Translation from Journal of IPSJ

Canae: A Platform for Constructing
Graphical User Interfaces with Editors

JunicHi REkiMoTo*, HIROYUKI TARUMI*, MASARU SuGATr*, Go YAMAZAKI**,
KANEMITSU IGARI*** | TAKESHI MORI*, TAKAHIRO SuGIYAMA*, ATSUKO UCHIYAMA*
and CHUZO AKIGUCHI*

As window systems become popular, there is a growing need for a Graphical User Interface (GUI) that allows
users to manipulate objects on the screen directly. However, development of GUI is not an easy task. We have
developed a graphical user interface constructing environment which supports editing facilities of six media
types (including text, image, diagram, graph structure, table, and hierarchical structure). This system, called
Canae, is intended to be a general platform for several interactive and graphical applications. Canae provides
various customization methods and an extension language for application developers to use editor parts as com-
ponents of user interface. For modifying and extending these editors to accommodate to an application’s needs,
we use the MVC paradigm and object oriented approach in designing Canae. Application programmers can
modify editor’s keyboard handling and mouse handling by creating application specific Event Maps and Key
Maps. Canae also provides a mechanism that enables applications to associate application’s data and data in
Canae. Canae is widely used for building several product-level applications. By evaluating three CASE applica-
tions developed with Canae, we have found that Canae reduces the amount of newly developed program codes

by about 50% or more.
~

1. Introduction

As window systems become popular, there is a grow-
ing need for a Graphical User Interface (GUI) that al-
lows a user to manipulate objects on the screen directly.
Today, the use of workstation is not limited to en-
gineers or computer specialists. Application programs
for novice users must have graphical and intuitively un-
derstandable user interfaces.

However, the development of GUI is not an easy
task, because it requires highly specialized program-
ming techniques. Although GUI part is not a central
part of the application, the cost of developing GUI
tends to be more expensive than application specific
parts, such as data management parts in a database ap-
plication.

GUI part should be developed in an incremental
fashion, because it is difficult to design a ““good’’ user
interface without feedbacks from users.

To achieve these requirements, window systems usu-
ally provide a “‘toolkit’’, which is a collection of interac-

This is a translation of the IPSJ 30th Anniversary Award Paper that
appeared originally in Japanese in Journal of IPSJ, Vol. 31, No. §
(1990) pp. 602-611.
*NEC Corporation.
**NEC Microcomputer Technology, Ltd.
***NEC Scientific Information System Development Corporation.

Journal of Information Processing, Vol. 14, No. 4, 1991

tive techniques, such as buttons, menus, and scroll
bars. Toolkit frees application programmers from low-
level programming of user interface. Although toolkits
are useful, they do not help the most cost-intensive part
of GUI development, that is a construction of direct-
manipulation interface which allows the user to manipu-
late graphical objects on the screen directly. For exam-
ple, it is quite difficult to construct a module structure
editor in a CASE system, or to construct a page-layout
user interface in a DTP (desk top publishing) system,
but toolkit does not help a programmer in these areas.

There is another way to support GUI development.
Emacs and Hyper Card have script languages which pro-
vide methods to extend and customize their user inter-
face. Emacs, the screen oriented text editor, has a Lisp
interpreter (called Emacs-Lisp) to extend its editing
functionality. By using Emacs-Lisp, the user can create
various applications beyond ordinary text editors, such
as an electric news reader. Therefore, Emacs is used as a
general platform for constructing various text-oriented
applications. These systems reduce the costs of user in-
terface construction dramatically than traditional
toolkits.

However, Emacs is limited to text based user inter-
faces; Hyper Card is also limited to texts and bitmaps.
Window oriented applications tend to deal with various
types of graphical representations (or media) other than



456 J. REkiMoTO, H. TarUMI, M. SuGal, G. YaMazakl, K. IGaRl, T. Mori, T. SUGIYAMA, A. UcHiYaMA and C. AKIGUCHI

text or bitmap. For example, a module configuration
system might use a network chart to represent module
interconnections, and a form sheet to represent the
properties of the modules. At this time, there is no sys-
tem that supports multiple media as well as extension
languages.

