Translation from Transactions of IPSJ

Regular Temporal Logic Expressively Equivalent to Finite
Automata and Its Application to Logic Design Verification

HiroMi HiraisHI*, KivoHARU HamacucHI**, HirosHr Fuinr***

and SHUZO YAJIMA**

Due to the progress of VLSI technologies, logic circuits have become more complex. As a result, the
possibilities of design errors have increased. Logic design verification, therefore, has become more important as
a means of guaranteeing the correctness of logic degign. Logic design verification requires mathematical logic
with enough expressive power to describe the behavior of logic circuits. While propositional logic is known to
be equivalent to combinatorial logic circuits, a class of mathematical logic that corresponds to sequential
machines and/or finite automata has not yet been clarified.

This paper introduces various types of Regular Temporal Logic (RTL), which is expressively equivalent to
finite automata and can express the notion of time explicitly. A design verification algorithm for sequential
machines based on a model-checking method of the RTL is also given. Although the complexity of the model-
checking problem of the RTL is non-elementary, the proposed model-checking algorithm is efficient and still
runs in a time proportional to the size of the structure models. An RTL mode! checker based on the proposed
algorithm is implemented, and it is shown that it can determine whether the designs for medium-size sequential

machines allow them to satisfy their specifications in a reasonable time and space.

1. Introduction

With the progress of VLSI technologies, the designs
of logic circuits are becoming more and more complex.
As a result, the possibility of design errors is increasing,
and this greatly affects the development cost and time.
It is therefore important to establish new logic design
methodologies that make it possible to verify the cor-
rectness of logic design.

Conventional logic simulations do not meet this
requirement because they cannot guarantee correctness
of design except for the input patterns simulated. To
guarantee the correctness of a design, we need to prove
it formally by describing its specification/design and
verifying its correctness according to some formal
mathematical logic.

Although propositional logic is known to correspond
to combinatorial logic circuits, we currently have no
finite mathematical logics that correspond to sequential
circuits and/or their mathematical models. The con-
struction of such mathematical logic systems is strongly

This is a translation of the paper that appeared originally in
Japanese in Transactions of IPSJ, Vol. 31, No. 7 (1990), pp. 1134~
1145.

*Department of Information and Communication Sciences,
Faculty of Engineering, Kyoto Sangyo University.
**Department of Information Science, Faculty of Engineering,
Kyoto University.

***Information and Communication Processing Research

Laboratory, NTT.

Jounal of Information Processing, Vol. 15 No. 1, 1992

desired not only in the field of logic design verification
and concurrent processes but also in the field of
mathematical logic itself.

As a mathematic logic for logic design verification,
temporal logic [10], which can express the notion of
time explicitly, has been studied widely in the field of
formal design verification of protocols and logic cir-
cuits. Some practical formal design verification systems
have been developed on the basis of temporal logic [1,
2, 3,4, 5, 11]. The temporal logic used in these systems,
however, does not have enough expressive power to
describe the specifications of any finite automata.
Because of the weak expressive power of conventional
temporal logic, there have been several attempts to ex-
tend its expressive power. Wolper et al. introduced tem-
poral operators associated with right linear grammar
and/or Biichi automata [12, 13] and achieved on ex-
pressive power equivalent to that of finite automata. In
order to describe specifications in their logic, however,
it is necessary to introduce temporal operators that cor-
respond in a sence to the automaton to be designed. We
therefore need an infinite number of temporal
operators to describe the specifications of any finite
automaton in general. Moszkowski proposed a more
powerful temporal logic named interval temporal logic
(ITL) [9], but its expressive power is too strong and its
satisfiability problem is undecidable. It is therefore
difficult to use ITL as a basis for logic design verifica-
tion.

130

Considering the above stated problems, we have pro-
posed various classes of regular temporal logic (RTL)
[6, 14, 17] that correspond to regular sets (regular sets
can be regarded as input/output sequences (behavior
sequences) of finite automata), &-free reguale sets (a
subclass of regular sets), and o and/or w regular sets,
which include infinite sequences.

Regular temporal logic contains only three temporal
operators, which express notions of time, namely,
“‘next time,”’ ‘‘next interval,”’ and ‘‘repeat,”’ in addi-
tion to the conventional propositional operators. Its ex-
pressive power is equivalent to that of finite automata.
We can therefore describe the input/output specifica-
tions of any logic circuit in RTL.

In this paper, we first give a unified definition for
various classes of temporal logics and discuss their
expressive power. In order to verify that a given
automaton or a sequential machine meets their specifica-
tions, we also propose an efficient model-checking
algorithm of RTL. A formal logic design verification
system based on the proposed model-checking
algorithm has been implemented, and some verification
examples show that it can verify the correctness of the
design of sequential machines with several hundred
states in a reasonable time and space.

This paper is organized as follows: Section 2 gives the
basic notations and definitions of finite automata, in-
finite strings, and so on. Four classes of regular tem-
poral logics are introduced. Section 3 discusses basic ap-
proaches to verification based on one class of RTL nam-
ed e-free RTL. In Section 4, a verification algorithm
called model-checking algorithm is described and its
computational complexity is discussed. Section 5 ex-
plains the verification system (model checker) based on
the proposed algorithm. Examples of design verifica-
tion are also given and show that the RTL model
checker is useful from a practical point of view. Section
6 concludes this paper by summarizing the results.

2. Regular Temporal Logic

2.1 Basic Notations

This section gives the basic notation and definitions
of basic terminologies.

A finite word over an alphabet X'is a finite non-null se-
quence of symbols from 2. An w wold is a countably in-
finite sequence of symbols from X. An empty word is a
null sequence that contains no symbols and is denoted
by €. 21 is a set of all finite words over Z. 2 is a set of
all w words over 2. 2*=21U{¢} and T =X*UZ“. An
element in 2~ is called a word over 2.

