Translation of the IPSJ Best Paper Award papers

Object-Oriented Programming in Multiple-Paradigm
Language TAO and Its Implementation

NoBUYASU OsaTo* and Ikuo TAKEUCHI**

The language specification of object-oriented programming in multiple programming paradigm language
TAO and its performance evaluation are described. TAQO’s goal is to provide a high performance programming
environment for artificial intelligence research. TAO’s central part is microprogrammed on a dedicated symbol
manipulation machine called ELIS. One of the main design principles of TAO is to allow the programmer to
choose a suitable programming paradigm for his objective. To achieve this principle, TAO incorporates multi-
ple programming paradigms such as logic programming, object-oriented programming and so forth into its
basic Lisp programming. This programming paradigm fusion is accomplished within the kernel of the language.
This paper discusses the TAQ’s object-oriented programming: its implementation technique in detail and perfor-
mance evaluation. It demonstrates that TAO’s object-oriented programming is efficient enough and by no
means inferior to its Lisp programming paradigm from the viewpoint of practicality. The validity of the im-
plementation method is also discussed by analyzing a couple of practical application programs.

1. Introduction

TAO/ELIS is a symbol manipulation system devel-
oped at NTT Electrical Communication Laboratories.
The main motivation behind its development was to pro-
vide a powerful and flexible programming environment
for artificial intelligence. The hardware ELIS [1] and
the software TAO [2] were simultaneously and inter-
dependently developed. TAO was designed as a Lisp-
based kernel language to establish a high performance
programming environment. It aims at accomplishing
efficient interpreted execution, supported by the perfor-
mance of the ELIS hardware [3]. TAO’s most speed-
critical parts, e.g. eval, the primitive functions and the
basic mechanisms, are completely microcoded on ELIS,
which has a huge amount of writable control store
(WCS). An efficient interpreter is quite preferable in the
development cycle, since tests and debugs require a lot
of information during program execution.

One of TAO’s design principles is to allow the user to
choose his/her programming paradigm so that the
choice fits the problem to be solved. The syntax and
semantics of Lisp are quite simple, and they enable vari-
ous programming paradigms to be incorporated into
the language. TAO achieves its paradigm fusion under

This is a translation of the IPSJ Best Paper Award paper that ap-
peared originally in Japanese in Transactions of IPSJ, Vol. 30, No. 5
(1989), pp. 596-604.
*NTT Human Interface Laboratories, 3-9-11, Midori-cho,
Musashino-shi, Tokyo 180, Japan.
**NTT Basic Research Laboratories, 3-9-11, Midori-cho,
Musashino-shi, Tokyo 180, Japan.

Journal of Information Processing, Vol. 14, No. 4, 1991

Lisp’s simplicity and extensibility. TAO’s multiple
paradigms include logic programming, object-oriented
programming [4, 5] and others as well as conventional
Lisp programming, which is based on Common Lisp.
In particular, object-oriented programming is one of
the main paradigms of TAO [6]. This paper discusses
the TAO’s object-oriented programming language
specification, implementation techniques and its perfor-
mance evaluation.

2. Object-oriented Programming in TAO

2.1 Objects and Messages

In object-oriented modeling, logical entities in the
subject are deemed to behave autonomously. These enti-
ties are called objects. There are two kinds of objects in
TAO. One is the primitive objects such as integers,
strings, ids (which stands for identifiers) and so forth.
The other is the user defined object, abbreviated as udo.
The udo has some data slots called instance variables,
each of which consists of a pair of a slot name and its
value. Objects with the same structure and the same be-
havior are grouped under the concept of class. Each ob-
ject belongs to a certain class and is called an instance
of the class.

In object-oriented programming, the computation
proceeds by passing messages among objects. A mes-
sage passing occurs when a specially devised message
passing form is evaluated. Each object has its own inter-
nal procedures called methods. When an object receives
amessage, it chooses the corresponding method and exe-

502

cutes it. A message passing form specifies its receiver ob-

ject, the message name (id) to select a method. The id is

also called a message selector or, simply, a selector.
The general message passing form in TAO is:

[receiver-object message argument . . .}

where, []is a kind of list tagged as a special data type
bracket. This form is evaluated in the following man-
ner:

(1) The car of the form, receiver-object, is evaluat-
ed.

