, icons are categorized into three
types for human factors; Metaphor, Direct, and
Ideogram. A direct icon is defined as a realistic pic-
togram of an actually existing obrect. Files, displays,
printers, and floppy disks are examples of direct icons.
A metaphoricon is defined as a pictogram that a user
can understand easily as a function with a metaphor.
Examples of metaphor icons are ‘‘paper and pencil’’
for ““write”” and ‘‘figure through magnifying glass’’ for
‘‘zooming up.”’ Ideogram icons are abstract figures
such as a circle for ‘‘correct’ and an explanation mark
for ‘‘caution.’”” An icon is designed to be natural,
general, useful, and to be consistent; that is, no iden-
tical icon with a different meaning can exist. Guidelines
on how to make an icon are specified. One of them is
syntax rules for merged icons, which are combinations
of ‘“‘Object’’ and ‘‘Action.’”’ Icons can be customized
while preserving their concept [13].

Efforts in iconic programming will free end users
from learning computer-oriented concepts and

244

mechanisms for making programs, and even for defin-
ing requirements. Like Unix commands, icons can be
combined and used as a new command. This can be re-
garded as programming and at the same time an ex-
ecutable specification. It can be implemented in lower
level languages if needed, just as the language C is an im-
plementation language, whereas shell programming is a
specification in UNIX.

5.3 Visual Prototyping

A famous saying rellsus that ‘‘Seeing is Believing.”’
Research is being done to make software visible.

5.3.1 Visual Environment

SSDESIGN, mentioned in the previous section, is a
method for visualizing the early stage of software
development. It consists of Visual Specification Descrip-
tion, Visual Specification Verification, and Visual
Methodology for system design. The system operation
specification is described by means of a diagram named
SSD, which is constructed with a frame, boxes, arrow,
and comments. The frame is a sheet with two coor-
dinates: logical section and time flow. Boxes are system
functions such as Action, Condition, Control, Storage,
and Display. An arrow shows a flow of data or control
between two boxes. The SSD Editor is a tool for defin-
ing a specification visually. The actual components of a
target system are visualized by means of the SDD Image
Editor, which has a data base of parts, such as switch,
meter, and motor, for users’ convenience. The SSDOC
Visual Simulator reads the SSD to trace flows syn-
chronizing with each other. This timing is defined by a
time-axis in the SDD. The execution changes the color
or shape of an image picture. This approach may be
more useful in user interface design than in algorithmic
problems, since concepts cannot be visualized easily.

5.3.2 Visual Rapid Prototyping

We have developed an experimental system, named
VIP (VIsual Prototyping), as part of the X (Sigma) pro-
ject. Formal requirement specification followed by soft-
ware development is a key to success in obtaining a
target system that satisfies users. The formality of
documents sometimes requires users to learn their syn-
tax and mathematical background. It is much
preferable for users to write down their requirements in
the natural languages that they use every day. In VIP, a
requirement is described in a controlled natural
language for communicability. It is then translated into
the abstract system model from which the operation
flows of each section are derived for consecutive design
phases. An animation tool has been developed for
verification of descriptions of requirements by users. In
the case of data processing requirements for a certain
warehouse, a truck carrying goods, a clerk keeping
ledgers, and some related slips may appear in the anima-
tion. When a user or an analyst describes a current
system, an animation shows an abstract model that ex-

K. Acusa

tracts only the essential part of their works for data
processing. How the task changes when a new software
system is introduced is shown if the requirements
specification description involves computerized opera-
tions. VIP is a kind of visualization tool for resolving
problems caused by the invisibility of software. We
have not yet implemented a function for reading a
description aloud. The implementation of VIP depends
heavily on the multi-media capability of a workstation.

During the design of VIP, we emphasised the follow-
ing points: (1) it should be a practical tool and at the
same time a pleasant tool to use; (2) it should be easy to
use for personal applications; (3) it should remove
tedious work related to the definition of requirements;
(4) animation is effective for verification of requirement
descriptions; (5) the requirements should be defined in
the end users’ words; (6) how to extract hidden re-
quirements is a key to success; (7) it should be indepen-
dent of the design of the software structure.