According to the above discussion, it would be quite
useful if there were a system which provides a customi-
zation mechanism and language with various types of
media. We have developed such a system, called Ca-
nae'. Canae is a platform for development of various ap-
plications, especially for CASE systems. We have inves-
tigated various applications including CASE systems,
and selected six types of editor parts (text, diagram, im-
age, graph structure, hierarchical structure, and image)
as building blocks of user interface.

This paper describes Canae’s architecture and our ex-
periences of applying it to CASE systems. In Section 2
through 4, we give the model and the design of the sys-
tem. In Section 5, we evaluate example applications de-
veloped with Canae. Finally, in Section 6, we will dis-
cuss the model proposed by Canae.

2. The Architecture of the Canae System

Figure 1 depicts the system architecture of the Canae
system. Canae is a client process of the X window [3]
system running on a Unix workstation. Below, we will
explain the main components in the Canae system.

2.1 Dialog Parts

Dialog parts provide basic interaction techniques
such as buttons, menus, lists (scrolling menu), volumes,
palettes (icon based menu), fields (for 1-line text edit-
ing), and panels which compose other dialog parts on
the dialog box. Dialog parts correspond to toolkit de-
scribed in Section 1. The Dialog parts are implemented
as subclasses of the X-Toolkit [4, 5] Widger.

2.2 Editor Parts

The editor parts provide basic editing functionality
for six types of media. We did not select an application
specific media such as a music score to keep generality
of Canae. Although six might not be enough to handle
all kinds of applications, we expect that these media will
widely cover many application domains. We will dis-
cuss the domain of Canae in Section 6.

The features and usage of each media are as follows:

(1) Text. Text media handles multi-font string (in-
cluding Japanese Kanji character). It also provides
Kana-Kanji conversion input. Text media is used as an
embedded editor to other media (to edit strings in other

'We named our system ‘‘fi(Canae)”’, which means a tripod in
Japanese, as a hieroglyph that illustrates a system supporting a win-
dow.

>The word *‘widget”’, which means a small gadget on the screen, is
the term used in the X-Toolkit.

Script (Canae-Lisp)
Program

Editor Parts

Text, Image, Diagram,
Graph, Herachy, Table

Fig. 1 The architecture of the Canae system.

media, such as cell strings in the table editor), as well as
a stand-alone text editor.

(2) Diagram. Diagram is a composition of primitive
pictorial elements, such as line, circle, rectangle, or
text. This medium is useful for representing various
kinds of charts, as well as ordinary diagrams.

(3) Image. Bitmap data, and raster data which are
useful for handling scanned data.

(4) Graph Structure. Graph structure is a medium
that consists of nodes and arcs. To represent a domain
specific chart such as Petri-net, node and arc shapes are
customizable by defining a scheme file. This media is
useful for representing various CASE charts, such as
module interconnection charts, process flow charts, and
state transition diagrams.

(5) Hierarchical Structure. Hierarchical structure is
a medium representing a tree structure. A node in the
tree structure holds a title text, its contents data, and its
subordinate structure. The contents data can be any
kind of other media. This medium is useful for
representing structured flowcharts, or structured docu-
ments such as manuals.

(6) Table. Table is a medium representing matrix
data. The data can be any kind defined in other media.
This medium is useful for creating form-based user in-
terface, such as database query or data entry.

Canae allows an application programmer to create an
application specific user interface by using these editors
as building blocks. The application programmer also
can use a Canae specific interpreter language (Canae-
Lisp, which is discussed later), for customization, as
well as C.

We have selected these six media types based on our
experiences of developing several CASE tools, such as
SDMS [6]. Media in Canae are selected not only from
their appearances, but their internal data structures.
For example, diagram editor and graph editor might cre-
ate data having same appearances, but the internal struc-
tures of each is different. Graph medium handles node
connections. For example, it is possible to create an ap-
plication following nodes through their connection in-



Canae: A Platform for Constructing Graphical User Interfaces with Editors 457

formation. On the other hand, diagram editor can cre-
ate more unconstrained pictures, though it does not sup-
port network structure. We believe that Canae is espe-
cially useful in developing CASE tools, which use vari-
ous graphics representations as input methods and
presentation methods.