(2) If the resulting value is an object, the cadr part
message of the form is deemed as the message selector
and the corresponding method is sought. The message
is not evaluated.

(3) If amethod is found, it is invoked with the trail-
ing argument argument.

(4) The form evaluates to a value as an ordinary
Lisp function does.

A message passing form can appear at any position
of a program. The resulting value is used in the Lisp con-
text. The syntax of a message passing form differs from
that of an ordinary Lisp form, which has a prefix opera-
tor, while a message passing form has an infix operator.
The infix operator enables commonly used representa-
tions for arithmetic operations over integers, floats and
others such as [x + y] or [x » y].

2.2 Classes and Method Definitions

A class holds its objects’ attribute descriptions,
methods, class variables, which are class’s own data
slots, and so on. A class itself is not an object. An udo’s
class is defined by a defclass macro, which has the
form:

(defclass class-name
class-variable-list
instance-variable-list
{superclass-list}
defclass-option . . .)

where, class-name is an id: the name of the class. Class-
variable-list and instance-variable-list declare class vari-
ables and instance variables, respectively. Superciass-
list specifies this class’s superclasses which will be de-
scribed later. Here, { } denotes that the enclosed varia-
bles are optional. Defclass-option indicates various op-
tional class specifications. For instance, option :gettable
defines instance variable accessing methods automatical-
ly.

A method is defined by a defmethod macro, which
registers the method to a class. To define a method
whose selector is selector to a class class-name, the mac-
ro form:

(defmethod (class-name {method-type} selector)
argument-list
Sform..))

is used. In this form, method-type is an optional infor-

N. OsaTo and I. TAKEUCHI

mation used by the method combination mechanism
which will be discussed later. Argument-list is the argu-
ment list of this method and plays the same role as the
Lisp’s function argument list. The trailing argument
Jform is the body of this method’s procedure.

2.3 Instance Creation

An instance of a user defined class is created by a mac-
ro form:

(make-instance class-name init-option . . .)

where, init-option gives the initial values of the newly
created instance’s instance variables. Make-instance
macro can create only udos. Primitive objects like in-
tegers, vectors and so on are created by dedicated func-
tions such as read, +, vcons etc.

2.4 Class Hierarchy and Inheritance

A new class can be defined by modification or combi-
nation of already existing classes. The old classes are
called superclasses of the newly created class, while the
new one is called a subclass. A class can have more than
one superclasses. The new class inherits various attrib-
utes such as instance variables, methods and others
from its superclasses. A partially ordered structure
emerges under the inheritance relationship. TAO’s in-
heritance is similar to that of Flavors.

Some superclasses may cause a contention due to
their information to be inherited. This necessitates a cer-
tain total ordering of the superclasses. TAO determines
the superclasses’ linearized ordering by traversing them
upward depthfirst, starting from the subclass.

2.5 Method Combination

If there are some methods whose selectors are the
same among the inherited methods, they are combined
to form a new single method using a special technique
called method combination. Here, every method in
each class is used as a component of the newly created
method, which is actually invoked when a message is
passed. The methods to be combined are categorized
into several types according to their method type as
specified in the defmethod forms. A method type
defaults to :primary type. There are several types of
method combination. When the type of method combi-
nation is specified, corresponding method types are de-
termined.

The default method combination type is the one
called :daemon. Here, the :daemon combination com-
bines three types of methods: :primary, :after and :before.
These methods are incorporated in the newly created
method and invoked in the following order.

(1) Each :before method is called in the superclass-
es’ linear order from near to far.

(2) The first :primary type method in the order is
called.

(3) Each :after method is called in the reverse ord-
er of that of :before methods.

Object-Oriented Programming in Multiple-Paradigm Language TAO and Its Implementation 503

(4) The :primary method’s value is returned as the
combined method’s value.

2.6 Super Message Sending

A specific method in a superclass can be invoked in a
method. For example, in a method m of a class 4, a
method n in the A’s superclass S can solely be called by
using a function super:

(super S.n argument . . .)

where, S.n in an id established by concatenating the
class name S and the selector n separated by “.”
(period). The trailing argument argument is passed to
the method. The receiver temporarily behaves as if it
were the instance of S. The class traversal for the

method combination starts from the superclass S.
3. Implementation

3.1 Defclass Macro and Class Representation

A class is represented by a vector called class-vector.
The vector is a one-dimensional array of Lisp data. A
class-vector is created by a defclass macro and is
registered as one of the properties of the class-name id.
If there already exists a class-vector in the property list
of the class-name id, namely, the class is redefined, the
old class-vector is replaced by a new one. Since the
modification of a class influences its subclasses because
of inheritance, the subclasses of the old class are
traversed and modified. Although the old class-vector
can no longer be accessed from the class-name id, its in-
stances continue to maintain the pointers to their origi-
nal class-vector. Only the newly created instances point
to the new class-vector.