For a word x over 2, Ix| represents the length of x.
x(i) refers to the i-th symbol of x and x' represents the
suffix sequence of x starting at the i-th symbol of x.
Note that x'=x, l¢l =0, and |x| =w if x is an w word.
We also define that x(i)=¢ and x'=¢ for i> |x|.

Concatenation of two words x and y over X, denoted

H. HiraisHi, K. HAMAGUCHI, H. Fusii and S. YAJIMA

by xy, is defined as follows:

1. ex=xe=x.

2. If xeZ'and ye Z'UZ*,

* xy(i)=x(i) for any integer i such that
I=<i<lxl.

o xy(lxi+i)=y(i) for any integer i such that
1=i.

3. IfxelX? xy=x.

A set of words over 2 is called a language over X.
L,L, denotes a concatenation of two languages L, and
L, over 2, and is defined as L, L,={xylxe L), ye L,}.
Various types of closure of a language L over X are

defined as follows: Lt= CJ] L, L*= Qo L, L*={xx,

e lxy, X, e LNXTY, and L*=L*UL®,
L°={e} and L'*'=LL(i=0).
Definition 1 (Regular Set). Let us consider the following
production rules for a class of languages, #, over 2:

Al. An empty set @ is an element of Z.

A2. If se Z, a set {s} is an element of &.

A3. InL,, Lye®, L{UL,; and L,L, are elements of

R.

A4, If Le #, L* is an element of &.

AS5. If Le #, L” is an element of %.
If a language L over X is an element of the class of
laguages % constructed by the finite application of the
above rules A1-AS, L is called an o regular set. In this
case, if L& X', L is called an w regular set; if ¢ L, L is
called an e-free oo regular set. If L is an element of a
class of languages obtained by the finite applications of
the above rules A1-A4, L is simply called a regular set.
In this case, if ¢¢ L, L is called g-free regular set.

where

2.2 Dfinition of Regular Temporal Logic

Regular Temporal Logic (RTL for short) is an exten-
sion of propositional logic with three temporal
operators *‘(0)’*, *“ : »’, and ‘1]’ whose intuitive mean-
ings are “‘next time,”’ “‘next interval,”’ and ‘‘repeat,’’ re-
spectively.

Definition 2(Syntax). Let AP be a set of atomic proposi-
tions. RTL formulas are defined inductively as follows:

Bl. If pe AP, then p is an RTL formula.

B2. IfnisanRTL formula, then so are (—#), (On),

and (Cn).

B3. If#nand ¢ are RTL formulas, then so are (7V¢&)

and (n:£).

Let 2 be a set of states. The value of an RTL formula
is defined according to a sequence of states in ~. Let D
be a semantic domain of RTL formulas. If D=X1, the
RTL is called e-free finite RTL. If D=X*, it is called
finite RTL. If D=X"—{¢}, it is called e-free infinite
RTL. If B=X, it is called infinite RTL.

The e-ffée finite RTL is exactly the same temporal
logic as proposed in [6, 7]. The finite RTL is exactly the
same temporal logic as proposed in [16, 17]. The ¢-free
infinite RTL is exactly the same temporal logic as pro-
posed in [14, 15].

Regular Temporal Logic Expressively Equivalent to Finite Automata and Its Application to Logic Design Verification 131

The formal semantics of RTL formulas are given in
the following.

Definition 3 (Linear Model). A tuple M=(Z, I) is called
a linear model of RTL, where X is a set of states and 7 is
a function for interpreting atomic propositions. 7 labels
each state with a set of atomic porpositions that are true
in that state. For the e-free finite/infinite RTL,
I.2—-24%; for the finite/infinite RTL, I: ZU{e}—24".

Definition 4(Value of RTL Formulas). M, o1 denotes
that the RTL formula # is true for the state sequence o
over the linear model M. If there is no confusion, we
sometimes omit M and just write 6=#. Let p be an
atomic proposition, 7 and ¢ be RTL formulas, and D be
a semantic domain of the RTL. We also assume that
oe D. The relation k= is defined inductively as follows:

Cl. oepepel(o(1)).

C2. o=(—m)eokEn.

C3. oE(nvé)eaok=nor gkEé.

C4. o=(On)e

+ In the case of ¢-free RTL, |6l =2 and o’=n.

e Otherwise o2E=n.

C5. oeEn:é)e

+ If lo|l #w, 6=0,0; and there exist o, and o, in
D such that o,=7 and o,=¢£.

+ If lol=w, ok=n or there exist g, and o, in D
such that 6=0d,0,, 10\l #0, l6;! =w, a7,
and o,=¢.

C6. a=(CIn)e

¢ If lol #w, there exist g;:c D (1 =vi<m) such
that 6=0,0," - -0 and gi=n(l<Vvi<m).

+ If lol=w, there exist ;e D (1 <vi<m) such
that G=0102" " O, g=n(l<vism),
loil #w(1=Vv;,<m), and |6, =w; or there ex-
ist g, D such that 6=a,0;" - -, and g;=5 and
loil #w for vi=1.

Intuitively, ““O#’’ indicates that # holds for the se-
quence starting from the next state. ‘‘:£’’ means that n
holds for the former part of the sequence and ¢ holds
for the latter part of the sequence. ‘‘(Cl”’ indicates that
n holds repeatedly.

We also use conventional abbreviations such as ‘“A”’
for conjunction, ‘=’ for implication, ‘=" for
equivalence, “‘Vy’’ for tautology, and “‘ V¢’ for invalid
formula. We also assume that unary operators have
higher precedence than binary operators. When there is
no ambiguity, we usually omit parentheses.

If M, o=n for some linear model M and some state
sequence oe D, n is said to be safisfiable.