The VIP system has been implemented with three sub-
systems. The parser subsystem accepts a compound
sentence in Japanese. Referencing the cases, it generates
a set of simple parsed sentences corresponding to an
opeation flow. An omitted noun and pronoun are sup-
plemented with (1) a default noun; for instances the
verb ‘‘notify’’ has “‘telephone’’ as a default of its tool
case, (2) a related case; for instances the subjective case
is regarded as the source case of ‘‘notify,”’ (3) the same
case in a compound sentence. The operation flow
generator accepts the names of sections that define the
column of an operation flow diagram. The symbols cor-
responding to a verb and its tool cases are defined in an
operation flow symbol dictionary. The animation
generator shows the story by using an animation dic-
tionary that contains icons for a verb, source case,
destination case, tool case, and object case. An example
of a description for ‘‘transport’’ is shown in Fig. 4.
Each section is arranged around an oval in the order of
the section’s column of an operation flow if the order is
not specified explicitly by the user.

It is desirable that the modification should be directly
applicable to an operation flow diagram and that the
system should indicate the corresponding requirement
description to be modified. We regard the user’s descrip-
tion as an original work, the analyst’s requirement
description as a play script, and an animation system as
a director. For an animation system, we should provide
a capability for defining camera work in order to
display, scene, and stage effects. An actor who plays a
role as defined in a play script will be defined by an ob-
ject-oriented model so that the definitions of actors can
be reused to save time.

6. Concluding Remarks
Upstream of software development involves such

difficult problems that it is not possible to find a royal
road or a silver bullet. A software development system

Improving Software Productivity with Upper CASE Tools

display sIc obj

display src tool

connect src tool obj
move src dest tool obj
disconnect dest tool obj
erase dest tool

erase dest obj

245

;; Container appears at Warehouse
;s Track appears at Warehouse

;3 Put Container on Track

;; Container on Track move to Shop
;; Take off Container

;3 Track disappears

;; Container disappears

Sentence: A truck transports a container from a ware house to a shop.

Fig. 4 Animation Description of transport.

is a type of software itself. To obtain a good CASE
tool, a steady effort is required. An evolutionary ap-
proach to CASE may be necessary so that we can ac-
cumulate our experience and knowledge about software
and related people. We have improved the productivity
of software development to some extent as a result of 20
years’ research. We thus have confidence that we are on
the right track for the goal of software engineering.

Acknowledgement

The author is grateful to Mr. Matsumoto of NEC,
Mr. Ohfude of Toshiba, Mr. Takeuchi of Oki, and Mr.
Ohtsuki of Hitachi, who kindly sent internal documents
used in software factories.

References

1. AgGusa, K., OHNisHI, A. and OHNO, Y. A Verification Method
for Formal Requirements Description, J. Inf. Process., 7, 4 (1984),
223-229.

2. Acusa, K. and OuNo, Y. A Supporting System for Software
Maintenance-Ripple Effect Analysis of Requirements Description
Modjfication, J. Inf. Process., 8, 3 (1986), 179-189.

3. AGusa, K., OnNisHI, A., KuBo, T., NisHIYAMA, S. and [IMURA,
J. Visual Rapid Prototyping Tool-VIP, Proc. 6th Conference of
Japan Software Science and Technology, C3-3, (in Japanese) (1989),
177-180.

4. BaLzER, R., CHeaTHAM, T. E. and Green, C. Software
Technology in the 1990°s: Using a New Paradigm, IEEE Computer,
(Nov. 1983), 38-45.