2.3 Back-End Process

There are two ways to build applications using Ca-
nae. One is to use Canae as a library, and the other is to
use Canae as a front-end process. The latter case, an ap-
plication is built as a separate process called a back-end
process. A back-end process is responsible for a seman-
tic part of an application’s task such as data- manage-
ment in database systems. When using a back-end proc-
ess, the front-end process, called Canae
process, is responsible for user interface part of the ap-
plications. Canae process is controlled by Canae-Lisp,
which is an interpretive language. A back-end process
could be an existing (text oriented) application. This me-
ans that back-end approach can also be used as a
method of adding a graphical user interface to existing
tools.

Canae process has an event-driven control structure.
There are two types of event: events from the X win-
dow, and events from the back-end processes. Events
from the X window are classified into keyboard and
mouse events. Upon receiving these events, Canae looks
up Key Maps or Event Maps installed on the editor
parts or dialog parts to find an appropriate action (a
callback function written in C or Canae-Lisp). The
Callback functions can send a request to the back-end
process if it is needed. We will discuss KeyMap and
EventMap later.

3. The Design of Editor Parts

In this section, we describe the architecture of the edi-
tor parts.

3.1 Design Goals

As described above, we aim to use editor parts as com-
ponents of user interface. Therefore, editor parts
should not be closed applications. They should have
‘‘open’’ architecture to constitute a user interface plat-
form. Editor parts should also handle various media
types. To accomplish these requirements, we set several
design goals described in the following.

e It should provide a rich set of customization
methods to meet the needs of applications. For exam-
ple, keyboard and mouse event handlings should be cus-
tomizable. It is also necessary to provide a mechanism
that maintains a connection between data in the applica-
tion and in Canae.

¢ Each editor should share a common architecture
to minimize media dependent implementation.

e Editor parts should be fast enough to respond to

user operations. Redisplay time might not be negligible
even if Canae is running on high performance worksta-
tions available today. It is important to design a
redisplay algorithm which makes possible for Canae to
serve user operations as soon as possible even while Ca-
nae is executing the redisplay process.

s It should be possible to create a compound docu-
ment, which is composed of two or more media. For ex-
ample, it should be possible to place a diagram on the
text media. We term this mechanism as media-mixing.
Media-mixing should be achieved without affecting the
implementation of each media.

* It should be easy to add more media types in the
future.

3.2 Improved MVC Paradigm

To accomplish above design goals, we employ the
MVC paradigm [7] as Canae’s editor architecture. The
MVC paradigm, which was developed at Xerox to im-
plement the user interface of Smalltalk-80 [8], is a
framework to construct a visual and interactive applica-
tion by using triples of objects—Model, View, and Con-
troller. A model holds information of an application. A
view is responsible for rendering the contents of the
model to the screen. A controller handles user opera-
tions. When the contents of the model have been
modified, the view redisplays the screen. The Controlier
receives input events from the user, dispatches them to
the model and the view.

Editors in Canae also consist of M-V-C triplet. A con-
troller is implemented as EditorWidget, by defining a
new class in the X-Toolkit widget class hierarchy.
EditorWidget has pointers into a model and a view.
Although model and view classes are defined for each
media type, one EditorWidget class is used for all media
types. A view is an instance of ViewClass, which holds
various functions to display model objects. EditorWidg-
et sends a message for displaying, and for scrolling me-
dia to the view object. It is possible to implement two or
more ViewClasses for one medium. This means that
there could be several visualization schemes for one
medium type. A model has a pointer into MediaDescrip-
tor, which holds media common editing operations
(such as Cut, Copy, and Paste) and file /O functions.

The view defines a drawing area called canvas. A can-
vas is a 2- dimensional area through which a view visual-
izes the contents of the model. EditorWidget defines an
area called viewport in the canvas. It corresponds to the
window of EditorWidget (see Fig. 2).

Separating views and models has several benefits. It is
quite easy to set two or more views onto one model,
which allows the user to manipulate different portions
of the model simultaneously. It is also easy to set differ-
ent types of views onto a model, which is essential if the
application wants to display different aspects of the
model, such as an outline view and a precise view.