2.3 Expressive Power of Regular Temporal Logic

Let 77 be an RTL formula. The set of sequences for
which n becomes true is represented as L{ZX, IX(n)
={agloe D, a=n}. When there is no ambiguity, we ab-
breviate L{Z, IX(n) as simply L(n). According to the
definition of RTL (Definition 4), we have the following
lemma:

Lemma 1. Let p be an atomic proposition and 7 and &
be RTL formulas. For a linear model M=(2, I) of
RTL,

1. L(p)={solse X, pe I(s), soe D}U{clee D,
pe ()}

2. L(—m)=D-L(n)

L(nv&)=L(n)UL(¢)
LOn)=ZL(mU{e}NL(n))
L(n:8)=L(n)L()

6. L{Cm)=L(n)"UAL(n)*ND)

Let 7 be one of the various classes of RTL (namely,
e-free finite RTL, finite RTL, £-free infinite RTL, or in-
finite RTL). Let # be a class of languages. is said to
be expressively equivalent to 2 if and only if the follow-
ing two conditions hold:

¢ Forany RTL formulane 7, L{Z, I)(n)is an ele-
ment of £.

* For any language Re &, there exist an RTL for-
mula 7e J and an interpretation function 7 such
that L{Z, I>(n)=R.

We have the following theorem about the expressive
power of the four classes of RTL defined in the
previous section.

Theorem 1 (Expressive Power of Regular Temporal
Logic)

1. e-free finite RTL is expressively equivalent to an

e-free regular set [6].

2. Finite RTL is expressively equivalent to a regular

set [17].

3. e-free infinite RTL is expressively equivalent to

an g-free oo regular set [14, 15].

4. Infinite RTL is expressively equivalent to an oo

regular set.

(Proof) We give a proof only for the fourth case. From
Lemma 1, it is clear that L(n) is an o regular set for
any infinite RTL formula 7. Conversely, let R be a oo
regular set over 2. Let AP={p,Ise 2} and I(p,)={s}.
Let F(R) denote an infinite RTL formula # such that
L(n)=R. F(R) can be calculated inductively as
follows:

F@)=V;

F({se2}) =Ps/\—|Po/\on
F(R\UR,)=F(R\)VF(R;)
F(R\R:)=F(R\):F(R;)

F(R*)=pV[IF(R))
F(R*)=LI(F(R)AFinA—py),

where py is an atomic proposition such that I(pe)={e},
—woAOpy represents a set of all sequences whose length
are exactly one, and Finé—-,(Vr:VEe) represents a set of
all finite sequences that include an empty word ¢.

A set of behavior sequences (input/output seq-
uences) of a finite automaton is equivalent to an (e-free)
regular set when we are concerned only with finite
behavior; it is equivalent to an w regular set if we are
concerned only with infinite behavior; it is equivalent to
an (e-free) oo regular set if we are concerned with both.
In this sense, RTL is expressively equivalent to finite
automata, and any behavior sequences of any finite
automaton can be completely described in RTL.

nhw

QU s W

132

3. Design Verifincation of Sequential Machines

3.1 Description of Specification and Design

In this section we discuss how to verify the design of
sequential machines by using RTL. Let us consider
verification of a deterministic Mealy-type or Moore-
type sequential machine with n binary input signals
X={x;, x3,-*+,x,} and m binary output signals
Z={z, 2, ", Zm}. Its behavior sequence (input-out-
put sequence) is represented by a finite sequence p over
2" such that p(k)={xlx;=1 at the k-th input}U
{zjlz;=1 at the k-th output}.

We assume that a design specification is given in
terms of a set of possible behavior sequences of a
machine to be designed. Let us consider a finite
behavior sequence of any length. Let p, and p:, be
atomic propositions associated with input signal x; and
output signal z;, respectively, such that p, is true iff
x;=1 and p, is true iff z;=1. Then we can describe the
set of all possible finite behavior sequences of the
machine in e-free RTL. Though we can express an in-
finite behavior sequence by using e-free infinite RTL,
we will discuss the verification problem for infinite
behavior in a future paper. Hereafter, RTL refers to &-
free RTL.

For example, let us consider design verification of the
T flipflop shown in Fig. 1. We assume that the output z
is 0 in the initial state. The output z changes its value if
and only if the previous input x is 1.

Let p, be an atomic proposition whose value is true if
and only if the input x=1, and let p, be an atomic pro-
position whose value is fure if and only if the output
z=1. Then the specification of the T flipflop can be writ-
ten as follows:

n2p.=(p:=O—p,)
spec=—p.ALJ(nVLEN1),

where LEN12—OVy, OE2EV(VriE), and [E2
—O—=¢.

z — T-FF Lvl

Sample 1/0 sequence
x: 0010111001
z: 0001101000

Fig. 1 T flipflop.

M;
0/0 1/0 0/1

CrC =0 Ol

/1
Moore Type T Flipflop Mealy Type T Flipflop

Fig. 2 Two designs of T flipflop.

H. HiraisHi, K. HAMAGUCHI, H. Fusll and S. YAima

n indicates that the value of z at the next time differs
from that at the current time if and only if the current
value of x is 1. LENI1, ¢, and [J¢ mean that “‘the
length of the sequence is 1, ‘‘£ will become frue at
some time in the future or present,”’ and ‘£ is always
true from now on.”’ The specification spec of the T
flipflop means that the initial value of z is 0 and »
always holds from now on. Since this property of the T
flipflop is meaningless for a time sequence whose length
is 1, LEN1 is used in spec so that spec ignores a non-
existing next state on the last occasion of a time period
under consideration.

The design of this T flipflop is assumed to be given as
either a Mealy-type or a Moore-type sequential
machine, as shown in Fig. 2. The verification problem
then becomes to check whether spec holds for all possi-
ble finite behavior sequences of the designed machine.