5. SCALING, Up. A Research Agenda for Sofware Engineering,
CACM, 33, 3, (March 1990), 281-293.

6. DEMARcCO, T. Peoples are—Productive Project and Team, Dorset
House Publishing (1987).

7. HaLL, A. Seven Myths of Formal Methods, Software (Sep.
1990), 11-19.

8. IcHixawa, T., HiRaAKAwWA, M. Iconic Programming: Where to
Go?, IEEE Software, 1, 6, (1990), 63-68.

9. IsHu, H. Team Work Station. Towards a Seamless Shared
Workspace Proc. CSCW90 (Oct. 1990), 13-26.

10. Formal Approach to Software Environment
FASET-Rep. No. 1 (Nov. 1987) and No. 2 (Jan. 1989).
11. Introduction of Wnn+GMW, Iwanami, 1990 (in Japanese).
12. Kasawmi, T., TaNiGucHI, K., SuciYAMA, Y. and Seki, H. Prin-
ciples of Algebraic Language Trans. of the Institute of Electr. and

Technology,

Communication Eng. of Japan, J69D, 7, (1966) (in Japanese), 1066—
1074.

13. Kartao, K., Kusui, Y., IkemoTo, H., MATSUMURA, K. and
TAYAMA, S. Approach to System Visual Prototyping with Dynamic
Icons, Proc. 1989 IEEE Workshop on Visual Languages, (1989), 1-8.
14, KEMMERER, R. A. Integrating Formal Methods into the Develop-
ment Process, IEEE Software, (Sep. 1990), 37-50.

15. Langman Dictionary of the English Language.

16. Maezawa, H., Haql, Y., Tsuba, M. and INDO, 1. Perspective
of Software Engineering Technology, Hitachi Hyoron, 70, 2 (1988),
1-6.

17. MaTsumoTo, Y. and AJISAKA, T. A Data Model in the Software
Project Database Kyoto DB, Advances Softw. Sci. Tech. JSSST, 2
(1990) (to appear).

18. NEC Research & Development, 96, (March 1990), 99-171 &
459-469.

19. NIELSEN, J. The Art of Navigating through Hyper TEXT,
CACM 33, 3, (March 1990), 297-321.

20. OHNisHI, A., AGusa, K. and OHNoO, Y. Reguirements Model
and Method of Requirements Definition, Proc. of COMPSAC (1985),
26-32.

21. OHNISHI, A., AGUSA, K. and OHNO, Y. Requirements Frame for
Requirements Definition, Trans. IPS Japan, 28, 4 (1987), 367-375 (in
Japanese).

22. OHNISHI, A., AGUSA, K. and OHNo, Y. Software Requirements
Specification Technique Based on Requirements Frame, Trans. IPS
Japan, 31, 2 (1990), 175-181 (in Japanese).

23. RaMAMOORTHY, C. V. and So, H. H. Software Requirement
and Specifications: Status and Perspective, IEEE Tutorial, Software
Methodology (1978).

24. Sakal, M., SAKABE, T. and INAGAKI1, Y. Direct Implementation
System of Algebraic Specifications of Abstract Data Types, Com-
puter Software, 4, 4 (1987), 16-27 (in Japanese).

25. SHANK, R. Representation and Understanding of Text, Machine
Intelligence 8, Ellis Horwood Ltd., Cambridge (1977), 575-607.

26. Tools Fair, IEEE Software, 7, 3 (May 1990).

27. TAKEUCHI, A., Hatano, H. and Kanwara, H. Electronic
Secretary System for Software Development, OKI research report,
57, 1 (1990), 49-54 (in Japanese).

28. Taruwmi, H., RExiMOTO, J., SuGal, M. and AkIGUCHI, C. Ex-
periences with Editor Parts of User-Interface Development Platform
Canae, Proc. of 39th Annual Conference of IPSJ, 25-4 (1989), 1521~
1522.

29. WataBE, K., SAkaTA, S., Maeno, K. Fukuoka, H. and
OHMORI, T. Distributed Multiparty Desktop Conferencing System:
MERMAID, Proc. CSCW90 (Oct 1990), 27-38.

30. In Depth CASE, BYTE, April 1989.

(Received December 7, 1990)