Canae improves the MVC paradigm by adding the no-



458 J. RexiMoTo, H. TaruMI, M. Sucal, G. YaMazaKi, K. IGARrl, T. Mori, T. SuGIYAMA, A. UcHIYAMA and C. AKIGUCHI

corresponds to
one editor

Editor's screen

Vlewpon :

Destroy
DrawFragment

ViewClass

MediaDescriptor
Fig. 2 The arcitecture of the Canae editor parts.

tion of lazy redisplay. In the traditional MVC
paradigm, when a model has been modified, the corre-
sponding view starts its redisplaying process immedi-
ately. However, if the model is changing continuously,
the view must update the screen frequently (and waste-
fully). On the other hand, in our MVC scheme, a view
does not start its redisplaying process immediately. In-
stead, the view is notified deita information from the
model upon modification. The view stores the delta in-
formation to prepare for the future redis-playing.
When input from the user stops', the top-level loop of
Canae requests all views that need redisplaying to up-
date its window.

The delta information is a trace indicating how a
model has been changed. In many cases, the cost of
holding delta information is very inexpensive. For exam-
ple, a text editor in Canae uses three numbers (start and
end position of modification in the text model, and the
length of the newly replaced text) as delta information.
The contents of the modified text are not stored in the
delta. When the redisplaying process gets invoked, a
text view can update the screen efficiently from (1) delta
information, (2) updated model, and (3) view data
which hold old information about the model.

The lazy redisplay technique also applies to other situ-
ations in addition to the model modification. For exam-
ple, a view must redraw their screen, when a portion of
the screen area maintained by the view is altered be-
cause of the change in the window’s priority or size, or
when a user requests to scroll the contents of the view.
In such cases, the view remembers those events as deltas
instead of updating the screen immediately. While the
user moves the slider of the scroll bar very fast, the
screen is not updated. When the user stops or moves
slowly the slider (without releasing the mouse button),
the redisplay process is invoked.

'1t can be determined by checking the contents of the event-queue
in the Canae process.

Application defined
EventMap

Default EventMap

Standard event processing
Fig. 3 The structure of the Event Map.

3.3 Customization

In this section, we briefly describe customization facil-
ities used in the Canae system.

To make a user interface be customizable, each editor
needs to have KeyMaps and EventMaps. A KeyMap
defines a mapping between a keyboard input sequence
and a callback function, while an EventMap defines a
mapping between a mouse input event and a callback
function. Callback functions can be written in C or Ca-
nae-Lisp. Application can define a new KeyMap or
EventMap, which defines application specific event—ac-
tion binding, and push it onto the Canae’s standard
Key(Event)Map.

Actions defined in the new map override actions de-
fined in the lower maps, if they have same event se-
quences. For example, if an application pushes its own
EventMap which defines the actions to DoubleClick
and MouseRelease, original definitions corresponding
to these two event types will be overridden by them,
while other definitions, such as MouseMotion, will
remain (see Fig. 3).

To provide the default user interface to editor parts,
Canae defines a standard KeyMap and EventMap. The
standard EventMap provides basic direct manipulation
user interface which allows the user to select, drag, and
scale objects with a mouse. The standard KeyMap
defines default key bindings of editing operations, such
as Cut, Copy, and Paste. These maps are installed auto-
matically at the creation of editors. If application
programmers wish to alter the standard user interface,
they can create an Event(Key)Map which defines a differ-
ent user interface from the standard maps.

For example, consider an application that maintains
module information and represents it by Graph media.
An application programmer can define an EventMap
which has the following definition:

On DoubleClick,

1. select a node whose position corresponds to

the mouse location,

2. find a module that corresponds to the node,

3. openawindow, and display the information re-

garding the module.



Canae: A Platform for Constructing Graphical User Interfaces with Editors 459

To implement step 2, there must be a relation be-
tween application data (modules) and objects in the Ca-
nae editor. This relation can be implemented by using at-
tributes discussed in the next section.

3.4 Attributes

Canae allows applications to place their specific data
for each object in the model. This mechanism is useful
to relate objects in the model (e.g., nodes in the graph
editor) to application data (e.g., module name and
property). We call these data attributes.

