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An Algorithm for Constructing a Semi-LL(2)
Grammar’s Parsing Table

KEIcHI YosHIDA* and YosHIko TAKEUCHI**

Most of the researches on constructing parsing tables for LL(k) grammars are those for k=1, in short, for
LL(1) grammars. There are few researches for LL(k) grammars in the case of k=2 except for Aho and
Ullman’s. This results from the fact that every LL(1) grammar is strong but in the case of k=2 there are two
grammar classes, non-strong LL(k) grammars and strong LL(k) grammars.

When we construct tables for strong LL(k) grammars, where k=2, we can apply the same methods with
LL(1) grammars. On the other hand, entirely different methods should be applied to construct tables for non-
strong LL(k) grammars, where k=2, because the context problems are involved.

This paper presents an algorithm on constructing parsing tables for semi-LL(k) grammars (where £ =2) deriv-
ed from giving a few restrictions to LL(k) grammars, and its validity and evaluation. There are also strong and
non-strong grammars in the semi-LL(k) grammars but this algorithm is relatively straighforward, and the same
constructing method can be applied for both strong and non-strong semi-LL(k) grammars. An experimentation
on the performance of the algorithm using some example data shows that constructing time is about 1/10, the
memory size of the tables for parsing and production rules ranges about 1/120-1/400 of Aho and Ullman’s
algorithm. The memory size for codes, which are not affected by grammars, is larger than theirs approximately
by 7%. The memory size for codes occupies about 29% of the whole program in the case of PASCAL- and
about 10% in the case of ISO PASCAL. Generally, the more the number of the production rules increases, the
more the rate of the codes part in the total memory decreases. Therefore, this slight increase in our case is

thought to be negligible in the cases of languages in practical use.

1. Introduction

We proposed the class of semi-LL(k) grammars and a
parsing method for these grammars in the article [1].
Expressive power of grammars in this class for program-
ming languages lies between those of LL(k) and strong
LL(k) grammars [1].

Until now, several construction methods of parsing
tables for LL(1) grammars and parsing methods using
these tables have been proposed and researched [2-6].
However, since these construction methods involve
many difficulties for the case of k=2 than for k=1, no
practical method was presented for this case with the ex-
ception of one in the article [5], by which constructed
tables are used in table-driven type parsing. These
difficulties are due to the fact that there are two types of
grammars, namely, strong LL(k) and non-strong LL(k)
for k=2, and for non-strong LL(k) grammars, it may
happen that the parsing tables must be constructed so as
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to decide applicable productions context-dependently.

This paper proposes a table construction method
adding a new idea to the original method proposed in
the articles [4] and [6]. Comparing our method to Aho-
Ullman’s method with regard to their performance, our
experimentation showed that table construction time
and table size by the former are about 1/10 and about
1/120-1/400 of those by the latter, respectively. Fur-
thermore, another strong features of our method are
that parsing tables are constructed mainly by table-
manipulation almost without set calculation and the
construction is much easier than by Aho-Ullman’s
method.

This paper describes an algorithm to construct pars-
ing tables for semi-LL(2) grammars which have the
outstanding features described above, and also shows
the validity and evaluation of the algorithm.

2. Outline of Aho-Ullman’s Method

Aho-Ullman’s method consists of two phases. One is
to convert the productions of a given LL(2) grammar to
strong-typed ones, and the other is to construct the pars-
ing table of this converted grammar. For this conver-
sion it is necessary to produce new nonterminal symbols
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T,, Tz,- - -, and T, for an original nonterminal, for ex-
ample A, when the nonterminal 4 has » distinct right
contexts on sentential forms including A. Because an
original nonterminal symbol can usually have two or
more right contexts, the number of newly produced
nonterminals is guessed to become very large and to be
time-consuming to generate them. According to their
method implemented by authors, the numbers of
nonterminals of PASCAL- (PASCAL minus) grammar
increased from 54 to 400 or more for the case of k=2.

Furthermore, the conversion of productions from the
given grammar to a strong LL(2) grammar using these
newly produced non-terminals increases the numbers of
the production rules from 98 to 800 or more, according
to our experimentation for Aho-Ullman’s method.

After converting a given grammar to strong LL(2), a
parsing table for the grammar is constructed. Our ex-
perimentation following their method shows that
memory area requires 7.4 MB for the tables of parsing
and converted production rules in the case of
PASCAL- grammar.