3.2 Structure Model

In order to treat possible behavior sequences more
easily, we define a structure model.
Definition 5 (Structure Model). A structure model is a
4-tuple K=(Z, I, R, X,), where
1. (2, 7) is a linear model of RTL.
2. RcXx2 is a binary relation over 2 and
represents a transition relation between states.
3. 2pES2is a set of initial states.
A structure model is a kind of Kripke model [8] with
a set of initial states. For a structure model K=(2, I,
R, %)), a finite sequence of states n=s,5" s, X' is
called a finite path from s, if and only if (s;,5:+1)e R for
any / such that 1=si<n—1.
The truth value of an RTL formula with respect to a
structure model X is defined as follows.
Definition 6 (Truth Value with Respect to a Structure
Model). If g=7 for a finite path ¢ from a state s of a
structure model K, 7 is said to be true with respect to
{K, s)({K, s)-true); otherwise, it is said to be false with
respect to <K, s)({K, s)-false). Furthermore, if # is
{K, sp>-true for some initial state spe Xy, 7 is said to be
true over K (K-true); otherwise, # is said to be failse over
K (K-false).
Let M=(X, Z, S, J, 4, $,) be a deterministic sequen-
tial machine, where
X is a finite set of binary input signals.
Z is a finite set of binary output signals.
S is a finite set of states.
soe S is the initial state.
0:2% x S-S is the next state function.
A is the output function such that
+ For Moore type; A:S—27 is a total function
over S.
» For Mealy type; A:2%x S—2Z and has the same
domain as J.
The structure model K corresponding to M is con-
structed as follows:

& {s;,lsie S, je 2%, 6(J, 5) is defined.}

Soh W~

Regular Temporal Logic Expressively Equivalent to Finite Automata and Its Application to Logic Design Verification 133

Fig. 3 Structure model of T flipfiop.

for Mealy type
for Moore type

I(Sij)é{{pxlxej}U{pzlze AG,)}
| {pixe j}U{p:lze A(s)}
Ré {(Si,j, Si',j‘)ISi,jy Siry € 2z, 5(_], Si)=Si‘
Zoé {So,je X},

The structure model corresponding to the T flipflop is
shown in Fig. 3. Let |E| be the number of transition
edges of a sequential machine M. Then the size of the
structure model K corresponding to M becomes as
follows:

o(ZH=0(EHY=0(XI12'%"

O(IRN=0(IE12'XY=0(I1Z 12" X))

O(ZI+IRD=0IZ 1+ I|EN2'XY
As can be easily seen from the way in which a struc-

ture model is constructed, there is a one-to-one cor-
respondence between a set of possible behavior se-
quences of M and a set of paths from an initial state of
the corresponding structure model K of M. The verifica-
tion problem of a sequential machine M over its corre-
sponding structure model K becomes one of checking
whether ‘‘spec is true for every finite path from any in-
itial state of K’ or whether ‘‘—spec is K-false.”” This is
done by a model-checking method described in the next
section.

4. Model-Checking Approach

Model checking determines whether an RTL formula
n is K-true or not. Before describing the model checking
algorithm, we first define the derivation of the RTL for-
mula.

4.1 Derivative of an ¢-Free Finite Regular Temporal
Logic Formula

The derivative of an RTL formula n by a state se Z,
denoted by #/s, gives a formula that should hold in the
next state so that # may hold in the present state. It is
formally defined inductively as follows:

~ [Vrif peI(s
pls= { Ve ottl:erwi(sz
(—m)/s=—(n/s)
(vE)/s=(n/s)V(E]s)
Om/s=n

EV((ls): &) if s=n

(n/s): & otherwise
(n/s)Vv((n/s):EnvEln if sen
/) /s):Lm) otherwise.

Derivative of 5 by a sequence of states g=s,5; "
s,e X' is defined as

/(- -/)/)/ s0).

We also define that /e=n. Note that Vr/s=Vr and
VF/S: VF.
From the definition of derivatives, the next lemma
clearly holds:
Lemma 2. Let o be a finite sequence over 2 such that
la| =2. Then the necessary and sufficient condition for
ot=nis al=n/a(l).
Theorem 2. Let K=(2, I, R, 2,) and n be a structure
model and an RTL formula, respectively. The necessary
and sufficient condition that # is (K, s)-true for a state
se X' is that either s=# or there exists a state s’ such
that (s, s')e R and #/s is (K, s’)-true.
(Proof) From Definition 6, n is (K, s>-true if and only
if o= n for some finite path o on K from s. Considering
Lemma 2, this is equivalent to the condition that s=n
or n/s is (K, s’>-true for some state s’ such as (s, s’)
eR. (Q.E.D.)
In the calculation of derivatives and checking condi-
tions stated in Theorem 2, we need to obtain the truth
value of n for a sequence s whose length is 1. This can
be obtained inductively as follows:
seEpepel(s)
seEnpvéesEnor seE
SE—nesEn
sk=On always holds.
sk=n:£ always holds.
selinesen

('lif)/sé{

(E‘ﬂ)/sé{

e N e

4.2 Model-Checking Algorithm

It is easy to construct a model-checking algorithm
by a depth-first search for the necessary and sufficient
condition stated in Theorem 2.

Algorithm 1 (Model-checking algorithm)

Input: a structure model K=(ZX, I, R, 2,) and an
RTL formula 7.

Output: if n is K-true then ‘T’ else ‘F’.

Method: by Verify(K, n) in Fig. 4.

In Fig. 4, Check (K, s, n1) is a procedure that returns
‘T’ if n is {K, s)-ture, or ‘F’ otherwise. Addlabel(s, n,
X) registers a label x to a tuple (s, #7), which means that
the value of 7 is x in state s. x=‘F’ means that 7 is (X,
s>-false. x="‘C’ means that the truth value of # in state
s is now under investigation. These labels are used to
prevent the procedure Check from being called more
than once for the same pair of s and #. We need not use
a label to show that 7 is <K, s)-true, because the pro-
cedure Verify returns ‘T’ immediately after the pro-
cedure Check returns “T’. Label(s,) returns the label
of 5 at s if it is already registered; otherwise it returns
null.