An attribute is a tagged byte stream, and its usage is
up to applications. Some typical usages of attributes are
to store:

1. Canae-Lisp program

2. File name

3. Query command to database systems

4. Other application specific information.

Item 2 means that it is possible to implement a hyper-
media system on top of Canae by using attributes as
link data. It is also possible to implement a hot-link, a
hypermedia link that looks for its destination by com-
puting or querying, by using item 1 because we can
store a navigation command written in Canae-Lisp as
an attribute.

3.5 Media Mixing

Canae can combine one type of media data to other
types of media. To implement this, we introduced a
data structure called fragment. A fragment is a byte
stream data which contains all information of the
model. It is used in storing and sending (through a net-
work) media data. It consists of a shell and contents.
Contents represent the information of the model in byte
stream format. They are composed of several blocks.
The shell holds a medium type and the extent of media
if it is displayed by the standard view. It is possible to
get a MediaDescriptor (discussed in Section 3.2) from
media type.

To explain how fragment is used in a media-mixing
context, consider the case of pasting a diagram in the
Text media. The diagram model is not copied directly to
the text, because text, which has no knowledge about
other media, does not handle diagram. Instead, a frag-
ment, which is created by encoding the diagram model,
is pasted to the text. The text media treats this fragment
as some type of characters. Although text does not
know the internal data structure of the diagram, by get-
ting information from the shell part of the fragment,
text can locate and display the diagram.

When editing an embedded fragment, a model is
created by decoding the contents of the fragment. Add-
ing a view and an EditorWidget to the newly created
model, the user can edit the model. When the user finish-
es editing, Canae recreates a fragment by encoding the
model. This fragment is stored in the parent model
again.

Form Media|
Descriptor|
Y o | Block
meem Header
Type
L Header
Version (Shel) ¥ of Rows
Size -1 #of Columns
Header Length Form # of Cells
# of Blocks Data Block w Column
Width Information
Height
Attributes Cell Contents

Form Fragment

Nested'media

Fig. 4 Fragment data example.

In this way, by encapsulating media depending infor-
mation into fragment, media-mixing is achieved
without affecting each media’s implementation. If new
media type is added to Canae, this requires no modifica-
tion to existing media. Note that fragment is also used
as a file format of media data. Figure 4 depicts an exam-
ple of fragment data format which corresponds to.the
table media.

4. Canae-Lisp

Canae-Lisp is a Lisp based interpreter language
which aims to allow a programmer to build an applica-
tion in the interactive environment. Programs written in
Canae-Lisp are used in the following situations:

e callback functions set in EventMap or KeyMap.

e callback functions called from dialog parts.

¢ callback functions to handle back-end processes.

¢ callback functions embedded in the model as an

attribute.
We selected Lisp as a customizing language for the fol-
lowing reasons:

* Advantages of Lisp as a customization language

has been proven by the success of Emacs.

* Execution information, such as window layout,

can be represented as a Lisp s-expression.

e Programmers familiar with the Lisp language

can easily use Canae-Lisp.

Canae-Lisp can call C functions from interactive en-
vironment. This means that it is possible to use the X-
libraries and the Canae libraries interactively. Canae-
Lisp can also handle user interface objects (such as
Model, View, Widgets, etc.) as primitive data types.

Figure 5 is an example Canae-Lisp program; It cre-
ates an EventMap which adds a label to a node or an arc
of the Graph media when a user presses a mouse but-
ton. Note that a function beginning with a capital letter
is a primitive function defined by Canae.



460

;3; Add a label to the node in the Graph editor
(defun edit-label (editor arg event-type x y event)
(let* ((sx (CeDstXToSrc editor x))
(sy (CeDstYToSrc editor y))
(element (GeSearchElement editor sx sy))
(label (GeCreateLabel
editor "label" element sx sy 100 50)))

(GeEditLabel editor label nil)))

;33 Push an EventMap that adds a label text
;33 onto the Graph Editor.
(CxOverrideEventMap

editor

(CxCreateEventMap CX_PRESS ’edit-label nil)

NoEventMask)
Fig. 5.

An example of Canae-Lisp program.