3. Definitions and Notations

This section describes symbols used in this paper.
Other concepts and symbols used without any defini-
tion are based on the article [1].

[Definition 1}

A context free grammar (CFG for short) G is defined

by:

G=WN,2,P,S)

where the symbols N and 2 denote finite sets of nonter-
minals and terminals, respectively, and P denotes a
finite set of productions. The symbol S denotes the start
symbol in G.
[Notation 1]

A, B, and C denote elements in N; a, b, and ¢ denote
elements in Z; X, Y, and Z denote elements in NUZX; s,
t, and u denote elements in Z*; «, B, and y denote
elements in (NUZX)*. £ and ¢ denote a null string and an
empty set, respectively. Each symbol except ¢ and ¢ is al-
lowed to have subscripts if necessary.

[Definition 2]
Set FIRST, () is defined by:

FIRSTi(0) = {ul(c = up, lull=k)
or (a =% u, lull<k)}

where o and fe (NUZX)*, ue Z*, and llull denotes the
length of string #. o = uf denotes a derivation using
productions zero or more times, and the symbol N
denotes a derivation using productions just & times. Fi-
nally, the symbol = denotes a derivation using just a pro-
duction. All derivations in this paper are done in the
leftmost way unless otherwise stated.

[Definition 3]

Set END-FOLLOW(.X) is defined by:

K. YosHIDA and Y. TAKEUCHI

END-FOLLOW(X)={A1(4 = aXB, Xe N, § = ¢)
or (A4 =, aBX, Xe N)}

[Definition 4] [2]
Let L, and L, be subsets of Z*, then an operator @
is defined by:

L @ «L,={w! for some xe L, and ye L,, if llxyll <k
then w=xy, if lxyl>k then w=u,
where xy=uv, and llull=k}

[Definition 5]
Let G=(N, X, P, S) be a CFG. If § =% w;AX¢,, then
PF(partial- FOLLOW) is defined by:

PF/(4, X)= UFIRST(X&)

[Definition 6]

Let G=(N, 2, P, S) be a CFG. We say that G is a
semi-LL(k) grammar if (FIRSTi(a)®(PFi(4, X)N
(FIRST(8)®«PF«(4, X))=¢ holds for all u4Xv such
that § =% uAXv, where A—a and A—f are distinct
productions in P.

4. Structure of a Parsing Table

4.1 Fundamental Definitions

Several definitions are given, being necessary to
describe our algorithm constructing parsing tables.
[Definition 7]

Let G=(N, 2, P, S) be a CFG. An augmented gram-
mar G’ is defined by:

G'=(N',Z', P, S’

where N'=NU{S’}, 2'=XU{$}, and P'=PU{S’'—~
S$$}. From now on, our discussion is developed with
this augmented grammar G’. For convenience, the sym-
bols N’, 2, and P’ are replaced by N, X, and P, respec-
tively.

[Notation 2]

p in A —> « denotes the proper index, a positive in-
teger, affixed to production A—«a, and p in a =>
denotes the index of production used in the leftmost
derivation a= 4.

[Definition 8]

Let p and g be production indices. Notation [ 1p(q)
and [X ] p(q) are called # type production indices. Here,
p and q are the indices of productions used in the follow-
ing derivation:

5" u'Yo' = w'éAya’ 2 uda => ufa

where a=ya’, and X denotes the leftmost symbol of «.
7 type production indices are used only for constructing
parsing tables. In 7 type production index [X]p(q), if
X=¢ and g=g¢, then it is equivalent to [ ]p( ).
[Definition 9}

A production index [X]p, which is produced by
deleting (g) from [X]p(q), is called 7 type production
index. And also, if X=e¢ in [X]p, then it is equivalent
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to[ ]p.
[Definition 10]

A parsing table 7 is a matrix whose rows and col-
umns are named by elements of set (N=—{S’})UZ and
set X, respectively. Notation 7(A4, a) and T'(a, b) denote
the cell of row 4 and column a, and the cell of row a
and column b of table 7, respectively. Each entry in
these cells is either a set of 7 type production index or
nil.

[Notation 3]

The notation )8 indicates the symbol on the i-th posi-

tion from the leftend of the string .