134

procedure Verify(K,7)
begin
for all s € %o
begin
if Label(s,n) # ‘F’ then

if Check(X,s,1) = ‘T’ then return ‘T’

end
return ‘F’;
end
end of procedure

procedure Check(K,s,n)
begin
(z,€) := Derivation(s,7);
if z = ‘T’ then return ‘T";
if £ = Vr then return ‘T’;
if§ = Vr then
begin
Addlabel(s, ,'F’);
return ‘F’;
end
Addlabel(s, n,'C");
for all &' such that (s,s) € R
begin
z := Label(s', £);
if z = NIL then

if Check(K,s’',€) = ‘T’ then return ‘T’

end
Addlabel(s, 7,'F");
return ‘F’;
end
end of procedure

H. HiraisHi, K. HAMAGUCHI, H. Fuisil and S. YAIIMA

procedure Derivation(s,n);
begin

switch(n){

case n € AP:
if n € I(s) then return ('T’,Vr);
else return ('F’,Vp);

case 17 = 1y
(z,€) = Derivation(s,m);
if z = 'T’ then return ("F’,~{);
else return ("T",~€);

case n =1 V1
(z1,6&) := Derivation(s,m);
(22,&2) := Derivation(s,12);
if (21 = 'T’ or z = 'T’) then z :="T%
else z := 'F
return (z,§ V &2);

case = QOm:
return ('F',m);

case =M i
(2,€) := Derivation(s,m);
£i=8im;
ifz =T’ then § := £V,
return (’F'.§);

case 7 =[]m:
(z,€) := Derivation(s,m);
£:= €V (E:m);
ifz="T then {:=§vmy
return (z,£);

end
end of procedure

Fig. 4 Model-checking algorithm.

Verify (K, n) calls Check (K, s, n) successively for
each initial state se X, if # is not yet proved to be (X, s)-
false. If the procedure Check returns ‘T’ at least once,
the procedure Verify also returns ‘T’; otherwise it
returns ‘F’.

Check (K, s, n) first calls Derivation (K, s, n). Deriva-
tion (K, s, n) checks whether si=# as well as calculating
n/s. It substitutes #/s into & and also substitutes either
‘T’ or ‘F’ into x according to whether sk=# or s¥&n.
Then it returns ‘T” when é=n/s is Vr or x=‘T". If
E=n/s is Vp, it labels the tuple (s,) ‘F’, and returns
‘F’. Otherwise, it labels the tuple (s, #) ‘C’. Then it
checks Label (s’, n/s), and if the tuple (s’, n/s) is not
yet labeled, it calls Check (K, s’, n/s) recursively for
each next state s’ of s successively. It returns ‘T’ when
one of the recursive calls to the procedure Check
returns ‘T’. If every recursive call to the procedure
Check results in the return value ‘F’, it labels the tuple
(s, n) ‘F’ and then returns ‘F’.

Figure 5 shows an example of model checking of the
T flipflop. In Fig. 5, a solid box indicates that Check
(K, s, n) is called with the argument written inside the
solid box. A dashed box indicates that the tuple of the
state and the formula written inside the dashed box are
already labeled either ‘F’ or ‘C’. The numbers above
the edges represent the order of depth-first search over a
structure model. In this example, every call to the pro-
cedure Check ends with a return value ‘F’, and Verify
(K, —spec) returns ‘F’. This means that the design
shown in Fig. 2 satisfies the specification spec.

p= = (p: = O-p:)
~spec = =(-p; AO(npV LEN1))

nw >

~(p. AO(n v LEN1))
0
o
92

33

T F F® F
=

7o/ 50

]
3

o/s1

It
2

m/sz

I}
3

m/ss

i
3

Fig. 5 Verification of T flipflop by the model-checking algorithm.

4.3 Correctness and Complexity

First we show that the number of different formulas
obtained by derivations of an RTL formula # repeated-
ly is at most finite.

Let D*(7)2{n/cloe X*}. In the definition of
D*(n7) we regard two formulas as identical if they can
be transformed into one another by using the relations
VivEé=Vr and VevE=¢E, and by the commutative,
associative, and idempotence laws of ‘v’.

Lemma 3. D*(#) is a finite set.

Regular Temporal Logic Expressively Equivalent to Finite Automata and Its Application to Logic Design Verification 135

(Proof) It is shown inductively according to the rules
for construction of RTL formulas:

L. D*p)={p, Vr, Vr}.

D*(—m)={—¢I¢e D*(n)}.

D*(mvm) S { &vEIE e D*(m1), &2& D¥(m2)}.
D*(Omy={On}uD*(n).

Let E2{v[0]l0e2”"} and E2
{&:m2| &€ D*(my)}. Then, D¥(my:m2) € {vivwalvie
E\, ve E,}

6. Let Fi£{V[@]|@c 22" n} and F2{¢:00
nlé&e D*(n)}. Then, D*(Tn)<S {vivniivie F,
vie Fr}

V[@] represents the disjunction of all RTL formulas in
©. Every set represented by the right-hand sides of these
expressions is clearly a finite set. (Q.E.D)
[Proof of the correctness of Algorithm 1]. Its correct-
ness is clear from the definition of K-true and Theorem
2 except for its termination and loop handling.
Termination: From Lemma 3, the number of different
RTL formulas obtained by derivations during the execu-
tion of the algorithm is finite. In addition, the pro-
cedure Check is called only once for the same tuple of a
state and an RTL formula. Therefore, Algorithm 1
always terminates.