IKKS RO.1

raYs P raVER—AILVEY

J. RexiMoTo, H. TaRUMI, M. SuGal, G. YamAzAKI, K. IGARI, T. MoRI, T. SUGIYAMA, A. UcHIYAMA and C. AKIGUCHI

5. Evaluation

As of September 1989, the Canae system has been dis-
tributed to more than 30 divisions within NEC for build-
ing various applications. We have investigated three
CASE systems developed with Canae to get quantitative
data of Canae’s performance as a user interface plat-
form. The sizes of these applications are about ten thou-
sand steps excluding the Canae library. They are written
in C and build on top of the Canae library directly, i.e.,
back-end process approach and Canae-Lisp are not
used.

Example-1 is a project management system. It can
browse and manage the hierarchical structure of sub-
projects or subtasks, the schedules of subtasks, assign-
ment of tasks to project members, and the hierarchical
structure of the target system. Canae’s graph editor
parts are used to implement hierarchical structure
charts of the project and the target system. Table editor
is used for implementing the project member’s table. Hi-

[ . N

AV 5—7 52—

MR mE e-F R

TR %8 || ®MRaE7,Ar || 7eussiivm | ir=oams fr7-s<-x7]
':‘s G FO.1 IKKS 7R-F17 79 L9{ v
Ry
ASARL Ry WE RTE o YT LA =03
1kks 1989.4.1 1990.9.31 %5 Jfox7IRANL PR L
7+ 1)_Wk_BE _#r AL R
2583
1883.5. 18 40 1889.8.28
1989.8.17 45 1889.7.3. A e _
VA2 VAN ER AL E

Y27 LRH

#—K*?Ezé7F01yF7

F-yR=27

989.7. 10 1)
A=r—=7aSz 7 by V¥

v

0.0 % 1989.4 [
3aT=rovEY || [REyp FRRBTF ¥y —F KoY.
)
Fray
Ikks ver1. 0 N=Fy=t e 91UFY
~ 19804F 19904F.
7 LR fFRRE CECEEGEEGEEEE
F a9 4 UK Y L 27 LR —— FATHO oFY
2F LMBY 1 VK Y o257 LEMRH —
AR 1 VKD S A7 LEMRH — :—E
EPFY AL B L 27 LEARN — ____—_—_°—_———“"“__——J
- _ _
7h o7 TRWE: 27 ] S Sy Th
' 23 IN—7] 7%
avs7bo4vFy | Mk — UAREX X F IS
2] |t Ik F_ A
3 2x A
4] » B
sy 3 14 B r

Fig. 6. A snapshot of the application developed with Canae.



Canae: A Platform for Constructing Graphical User Interfaces with Editors 461

Table 1. Amount of Canae’s use in the real applications.

Example 1 Example 2 Example 3
Canae version VORO VOR1 VIR0
X version X11R2 X11R2 X11R2
(A) Application code 29.8% 18.9% 23.7%
(B) Canae basic library 2.6% 5.2% 8.2%
(C) Dialog parts 5.8% 1.7% 6.5%
(D) Japanese input library 5.4% 7.3% 5.7%
(E) Text editor 0.0% 3.2% 3.2%
(F) Graph
+ Diagram editor 11.0% 17.7% 21.6%
(G) Table editor 7.5% 0.0% 0.0%
(H) Hierarchy editor 0.0% 4.0% 0.0%
(I) Athena Widgets 10.4% 4.3% 6.3%
) X Toolkit 13.2% 15.1% 11.6%
(K) Xlib 14.3% 16.6% 13.3%
y BrerotH 52% 70% 66%
O ey A ? ° ?
M E+FrGHH 33% 38% 39%
™ rcr 7 ° ? °

erarchical editor is not used because it was not available
at the development time. For showing schedules of sub-
tasks, a horizontal bar chart is used. The bar chart is im-
plemented by using table editor and diagram editor.
Figure 6 depicts a snapshot of Example-1.

Example-2 is an upper level CASE tool. Canae’s hier-
archy editor is used to implement the hierarchical struc-
ture of functions and data. Graph editor parts are used
to implement a chart representing relationships among
functions, and a data from chart.

Example-3 is a middle level CASE tool. Graph editor
is used to implement the process-flow chart and the
relationship chart among programs and files.

Table 1 shows how Canae is used with the above
three examples.