4.2 Some Properties of Parsing Table

A parsing table should have the following properties
from the definition on semi-LL(2) grammars [1]:
[Property 1]

S’ & uAv = uav = uablv
<[ lpeT(A,a)and | |pe T(a,b)
[Property 2]
S 2 uAv = uav 2> uav 2> uabl
o[ ]pe T(A, a) and [W]pe T(a, b)
[Property 3]
S’ udv = uav 2 uv L yaby
< [Wv]pe T(A, a) and [VYV)pe T(a, b)

[Property 4]
There exists no other entry in cells of the parsing
table except for the ones described above.

4.3 Several Tables Necessary in the Construction of
the Parsing Table

This section describes the correspondence of the
definitions stated in Section 3 and the structure of
several tables necessary in the construction of parsing
tables with the properties presented in Section 4.2.

(1) FIRST table: although symbol FIRST originally
denotes the set defined by [Definition 2], it is also used
as the name of a table corresponding to the set, in
Algorithm 8 described in the next section. The table is a
matrix whose rows are named by the elements of set
NUZ, and the columns are named by the elements of set
NUZ'. The entry in cell of the table is either a set of #
type production indices or nil. The symbols FT, and
FT; indicate the parts of Nx (NUZ') and Z'x (NUZX) of
FIRST table, respectively. A set FIRST, corresponds to
the sum of the parts of Nx 2 in FT, and £Xx 2 in FT,.
The following shows their correspondence:

abe FIRST ;(A)« [X1p(g)e FT\(A, a)
and [Y]p(r)e FT:(a, b)

where p, g, and r denote the production indices, and X
and Y are elements of set NUZU{¢e}.
(2) PF table: although symbol PF denotes a set de-
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fined by [Definition 5], it is also used as the name of
table corresponding to the set, in Algorithm 6. Its table
structure is similar to FIRST table. The entry in cell of
the table is either a set of n type production indices or
nil. The symbols PL, and PL, denote the parts of
NXx(NUX) and 2'x (NUX') of PF table, respectively. A
set PF, corresponds to the sum of the parts of NxXin
PL, and 2'x 2 in PL,. The following shows their cor-
respondence:

abe PF,(4, X)<[X]p(g)e PLi(4, a)
and [Y)p(r)e PLu(q, b)

where p, g, and r are production indices, and, X and
Ye NUZU{e}.

(3) END-FOLLOW table: although symbol END-
FOLLOW denotes the set defined by [Definition 3], it is
also used as the name of the table corresponding to the
set, in Algorithm #. The table is a matrix whose rows
are named by elements of set NUZ, and the columns are
named by elements of set N. The entry in cell of the
table is either a set of n type production indices or nil.
Representing END-FOLLOW table by symbol EF, the
correspondence of set END-FOLLOW and table EF is
as follows:

Ae END-FOLLOW(Y)«[X]p(q)e EF(Y, A)

where p and ¢ are production indices, Ye NUZ, and
Xe NUXZU{e}. The required parsing table is the part of
(NUZX) x X of table FIRST, being obtained from Step
10 of Algorithm 8. As mentioned before, the entry of
cell of this table is either a set of 7 type production in-
dices or nil.

5. Algorithm

For convenience, the algorithm proposed here is nam-
ed Algorithm 8. First, the definitions of notation and
sets used in Algorithm 6 are described.

[Notation 4]

In Algorithm 6 the same notations as proposed in
[Definition 10] are used to represent every cell of tables.
[Definition 11}

Sets Q, R, and I' are defined by:

0={(4,p}1A => a = ¢}
R={(4,a,p)|4 => a = a}
I'={plp is the index of a production rule}.

Next, the details of Algorithm @ are given as follows:
[STEP 1]

Initializing FIRST-table. That is, [ ]p(p) is added
to FT\(4, Y)if A —>aY,fanda = ¢,and [ |p(p)is
added to FT (4, Y) and FTo(Y,, "B)if Yie Z. [ 1p(p)
is added to FTy(a, ") if Yi=>y = 4, or (Y, a,p)
eR.