Loop handling: When Check (X, s, n) detects a loop
(that is, when ¢=#/s and Label (s’, £)=*C’ for some
s’ such as (s, s’)e R), it just handles the loop in the
same way as Label (s’, £)=‘F’. The correctness of this
handling is shown as follows. Let o be a sequence of
states from s’ to s along the loop. Since Label (s’, &)
=*‘C’, £/6=¢ and o, ¢ for any prefix sequence o, of
o. Let us assume that 1o,=¢ for some sequence
te {o}'. Since £/a=¢, 6,=¢ is shown by repeated ap-
plication of Lemma 2, which is a contradiction.
Therefore, ¢ becomes false for any finite prefix se-
quence of the infinite sequence generated by the loop,
and we can treat this case in the same way as that of
Label (s', £)="F".

Next we evaluate the computational complexity of
Algorithm 1. Let &/ £|9*(n)| and & represent the
maximum number of operators contained in a formula
in D*(n). Inl represents the number of operators in a
formula 7.

Theorem 3. The time complexity of Algorithm 1 is
O(121(£L log & +log)+ |RIlog /)L N).

(Proof) First we evaluate the time complexity of Deriva-
tion (s, £). The procedure Derivation checks whether
s&=£ holds at the same time as it calculates £/s. Whether
or not sk=¢ can be checked in a time proportional to 1 &1
by checking whether s=¢’ for each subformula ¢’ of ¢
in a bottom-up fashion. In the calculation of &/s, it is
sometimes necessary to check whether s=¢’ for some
subformulas £’ of &, which should have been already
obtained during the bottom-up calculation. Further-
more, in a derivative operation of an RTL formula,
some subformula and/or its derivative may appear
twice (in the case of a derivative of *“ : > or “[L).
Even in such cases, the result can be obtained by adding

v w

at most three operators for each *“ : * or “[L]” if we
adopt a graphic representation of formulas that share a
common subformula. Basically, therefore, can be
found ¢/s in a time proportional to |£]. In order to
guarantee the termination of the algorithm, however,
we need to simplify £/s by using the idempotence, com-
mutative, and associative laws of ‘v’. This can be done
by sorting every term in every disjunctive clause. Sor-
ting of terms requires that formulas be compared a total
of O(1€/s| log 1£/s1) times and that each comparison
can be done in a time proportional to 1&/s|. Therefore,
derivation requires O(# ?log #) time, because ¢ and
&/s are in D*(n).

The procedures Addlabel and Label can be realized
with log A4 comparisons by sorting every formula in
D*(n). Since each comparison requires a time propor-
tional to &, the time complexity of each of the pro-
cedures Addlable and Label is O(Z log A7).

Furthermore, the procedure Check is called a total of
O(121) times for each formula in D*(77). As a result,
Derivation and Addlabel will be called at most |X|
times in total. Label may be called |R| times in total,
because it will be called for the subsequent state of each
current state. Therefore, the time complexity of
Algorithm 1 is O((121(&Z log £ +log /")+ |R| log
NNVLN).

We have the following theorem on the Deterministic
Turing Machine (DTM) space complexity of the model
checking problem:

Lemma 4. The DTM space complexity of the satisfiabil-
ity problem of finite RTL is non-elementary [6].
Theorem 4. The DTM space complexity of the model-
checking problem for a finite RTL formula is non-
elementary.

(Proof) We show that the satisfiability problem of an
RTL formula can be transformed in elementary time to
a model-checking problem for an RTL formula. Let
AP’ be a set of atomic propositions appearing in a RTL
formula 7. Let 2 be a set consisting of 2'4”"' states. Let I
be a one-to-one mapping from X to 24°', We define R
and 2, as R=2x2X and Zp,=25. Then for a structure
model K.=(Z, I, R, X,), n is K.-true if and only if » is
satisfiable. K, can be constructed in O(2*'"') time.

(Q.E.D.)

5. Implementation of a Model Checker and Verifica-
tion Examples

Although the computational complexity of the
model-checking problem is non-elementary for the
length of a given RTL formula, as shown in Theorem 4,
Theorem 3 states that the model-checking algorithm
given in Section 4.2 can execute model checking in a
time proportional to the size of a give structure model
(that is, 121 + | R1) for a given fixed formula. In order
to evaluate our model-checking aigorithm, we im-
plemented it on a SUN 3/60 workstation as an RTL
model checker.

136

5.1. RTL Model Checker

In the RTL model checker, RTL formulas are stored
basically as labeled directed acyclic binary graphs in the
usual way. Labels are associated with nodes and repre-
sent either operators or atomic propositions. The
graphs that represent a given formula and its subfor-
mulas are registered in an internal table. Among the sub-
formulas generated by derivations, those that will/ may
appear again later are compared with the registered for-
mulas. If the same formula has been already registered,
the registered one is used and the nodes used in the
generated formula are released to save space; otherwise,
the generated formula is registered in the internal table.

In addition to the model checking of a given specifica-
tion written in RTL, the RTL model checker can pro-
duce a sequence of states that contradicts the specifica-
tion if it is not satisfied. Furthermore, it can show why
the specification is not satisfied by representing a state
and a subformula that make the specification false. This
facility is very useful for analyzing design errors when a
specification is not satisfied.

5.2 Varification of a Traffic Controller

As a test of its efficiency, the RTL model checker has
been used for design verification of a traffic controller
[1]. The traffic controller is stationed at the intersection
of a two-way highway going north and south and a one-
way road going east. It has three input signals (N, S,
and E), three output signals (N_GO, S_GO, and
E_GO), and five internal signals. N (north), S (south),
and F (east) indicate that there is at least one car whose
driver intends to cross the intersection to the north,
south, and east, respectively. N_GO, S_GO, and E_GO
indicate that the traffic light for the corresponding direc-
tion is green. The controller is designed as a Moore
machine. One design, a ‘bad design,” which has some
design errors, has 43 states and its corresponding struc-
ture model has 344 states, while the other (a ‘good
design’) has 31 states and its corresponding structure
model has 248 states.