In Table 1, application code (A) shows the amount of
source code developed originally for each example. (B)
through (H) show the amount of source code of Canae,
which is linked to the load module of each example. (I)
through (K) show the amount of source code of the X
window libraries linked to the load module of each ex-
ample. The ratios are based on source code lines includ-
ing comment lines. Library source code not actually
linked are excluded. Since the diagram editor is always
used with graph editor in these examples, they are count-
ed together.

In Example-2, the ratio of (A) seems to be low be-
cause the application code itself is small. The ratios of
application code in Example-1 through Example-3 are
about 1.8, 1.0, and 1.6, respectively. The size the Canae
library grows as its version increases; the ratios of total
steps of (B)-(H) in Example-1 through Example-3 are
about 1.0, 1.3, and 1.9, respectively.

The row (L) in Table 1 shows that double or more
codes would be written to implement these examples,

without Canae. These numbers also show the impor-
tance and the size of the user interface on workstation
applications. Although the development cost may not
be proportional to the number of source code lines, we
can regard these percentages as showing the effective-
ness of Canae.

We also believe that the costs of designing user inter-
faces are reduced, although we cannot give any quantita-
tive data. Without Canae, an application programmer
would have to design every user interface precisely. On
the other hand, Canae defines the default behavior of
user interfaces. A programmer can concentrate on
designing the application specific user interface by leav-
ing other common operations to Canae.

The row (M) shows the relative importance of editor
parts in user interface. In case of these CASE tools,
about one third of the code of user interface is editor
parts.

6. Discussion

6.1 Comparison with Other UIMSs

The survey on UIMS written by Hartson et al. [13]
reports that no UIMS exists which handles editing oper-
ations. From this point of view, Canae is different from
other UIMSs. We consider that editing operations are
closely related to the user interface, thus it is not a realis-
tic approach to leave those operations to the applica-
tion. For example, a user interface of selecting and drag-
ging a pictorial element by mouse operation, is closely
related to a representation of pictorial elements. There-
fore, UIMS must have a knowledge about pictorial ele-
ments.

On the other hand, if the UIMS manages editing oper-
ations, how to relate data maintained by the UIMS and
data maintained by the application? In Canae, an appli-
cation can define an EventMap or KeyMap watching
user operations and notify them to the application.
However, this method is insufficient because a model,
which is the data in the UIMS (Canae), could be
modified without user interactions. For example, some
script program might modify the contents of the model
upon receiving an event from a back-end process.
Event(Key)Map can not capture such modifications.

We are planning to solve this problem by introducing
hook into Canae. A hook is an application defined func-
tion invoked on calling a primitive modification method
of models. By using hooks, it is possible to notify any
modifications onto the model to the application as well
as the application which can inhibit the modification if
it is needed.

6.2 Application’s Domain

Canae assumes that all of the presentations used in
the application can be implemented by combing six
types of media. Of course, this assumption does not



462 J. REKIMOTO, H. TARUMI, M. Sucal, G. YaMAzAKI, K. IGARI, T. Mori, T. SuGgiyaMa, A. UcHIYAMA and C. AKIGUCHI

apply to all kinds of applications. For example, Canae
might not be valuable when creating an application that
needs to handle voice data. From this point of view, Ca-
nae is somewhat a domain specific UIMS rather than a
general purpose UIMS. If an application is within the
area that Canae anticipates, Canae is more valuable
than other UMISs. Canae is designed to support CASE
systems and Office System in mind. Most applications
in these areas can be represented by combining six types
of media that Canae supports. It is possible to imple-
ment user interfaces needed in those applications by us-
ing customization mechanisms provided by Canae. We
consider this goal has been achieved.

On the other hand, consider to implement a desktop
publishing (DTP) system with Canae. It might be
difficult to develop a WYSIWYG DTP system with Ca-
nae, because the text editor of Canae does not support a
fine text layout such as kerning or ligature. However, it
is still possible to develop a DTP system which creates a
structured text by using the hierarchical editor; defines a
layout scheme by using the diagram editor, and shows
page images by using the image editor.

One possible approach to extending the domain of
Canae, is to provide a mechanism that allows applica-
tions to define new media types. However, it is uncer-
tain if enough performance is gained when media is de-
fined in Canae-Lisp. These issues require more study.