The contents of the class-vector include:

(1) a method table, sorted so that it can be sought

with a binary search algorithm,

(2) class-name,

(3) a method table that the function super uses,

(4) a property list which is specific to this class-vec-

tor,

(5) a class variable table,

(6) information for instance creation,

(7) the original information given in a defclass

macro,

(8) a hash table for instance variable search

speedup.
Class-vectors for primitive data types such as integers,
ids and so on are pointed to not only from the property
lists of their corresponding class-names but also from a
table located in a fixed area of the ELIS’s hardware
stack for efficiency.

3.2 Udo Representation

Udo is one of the TAQ’s data types. It is a special
kind of vector, which consists of an arbitrary number
of pairs of an instance variable and its value slot. Figure

| class-vector [2n (udo size)

|
1

value | J instance variable | |
L i . “
I | |
T a

value n \ instance variable n

Fig. | Structure of user defined object (udo).

1 depicts the structure of the udo. The udo has a back
pointer to its class-vector.

At the moment of the first invocation of
make-instance in a class, the superclasses of the class
are traversed to collect the information to be inherited.
The collected data, which is registered to the class-vec-
tor, includes instance variable names and their initial
values. The udo is created using this data, then the ini-
tial values of the instance variables are set.

3.3 Methods and Method Tables

3.3.1 A Method and Its Definition

A Method is represented, in general, by data called
applobj, which stands for applicable object. An ap-
plobj, which is a TAO’s general function object descrip-
tor, is a special vector whose elements describe the body
of the procedure, how to bind the arguments, how to
construct a stack frame, and so forth. The function
body is an S-expression, if it is interpreted, or a block
of byte codes, if it is compiled.

An applobj is created by a defmethod macro form
and is stored in the class-vector for future use in the
method combination. After combining method ap-
plobjs, the resulting procedure is also represented as an
applobj and is registered to the method table together
with its selector. A method table is sorted with respect
to the internal addresses of the selector ids.

Methods can be redefined or added at any time. Since
a method is just data in the class-vector, the class’
method repertory can be changed simply by modifying
the data. Both old udos and new ones can refer to the
same up-to-date method table at a message passing oc-
curence.

3.3.2 Method Table Construction
The method table is created at the first moment when
an instance of its class receives a message. When a mes-
sage is sent to an object of the class for the first time, an
internal function is invoked to construct the method ta-
ble of the class. At this moment, the table has only emp-
ty slots for each method applobj. After the construc-
tion is completed, the method table is sought using a bi-
nary search algorithm. In addition, each applobj entry
of the method table is created on demand at its first invo-
cation time. This internal function’s behavior is as fol-
lows.
(1) Starting from the class, it traverses the super-
classes to collect method selectors to make a list

504

of method table entries,

(2) constructs a vector for the method table to ac-
commodate the selectors collected in step (1)
and the corresponding method applobjs. Each
method applobj slot is set empty, indicating that
the applobj should be created later,

(3) registers this vector to the class-vector,

(4) creates only the method applobj just about to be
invoked. To be precise, it traverses the super-
classes to collect all corresponding applobjs,
combines them, and fills the slot with the newly
created applobj, and

(5) invokes the applobj.

For each message, when it is sent for the first time,
i.e., when the corresponding method table slot is
empty, steps (4) and (5) are processed. Since checking
for the method table existence and empty applobj is per-
formed by multiple-way branching of the ELIS’s micro-
code, there is no additional overhead from this proce-
dure.

This rather complicated process for method establish-
ment may puzzle the reader. This on-demand method
construction process was adopted because the time
required for method construction turned out to be seri-
ously long for large practical applications. In the earlier
implementation, the complete method table and its con-
tents were constructed when the first message was
passed. When the application size grew such that there
were thousands of methods, the waiting time for the
method construction increased to more than several
minutes, which caused not only a great deal of debug-
ging inefficiency but also the construction of numerous
applobjs, many of which were never invoked. The on-
demand construction greatly reduces both time and
space consumption.