First, let every cell of the FIRST-table be nil.

begin
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for each production such that A —>Y,Y, - Y,
and Y,Y, - Y,#e do
begin
i+0;
repeat
i<i+1;
FT.(4, Y)<FTi(4, YH)U{[ 1p(p)};
/» finding the second symbol Y, on a str-
ing derived from A */
if i+1=n then
begin
if Y;e 2 then X+<‘Y;?
else if (Y}, a, p))e R then X+«‘a’
else goto /;
Jei
repeat
Jeitl
FT:(X, Y))<FTa(X, Y)U{[
until (Y, pp)& Qorj+1>n
end;
I
until (Y;, p)§ Qori+1>n
end
end.
[STEP 2]
Computing the closure of FIRST-table. In the first
half of this step, [ ]p(p) is added to FT,(A4, C) if A
=> aBf, B = yC4, and ay =% . In the second half
of this step, nonterminal, for example, B in FT,(A4, B),
is replaced with terminal as follows:
begin
repeat
for each A, B, Ce N do
if [ 1p(p)isin FT (A, B) and [ ]q(g) is in
FT.(B, C) then
FTi(4, C)<FTi(4, C)U{[ 1p(p};
until no change occurs in the FIRST-table;
repeat
for each A, Be N, and ae X do
if FT\(B, a)#¢ then

12(p)};

begin
for each [ ]p(p)e FT(A, B) do
begin
FTi(4, a)<FTi(4, ) U{[ 10(p)};
/= finding the second symbol X on a
string derived from A x/
for each Xe NUX do
if FT\(B, @) NFTy(a, X)#¢ then
FT,(a, X)
“FTaa, X)U{[ 1p(D)}
end
end

until no change occurs in the FIRST-table;
if R={ }and Q={ } then skip Step 3 through
Step 7
end.
[STEP 3]
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Initializing PF-table. That is, ["¢]p(p) is added to
PL\(Y, Y) if A—>aY,8Y;y and 5 ¢, and in addi-
tion, [Y¢]p(p) is added to PL,(Y;, Y;) and PLy(Y;, Vy)
if Y;e 2, where (=8Y,.

First, let every cell of the PF-table be nil.

begin

PL((S, $)<“[$]0(0)’; /* O is the index of produc-
tion S’ —S$$ »/
PL,($, $)«<[$]0(0)’;
for each production such that 4 —> Y, Y - Y,
and Y, Y, --Y,#edo
begin
i~1;
repeat
Jeitl;
if Y;e N and j=<n then
begin
PL((Y,, Y)«PL\(Y,, Y)U{[Y]Ip(D)};
k<j;
if Yse N then
begin
while (Yi, pi)e Q and k+1=n do
begin
k—k+1;
PL.(Y:, Yo)
<PL(Y,, YOU{LYip(p)}
end
end;
/+ finding the second symbol Y,, on a str-
ing derived from Y; %/
if Yie 2 then
if k+1=n then
begin
mek+1;
PLy (Y4, Ynm)
<PLy(Yi, Ym)U{[Y)]p(D)};
while (Y, pm)e Qand m+1=<n
do
begin
mem+1;
PLy (Y%, Yrn)
«PL2(Yi, Ym) U{[Y)] p(p)}
end
end
end;
i—i+1
until i=zn
end
end.
[STEP 4]

Initializing END-FOLLOW-table. That is, for such a
productionas A —> Y Y - - Y,and Y Ys - Y, #¢e, [ ]
p(p) is added to EF(Y,, A) if Y,e N, or [Y.]lp(p) is
added to EF(Y,, A) if Y,e 2 and Y,-,e N.

First, let every cell of the END-FOLLOW-table be
nil.

begin



An Algorithm for Constructing a Semi-LL(2) Grammar’s Parsing Table

for each production such that A —>Y\Y; - Y,

and Y,Y;---Y,#¢e do
if Y,e N then
begin
EF(Y,, A)<EF(Y,, AAU{[ 1p(p)};
i“n;
while (Y;, p)e Q and i>1 do
begin
if Y;_1e N then
EF(Y;-,, A)
«EF(Yi-1, A)U{[Y1p(D)};
i—i—1
end
end

else if Y,-1e N then
EF(Y,, Ay~EF(Y., AYU{[Y.]p(p)}
end.
[STEP 5]

Computing the closure of END-FOLLOW-table.
That is, when B => a, B, f1, Bi=:B: 6, -, Bu-1 =
anXps and C = p1Cid), Ci=2y:C6s,, Cor =
ynB0,, [V1p(h) is added to EF(X, C) if Xe N, or
[alp(p) is added to EF(a, C) if X=aeZX. Here
BuBror B => €, 6n0n-1 61 = &, and symbols V,
Z, and Y denote the leftmost symbol of strings