6.3 Consistent User Interfaces among Applications

It is desirable to make user interfaces consistent
among several applications, because it reduces a user’s
effort to learn each application operation. Sakamura
[15] claims that there are three approaches to promote
standarization; they are (1) using metaphor, (2) provid-
ing intrinsics, and (3) creating standard applications.
Canae is also helpful to standarize user interfaces
among applications, because it provides higher level
parts (editor parts) compared to other toolkits, and
default user interfaces are determined by EventMaps
and KeyMaps. Applications developed with Canae
share integrated behavior, because they inherit the
default user interface from Canae. This means that Ca-
nae provides intrinsics for editing operations.

7. Concluding Remarks

We have proposed a model to build a graphical user
interface with editor parts, and have developed a system
called Canae according to this model. We have evaluat-
ed three applications built on top of Canae, and proved

that Canae reduces the user interface development
efforts.

In Canae, application programmers must write a pro-
gram in C or Canae- Lisp to define a user interface. We
are developing an interactive tool on top of Canae,
which enables application programmers to define user
interfaces in WYSIWYG manner and generates source
code skeletons. We are also planning to add an end-user
programming facility to Canae, which allows end users
(not application programmers) to customize and extend
their environment without programming.

Acknowledgments

We deeply appreciate the help given by Shouhei
Takeuchi and Chie Onuma, for their contributions on
early discussions of Canae. We also appreciate the help
of Nobuyuki Saji, who is a developer of CI-Lisp, which
became the base of Canae-Lisp. We would also like to
thank users of the Canae system for various sugges-
tions.

References

1. STALLMAN, R. M. Emacs: The Extensible, Customizable, Self-
documenting Display Editor, in Proc. ACM SIGPLAN/SIGOA Con-
Serence of Text Manipulation (1981).

2. GoopMaN, D. The Complete HyperCard Handbook, Bantam
Books (1987).

3. SCHEIFLER, R. W. and GETTYS, J. The X window system, ACM
Trans. Graph. S, 3 (1986), 79-109.

4. McCoRMACK, T. et al. X Toolkit Intrinsics—C Language X Inter-
face, X Window System, 11, 3 (1988).

§. WeissMmaN, T. et al. X Toolkit Widgets—C Language X Inter-
face, X Window Sytem, 11, 3 (1988).

6. SHIGO, O., NORIFUSA, M. et al. Software Production System for
Communication and Control Software, NEC Technical Journal, 40,
1 (1987) (in Japanese),10-18.

7. KRASNER, G. E. and Pops, S. T. A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Smalltalk-80,
Journal of Object-Oriented Programming, 1, 3 (1988).

8. GOLDBERG, A. and RoOBsON, D. Smalltalk-80—The Language and
its Implementation, Addison-Wesley, 1983.

9. HAZEYAMA, A. HARADA, K. et al: A Software Development Con-
trol System IKKS(2)—Overview and Features—Proc. 39th Annual
Convention IPSJ (1989) (in Japanese), 1411-1412.

10. SucivamA, T. YosHIDA, M. et al. The Japanese Interface
Toolkit YUI based On Grammar Acquisiton from Japanese Example
Sentences. IPSJ SIGNL Notes, No. 89-NL-73 (1989) (in Japanese).
11. HirANo, F. A User Interface for Multimedia Document Data-
bases, IPSJ SIGDB Notes, No. 70-5 (1989) (in Japanese).

12. WATABE, K., SAKATA, S. et al Distributed Multiparty Desktop
Conferencing System: MERMAID, Preprints Work. Gr. for Office
Systems. Inst. Electronics, Inf. & Comm. Eng. Japan, 0S89-27
(1989) (in Japanese).

13. HARrTsoN, H. R. and Hix, D.: Human-Computer Interface De-
velopment: Concepts and Systems for Its Management, ACM Com-
puting Surveys, 21, 1 (1989), 5-92.

14. YOUNG, R. et al.: Software Environment Architectures and User
Interface Facilities, IJEEE Trans. Softw. Eng., 14, 6 (1988), 697-708.
15. SAKAMURA, K. The Design Approach of BTRON Human Inter-
face, Trans. Inst. Electronics, Inf, & Comm. Eng. Japan, J70-D, 11
(1987) (in Japanese).