In the program development cycle, methods are rede-
fined or added very frequently on the superclass sides.
The modification affects and changes the behavior of
the subclasses. Although this leads to a big internal
mess, it is logically invisible from the user. As stated
above, almost all method constructions are postponed
until they are actually invoked. Thus, small and dis-
persed overheads are required.

3.3.3 Method Combination Implementation

As described before, the method combination con-
structs a new applobj, which is registered to the method
table. Inherited methods are copied and incorporated
to this applobj. This eliminates the run-time search over-
head for the inherited methods.

As an example of a method combination, the usage
of inherited applobjs in the :daemon combination is de-
scribed below. Assuming that the classes have the hierar-
chy of Figure 2, the methods are defined as:

(defmethod (a m) () ’a-m-primary)
(defmethod (b :after m) () ’b-m-after)
(defmethod (c :before m) () ’c-m-before)

N. OsaTo and 1. TAKEUCHI

A

a-m-primary T b-m-after

L

c-m-before
c-m-after

C

subclass-side «— — superclass-side

Fig. 2 An example of a class hierarchy and methods.
(Methods are represented by their return values.)

(defmethod (c :after m) () ’c-m-after)

A new method applobj for the method u of the class A
is constructed with the :daemon combination and
registered to the A’s method table. The resulting applobj
has the body of:

(progi (funcall c-m-before’s_method_applobj)
"(funcall a-m-primary’s_method_applobj)
(funcall c-m-after’s_method_applobj)
(funcall b-m-before’s_method_applobj))

where progi is a generalized progn that returns the
value of the form flagged by . Progi gives a skeleton to
combine the inherited methods. Of course, if there are
no :after or :before type applobjs, unnecessary progi
or funcalls are omitted and the applobj of the inherit-
ed method is used.

3.3.4 Sharing Method Applobjs

Since the inherited methods are copied in principle, a
great many methods are duplicated. These methods are
essentially different because they are called under differ-
ent environments. In many cases, however, they can ac-
tually have the same bodies. To reduce this duplication,
TAO uses a hash table to share the same applobjs. The
method body S-expression is used as a key to the ap-
plobj hashing. When a new applobj is registered, TAO
compares the body equality to the already existing ones.
The S-expression function body is shared as well as the
compiled one, if possible.

This applobj sharing is quite effective in reducing the
memory consumption, especially for the large practical
applications. According to a measurement of the num-
ber of reduced applobjs for some applications, 40% in
interpreted programs and from 10 to 40% in compiled
codes are reduced. For compiled bodies, identical origi-
nal S-expression bodies may differ as binary sequences
of compiled codes, because their instance variable
offsets may vary from one class to another. Thus, the
compiled body sharing rate is worse than that of the in-
terpreted one.

3.4 Variables

Since the method is also a Lisp program, many types
of Lisp variables, such as local, special and so on, that
can be used in an ordinary Lisp program can, of course,
appear in it. In addition, instance variables and class
variables are available in object-oriented programming.

Object-Oriented Programming in Multiple-Paradigm Language TAO and Its Implementation 505

Instance variables are not bound lexically in a
method, i.e., they are free. Thus, the efficiency of their
reference plays an important role in the system’s perfor-
mance. in the TAO interpreter, instance variables are
hashed into an offset table that indicates the relative po-
sitions of instance variables in the udo. This hash table
is created at the moment of the first instantiation of the
class and is maintained in the class-vector. In the com-
piled methods, the instance variables’ offsets are embed-
ded in byte codes.

Class variables are similar to instance variables in
that they can appear only inside a method. Unlike in-
stance variables, class variables are not genuine varia-
bles in TAO. They are accessed with a special function
cvar. Class variables are not inherited but can be ac-
cessed through the subclasses’ methods. If the class vari-
able is not in the class, the superclasses are traversed to
find it.

3.5 Message Passing

User defined methods are processed as follows:

(1) The existence of the method table in the receiver
udo’s class-vector is checked.

(2) If there is no method table, the internal function
described in 3.3.2 is invoked and the table is con-
structed.