The full specification spec for the traffic controller is
written in RTL, as shown in Fig. 6. nocoli states that
the traffic lights for the east direction and the north-
south direction never both become green at the same
time. ic represents the input constraints that once N, S,
and E have been asserted, they are never turned off until
N_GO, S_GO, and E_GO are turned on, respectively.
asnd, ass4, and ased represent the situation in which at
least one driver intends to cross the intersection in the
corresponding direction while there are no cars in direc-
tions orthogonal to it. ngoby4, sgoby4, and egoby4
state that the traffic lights will be green for the corre-
sponding direction within four units of time including
the present one. spec specifies that the traffic lights in
mutually orthogonal directions never both become green
at the same time, and that if a car arrives at the intersec-
tion and there are no cars in deirections orthogonal to

H. Hiraishi, K. HAMAGUCHI, H. Fusit and S. YAJIMA

O(LEN1)

QOllen2)

~(LEN1Vlen2V len3)

O(=~(E.GO A (NGO V §.GO)))

~((Q(N A ~N_GO)) : =N)

~((O(S A =5.G0)): =)

~((O(E A ~E.GO)) : ~E)

DO(icn A ics A ice)

N A-E Alengt3

S A-EAlengt3

EAS(NVE)Alengt3
N.GOVO(NGOVQ(NGOVQONGO))
8GOV O(S-GO Vv Q(5-G0 v (DS5G0))
EGOV Q(EGOV(O(EGO v QELO))
ic = (O(asnd = ngoby4) A O(assd = sgobyd) A O(ased => egobyd))
nocoli A delayd

(L 1> 1o 1o 1 o (T [T T o | Lo T T 1T o T

Fig. 6 Specification of a traffic controller.

it, then the traffic light for its direction will becomes
green within four units of time including the present
one so long as input constraints are satisfied.

spec contains 89 operators, and the RTL model
checker found that —spec is frue for the bad design in
0.2 seconds when an additional 62 expression nodes are
used. —spec becomes false for the good design in 1.1
seconds when an additional 322 expression nodes are
used. The required time and space seem to be
reasonable from a practical point of view.

5.3 Verification of a DMA Controller

As an example of verification of sequential machines
with larger numbers of states, degign verification has
been also done for a DMA controller [2]. The DMA con-
troller is designed as a Moore machine with five input
signals and 15 output signals. One design (a ‘bad
design’), which contains some design errors, has 392
states and its corresponding structure model has 12,544
states. The other (a ‘good design’) is a corrected version
and has 272 states. Its corresponding structure model
has 8704 states.

Figure 7 shows the assertions for the DMA con-
troller. The assertion asl states that if MemReq is
always high (that is, true) then ActivateComparator is
always low (that is, false), and if MemReq is always low
then MemGrant is also always low. as2 states that it is
always true that if CpuReq is high and DmaRegq is low
then CpuReq will eventually become low exactly two
clocks after MemFinished is asserted. as3 states that if
TransferReq becomes high then DmaReq will eventual-
ly be high the next time that DeviceReady is high. as4
states that if DmaReq is high and ActivateComparator
and ComparatorSet will be high at some time, then
either DmaEnd or DmaCont will be high the next time
that DeviceReady is high. as$ states that ActivateCom-
parator and MemGrant never become high at the same
time. as6 states that DmaType never changes its value
while TransferReq is high. as7 and as8 state that if Com-
paratorSet is high then the value of DmaDone never
changes until DmaEnd or DmaCont becomes high. as9

Regular Temporal Logic Expressively Equivalent to Finite Automata and Its Application to Logic Design Verification 137

len2 & QLENI
lengt2 2 ~(LEN1Vlen2)

as1 2 (OMemReq = O-ActivateComparator) A (O~MemReq = D~MemGrant)

as2 2 O((CpuReg A ~DmaReq) = O((MemFinished A lengt2) = O O ~CpuReq))

asd f D((~Transfer Req A OT ransfer Req) = O(O(DeviceReady = (LEN1v Q) DmaReg))))

as4 = O(DmaReq = O(ActivateComparator = O(ComparatorSet =

(LEN1V Q(DmaEnd v DmaCont)))))

ass £ ~O(ActivateComparator A MemGrant)

a6 2 O(~(Transfer Req A QT ransfer Req A (DmaType & O DmaType)) vV LEN1)

as? % O((DmaDone A ComparatorSet) = (DmaEnd v ODmaDone V (QDmaDone : DmaEnd)))

as8 = O((~DmaDone A ComparatorSet) = (DmaCont vV O(~DmaDone)v

(O-DmeaDone : DmaCont)))
as9 2 O(-(~ActivateComparator A O ActivateComparator A ComparatorSet))
asall 2 asl A as2Aas3Aasd Aas5AashAasTAas8Aas9
Fig. 7 Assertions for a DMA controller.
Table | Verification of the DMA controller.
DMA Controller (5 input, 15 output)
Bad Design (392 states) Good Design (272 states)
Structure model 12544 states Structure model 8704 states
Assertion #Op. Result {slgcl;: #Node Result 22;? #Node

asl 10 OK. 0.8 4 O.K. 1.5 4
as2 13 OK. 46.1 46 O.K. 29.5 46
as3 10 O.K. 16.0 13 O.K. 9.6 13
as4 9 O.K. 18.2 15 O.K. 11.4 15
ass 3 O.K. 14.0 1 O.K. 8.8 1
as6 8 O.K. 18.2 14 O.K. 11.9 14
as7 8 Fail 0.6 12 O.K. 9.9 12
as8 11 Fail 1.0 12 OK. 9.9 12
as9 6 Fail 0.7 6 OK. 10.3 6
asall 86 Fail 3.5 397 O.K. 70.6 915

states that ComparatorSet is never high just before Ac-
tivateComparator becomes high. asall is a logical con-
junction of asl to as9.