(3) The method table is sought using the cadr of the
given form as a binary search key. The method ta-
ble can contain four kinds of entries that switch
the system’s behavior as follows:

(i) Instance variable accessing method
defined automatically by :gettable or :settable
defclass options. They are used only for instance
variable accessing purposes. These methods are
represented not by applobjs but by special types of
numbers that indicate the instance variables’ offsets
in the udo. No stack frame is created during execu-
tion.

(ii) Method applobj
constructed by a method combination. When this
type of method is invoked, a stack frame that
holds its environment is created and the body is ex-
ecuted.

@iii) ““Empty”’ flag

indicates that the method is only defined by def-
methods and has not been invoked yet. If this flag
is found, an appropriate applobj is constructed
and stored in the table, then case (ii) is performed.

(iv) Otherwise,

the entry is deemed as a class constant. In this
case, the contents in the slot are returned immedi-
ately. A class constant is a special method that
returns a constant at any time.

It is important to note that these various data checks
are performed in parallel by using the multiple branch-
ing mechanism of ELIS microprogramming. Therefore,
no overhead is imposed on typical method invocations.

3.6 Messages to Primitive Data Objects

Using message passing forms, arithmetic operations
in TAO can be expressed in the infix notation. For in-
stance, in the form [x + y], if x evaluates to a number,
this form is interpreted as an addition in the infix nota-
tion. If x evaluates to a non-numerical value, e.g., an
udo, its method table is searched for the selector +. If
it is found, the corresponding method is invoked.

The infix arithmetic forms are processed by dedicated
micro routines, which bypass method search. In this
case, the system calculates the micro routine entry ad-
dress in the WCS from the selector +’s address in the
memory by a simple offset computation. The micro
body of [x + y] itself is the same as that of the Lisp
form (+ xY).

For primary data such as numbers, forms like [x + y
+ z] are also supported by microcoded interpretation.
The first [x + y] is deemed as a message passing form,
whose value receives the message ‘‘+ z’’. Therefore,
this form is equivalent to [[x + y] + z].

3.7 Compiler

Even though TAO emphasizes the performance of in-
terpreted execution, the compiler is useful for reducing
time and space consumption. TAO’s compiler (7]
produces byte codes of a virtual stack oriented
machine. Each byte code is interpreted by a
microprogrammed interpreter. Since a method is a kind
of Lisp function, its compilation is almost the same as
that of a Lisp function. The difference is that, since an
instance variable reference is free in a method, its access
information cannot be acquired until the class structure
is determined. So, the instance variables are compiled
into a dummy byte code sequence unless they can be de-
termined at the compile time. The instance variable
reference is replaced with the correct one when the first
message passing occurs and antecedently the class struc-
ture has been fixed.

A message passing form is compiled into a code that
indicates @ message should be sent, unless its receiver’s
data type is declared and its method body is known at
the compile time. For instance, the form [A B C], if A’s
data type is unknown, is compiled into:

compiled-code of A
push-constant B
compiled-code of C
send-binary-message

where, send-binary-message is a byte code which in-
vokes method search, creates stack frame, and executes
the method body. There are two other kinds of byte
codes for the message passing form: send-unary-mes-
sage for unary message passing forms, and send-
general-message for general cases.

506
4. Performance

4.1 Speed of Method Search

TAO adopts a binary search algorithm for method
search. There are several implementation alternatives
for method tables such as hashing and binary search.
The choice is an important factor in the performance.
TAO aims at a practical system that can accommodate
big applications involving a great many methods. Hash-
ing can be a choice, of course, but it requires an un-
desirous huge amount of memory for the large number
of methods. On the other hand, ELIS microcode ena-
bles the efficient implementation of a binary search al-
gorithm.

The binary search microcode has a six-microstep loop
for every test in the method table. Since the ELIS’s
microstep needs 180 nsec, this loop consumes about 1
usec per cycle. Therefore, a search in a method table
with N entries takes log N usec on average. According
to a measurement, the method search requires very low
overhead for object-oriented programming in TAO, as
will be described later.

4.2 Instance Variable Hash Table

The effect of the instance variable hashing on the in-
terpreter strongly depends on the udo sizes. Among the
various actual applications, there exist udos with hun-
dreds of instance variables. This proves the effectiveness
of the instance variable hash. Although the hash table is
not so effective for small udos with 2 or 3 instance varia-
bles, a linear search algorithm is faster than hashing by
at most 20%, which makes very little difference.

The accessing speed of Lisp’s special variables de-
pends on the existence of the instance variable hash ta-
ble because of the following reason. In TAO, instance
variables are sought right after the local variables. So, if
there is no instance variable hash table, special variables
are sought in an udo in vain. (Note: TAO adopts deep
binding.) Therefore, if the instance variable hash table
exists, the system knows quickly whether the free varia-
ble in a method is an instance variable or not, and the
unnecessary udo search can be avoided.

4.3 Speed Comparison with Lisp by Simple Programs

The evaluation mechanism for a message passing
form is essentially the same as that of a Lisp form. The
exceptions are the recognition step for the message pass-
ing form and the method search. According to our ex-
perience in TAO, the processing time for these portions
does not play a major role in the performance. This
makes TAQ’s object-oriented programming practical.
It is slower than Lisp by only 10 to 20%.

In this section, using recursively defined Fibonacci
progression calculation programs as benchmarks, Lisp
and object-oriented versions are compared. The func-
tion fibonacci is defined in Lisp as:

N. OsaTo and I. TAKEUCHI

Table 2 Execution time of compiled fibonacci. (unit: msec)

Object-oriented version

n Lisp version (Method table size)
30 100
19 143.2 384.2 413.9
20 231.7 621.7 669.8
22 606.5 1627.7 1753.3
25 2569.1 6894.9 7427.4

Table 1 Execution time of interpreted fibonacci. (unit: msec)

Object-oriented version

n Lisp version (Method table size)
30 100
19 521.8 583.5 612.8
20 844.4 944.3 991.6
22 2210.7 2472.3 2596.0
25 9363.5 10472.1 10997.5

(defun fibonacci (n)
f(<n2)1
(+ (fibonacci (1 — n))
(fibonacci (— n 2)))))

In object oriented programming, the fibonacci
method is defined in the integer class. A fibonacci mes-
sage is sent to an instance of the integer class, i.e., to an
integer. This method is defined as:

(defmethod (integer fibonacci) ()
Gf [self < 2} 1
[[[self — 1] fibonacci]
4+ [[self — 2] fibonacci]]))

where, self is an automatically defined local variable
bound to the receiver object of this message. The results
are shown in Tables 1 and 2.

In these measurements, the method table sizes are as-
sumed to be 30 and 100, and the fibonacci method is
found to be in the worst case. In the compiled versions,
the variable n and self are declared fixnums. In the in-
terpreted versions, the performance difference between
Lisp and object oriented programming is less than 20%.
In a compiler, Lisp versions run 2 to 3 times faster than
the object oriented versions do. This is because the com-
piler for Lisp is optimized while that for the object-
oriented version is not. As of the time this paper was
being written, the object oriented programming
optimizing compiler was not available. The Lisp com-
piler’s optimization includes tail recursion optimiza-
tion.

4.4 Evaluation through Some Applications

It is very useful to investigate how actual application
programs are written in an object-oriented manner.
Here, several applications are analyzed and discussed.
Three programs: Emacs-like editor ZEN [8], Japanese
input system JPRO which is incorporated into ZEN,

Object-Oriented Programming in Multiple-Paradigm Language TAO and Its Implementation 507

Table 3 An evaluation with some application programs.

TEN NET JPRO
program size (lines) 18386 12654 7199
classes with method tables 24 11 12
classes without method tables 13 10 3
(e.g. abstract)
total number of method
applobjs 5569 667 330
total number of methods
invoked (typical) 750(13%) 218(33%) 30(9%)
number of defnethods in the
program text 453 154 204
applobjs created by
inheritances ss16 513 126

and TCP/IP networking system NET [9] are used.

Table 3 shows the data obtained from these applica-
tions at the time of this paper was being written. Even
now, these programs are used practically and are being
improved. The table 3 shows that only 10 to 30% of all
defmethod’ed methods are actually invoked. This
proves the effectiveness of the on-demand method con-
struction. Such low utilization of methods is likely to be
caused by the inheritance, which incorporates a lot of
methods from superclasses even if most of them are
never used. The on-demand applobj construction
reduces the memory consumption caused by unnecessa-
ry inheritance. On the other hand it suggests that a new
scheme providing a flexible inheritance control mechan-
ism is desirable.