Table 1 shows the results of verification. The column
“#0p.’ shows the number of operators contained in
assertions. The column ‘#Node’ shows the number of
expression nodes used in the verification process, ex-
cluding the nodes needed to store the given assertions
themselves. Each assertion is checked independently.
The RTL model checker finds that assertions as7, as8,
as9, and asall are not satisfied by the bad design. The
number of operators in each assertion varies from 3 to
86. The time needed to verify them varies from 0.6 to
70.6 seconds, which is acceptable from a practical point
of view. In particular, design errors are detected much
faster in general.

For the good design, it takes about 100 sec in total to
check as! to as9 independently, whereas it takes only
70 sec to verify asall. This is because that the checker
handles asl to as9 at the same time, and the results for a
subformula of some assertion may be used in checking
other assertions. On the other hand, the total number
of nodes needed asl1 to as9 is 123; whereas it is 915 for
asall.

6. Conclusion

In investigating the finite and/ or infinite behaviors of
finite automata, we have shown four classes of regular
temporal logic that are expressively equivalent to finite
automata. We also discussed the verification problem
for sequential machines by using regular temporal
logic. As one approach to this problem, we described a
model-checking method in which a given sequential
machine is first converted to a corresponding structure
model and the correctness of a given specification writ-
ten in RTL is then checked. The computational com-
plexity of the model-checking problem is non-elemen-
tary with respect to the length of a given formula, but
we also proposed an efficient model-checking algorithm
that runs in a time proportional to the size of a structure
model. Furthermore, we implemented a model checker
based on the proposed algorithm. Examples of verifica-
tion of practically sized sequential machines show that
the checker runs in reasonable time and space, and we
believe that the model-checking approach based on
RTL is very useful for formal logic design verification.

138
Acknowledgements

The authors would like to express their appreciation
to Prof. E. M. Clarke of CMU who supported this
research by providing various utilities, including design
data for the traffic controller and the DMA controller.
They also wish to thank Dr. N. Takagi, Dr. N. Ishiura,
and members Prof. Yajima’s Laboratory at Kyoto Uni-
versity for their valuable discussions.

References

1. Browng, M. C., CLARKE, E. M., DiLL, D. L. and MisHRA, B.
Automatic verification of sequential circuits using temporal logic.
IEEE Trans. Comput., C-35(12) (December 1986), 1035-1044.

2. CLARKE, E. M., Bosk, S., BROWNE, M. C. and GRUMBERG, O.
The design and verification of finite state hardware controllers.
Technical Report CMU-CS-87-145, Carnegie Mellon University (July
1987).

3. CLARKE, E. M. and EMERSON, E. A. Synthesis of synchronization
skeletons for branching time temporal logic. In Proc. Workshop on
Logic of Programs, Springer-Verlag (1981), 52-71.

4. CLARKE, E. M., EMERSON, E. A. and SisTLA, A. P. Automatic
verification of finite state concurrent systems using temporal logic
specifications: A practical approach. Technical Report CMU-CS-83-
152, Carnegie Mellon University (1983).

5. Funta, M., TANAKA, H. and MoTookA, T. Verification with Pro-
log and temporal logic. In Proc. 6th Int. Symp. Computer Hardware
Description Language (1983), 103-114.

6. HiraisHI, H. Design verification of sequential machines based on
a model checking algorithm of e-free regular temporal logic.

H. HiraisHi, K. HamacucH:, H. Fuiil and S. YAnma

Technical Report CMU-CS-88-195, Carnegie Mellon University
(1988).

7. HiraisHi, H. Design verification of sequential machines based on
&-free regular temporal logic. In Proc. 9th Int. Symp. Computer Hard-
ware Description Language (1989), 249-263.

8. HUGHEs, G. E. and CRESSWELL, M. J. An Introduction to Modal
Logic. Methouen, London (1977).

9. Moszkowski, B. Reasoning about digital circuits. Technical
Report STAN-CS-83-790, Stanford Univ., (1983).

10. ReSCHER, N. and URQUHART, A. Temporal Logic. Springer-
Verlag, 1971.

11. UEHARA, T., SAITO, T., MARUYAMA, F. and KawATo, N. DDL
verifier and temporal logic. In Proc. 6th Int. Symp. Computer Hard-
ware Description Languages (1983), 91-102.

12. WoLPER, P. Temporal logic can be more expressive. In Proc. of
22nd Annual Symposium on Foundations of Computer Science
(1981), 340-348.

13. WOLPER, P., VARDI, M. Y. and SisTLA, A. P. Reasoning about
infinite computation paths. In Proc. 24th Symp. on the Foundations
of Computer Science (1983), 185-194.

14. HaMaGucH], K., HiraisHl, H., YalMa, S. Temporal logic ex-
pressively equivalent to an w regular set. Technical Report, COMP
88-8, IEICE Japan (May 1988).

15. HaMmacucHl, K., HiraisHi, H. and YAliMA, S. Formal verifica-
tion of sequential machines using an w model-checking algorithm of
oo regular temporal logic. Technical Report, COMP89-24, IEICE
Japan (June 1989).

16. HiraisHi, H., HAMAGUCHI, K., YAJiMaA, S. Satisfiability
algorithm for regular temporal logic. Trans. IPS Japan, 30, 3 (March
1989), 366-374.

17. HiraisHl, H., YanMa, S. RTL: Regular temporal logic ex-
pressively equivalent to a regular set. Trans. IPS Japan, 28, 2 (Feb.
1987), 117-123.