ZEN and NET utilize the inheritance mechanism hea-
vily. However, they do not use method combination
very often. (Data is omitted here.) Even though TAO
provides a wide variety of method combinations, ZEN
and NET use simple ones like the :daemon combination.
The main purpose of the inheritance mechanism is
modular programming, which works effectively in those
applications. But it seems that the method combination
is not so practical to use.

5. Conclusion

TAO object oriented programming can be said to be
successful from the performance viewpoint. There are
three dominant factors that determine the performance:
(i) recognition of message passing forms in the inter-
preter, (ii) method search and its invocation, and (iii) ex-
ecution of the method body. In TAO, (i) a message pass-
ing form is recognized in the efficiently microcoded
eval, and (ii) the method search achieves a practical per-
formance with a microcoded binary search algorithm.
(iii) As the method body execution is the same as that of
a Lisp function, there is no additional overhead. In-
stance variable access is quite fast thanks to a hash tech-
nique. As a result, TAO’s object-oriented programs in
the interpreter run fast enough in comparison with Lisp
programs. In addition, by the on-demand method for
constructing internal structures for object-oriented
programming, the memory consumption and turn

around time during program development are greatly
reduced.

However, there are lots of issues left in object-orient-
ed programming itself. Among them is that the in-
heritance and the complicated method combination
scheme make the program’s understandability quite
low. Although information hiding is accomplished be-
tween objects, that between classes in the inheritance
relationship is hardly achieved. If a programmer wants
to use the already existing classes as his/her program-
ming parts, he/she must know the implementation
of the classes in detail. Superclasses cannot be seen
as black boxes. It imposes an additional burden on
the programmer. Furthermore, the object-oriented
programming system does not provide any guidance for
modeling, i.e., the system does not say what should be
objects. It would be desirable for the system to give this
kind of guidance, if it aims to be an intelligent program-
ming system. Those issues, which request various con-
cepts to be reviewed and a number of new ideas to be in-
troduced, are still open to further investigation.

Acknowledgments

The authors are very thankful to those who support
this work by using the system, reporting bugs, giving
suggestions for improvements, and providing valuable
comments. Among them are Hiroshi G. Okuno, the co-
implementor of TAO kernel, Yasushi Hibino and
Kazufumi Watanabe, the ELIS hardware designers,
Yoshiji Amagai, who wrote ZEN, Ken’ichiro Muraka-
mi, the author of NET, Minoru Kamio, the implemen-
tor of TAO compiler, and many many other people
both inside and outside NTT, including NTT Intelligent
Technology Co. and Oki Electric Industry Co., Ltd.
who are the co-developers of commercial versions of
the TAO/ELIS system.

References

1. HiBiNO, Y., WATANABE, K. and OsaTo, N. The architecture of
the Lisp machine ELIS—the memory-general registers and their
effects—. IPSJ SIG Note, 24, 3 (July 1983) (in Japanese).

2. TAKEUCHI, L., OkuNo, H. G. and OsaTo, N. TAO—A harmonic
mean of Lisp, Prolog and Smalltalk. ACM Sigplan Notices, 18, 7
(July 1983), 65-74.

3. Okuno, H. G., TAKEUCHI, I; OsAaTOo, N., HiBINO, Y. and
WATANABE, K. TAO: A Fast Interpreter-centered System on Lisp
Machine ELIS. In Conf. Record of the 1984 ACM Symposium on
Lisp and Functional Programming, Austin, Tex., August 1984.
ACM.

4. GOLDBERG, A. and ROBsON, D. Smalltalk-80: The Language and
its Implementation. Addison Wesley, Reading, Massachusetts, 1983.
5. WEINREB, D., MooN, D. and STALLMAN, R. M. Lisp Machine
Manual. LMI, 1983.

6. Suzuki, M. editor. Object oriented programming: Tutorials and
Reports from WOOC’85, Kyoritsu Publishing Co. (1985) (in
Japanese), 105-118.

7. Kamio, M. A Common Lisp compiler on ELIS. Proc. the 34th
Conference of IPS, number 1P-4, 1987 (in Japanese).

8. Awmacal, Y. Making programming parts of a display editor based
on object oriented programming. Proc. the 33th Conference of IPS.
(1986) (in Japanese), 771-772.

9. Murakami, K. An object oriented implementation of LAN pro-
tocols, Proc. the 34th Conference of IPS, number 1P-7 (1987) (in
Japanese).