BB f16,0n-1" " 01, Bnfn-1- - ‘B, and 8,051 - -0,
respectively.
begin
repeat
for each B, Ce N, Y and Ze NU{¢}, and Xe N
do
if [Z]1p(q) is in EF(X, B) and [Y]g(h) is in
EF(B, C) then
begin
if Z#¢ then V«<*‘Z’ else V+*‘Y’;
EF(X, C)~EF(X, C)U{[V1p(h)}
end
until no change occurs in the END-FOLLOW-
table;

for each B, Ce N, Ye NU{¢}, and Xe X do
if [X1p(p) is in EF(X, B) and EF(B, C)# ¢ then
EF(X, C)<~EF(X, C)U{[X]p(p)}
end.
[STEP 6]
Completing PF-table using END-FOLLOW-table.
First, [alp(p) is added to PL;(a, Y) if C=aBLYp,
B=9X,01, Xi=y:X:0,," -, and X,— => y.Xa, where
dn_1 - -0 = &. Secondly, [V]p(r) is added to PL,(4,
Y) if B == ozlA ﬁ], A1=azAzﬂz,' cy A,,—1=C(nAﬂ,,, C
= ?1X|fl Y9, X1=)’2X2§2, -, and X, => YaBn,
where Enlnar & = ¢. [V]p(r) is added to PL (4, 7)
and PLy(Y, W) if Ye 2. (cf. Fig. Appendix A). Here,
symbols V and W indicate the leftmost symbol of str-
ings BafBa-1-"Bi&néay- - - & and I, respectively.
begin
for each Be N, Y and Ze NUZ, Xe NUXU{e},
and ae X2 do
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if [a)p(p) is in EF(a, B) and PL,(B, Y)#¢ then
PLy(a, Y)+PLa(a, Y)U{[alp(D)};
for each A, Be N, Ye NUZ, and X, Ze NUZU
{e} do
if [X]1p(s) is in EF(A4, B) and [Z]q(r) is in
PL,(B, Y) then
begin
if X#¢ then V<=‘X’ else V+<‘Z’;
PLi(A, Y)<PL,(4, Y)U{IV1p(N};
/= finding second symbol W on a string
derived from A */
if Ye 2 then
for each We NUX
if PL,(B, Y)NPL(Y, W)#¢ then
PL.(Y, W)<PLy(Y, W)U{[V]p(")}
end;
if R={ } then goto Step 8
end.
[STEP 7]

Processing the case of A = g. That is, [Z]p(r) is
added to FT.(a, X) if A =>a=a, B=> X, Yh
=*=’Oll‘ cc0n-1 Xn-1Pn-1"- 'ﬂz Yﬂl?anaz' : ‘OtnAﬁnﬂn—l

B YBy, and B, fn-1" - - P2 =% ¢, where Z indicates the
leftmost symbol of string f,8n—1 * - f2.

begin

for each (A4, a, p)e R do
for each X, Ze NUX
if [Z1q(r) is in PL;(A4, X) then
FTu(a, X)+<FT(a, X)K(Z]p(")}
end.
[STEP 8]
Replacing A in FT:(a, A) with a terminal, if A & ¢
begin
for each ae =, Ae N, and Xe NUZU{e} do
if [X1p(qg) is in FT.(a, A) and FT,(4, b)#¢
then
FT:(a, b)=FTa(a, b)U{[X]1p(q)};
if 0={ } then skip Step 9 through Step 10
end.
[STEP 9]

Computing PL,(A4, a) and PL,(a, b) for the case of
uoDBo = uoalDlﬁnﬂo = ulD BiBo =2
un an lﬁn lﬂn— ﬂlﬂo = Un- lanAyBﬁnﬂn [ ﬁlﬂo
<> uAyB -1+~ - f1Po=uAyBB => uayBp =% uyBg
= uBp => udp = uabé. That is, if PL,(A4, B)#¢
and 4 = ¢, first, the case of B2 abé is processed, sec-
ondly, the case of B=> g and § =% bé is processed. In
addition, if 8 in PL.(a, "B) is a nonterminal, it is
replaced with a terminal.

begin

for each (A4, h)e Q, Be N, Xe NUZ, Ze NUZU
{e}, and a, be X do
if PL,(A, B)# ¢ then
begin
foreach [ 1p(p)in FT\(B, a) and [Z]p’(q)
in FT:(a, b) do
if p=p’ then
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if p=gq then
begin /+ BB =% ab{f=ab¢ «/
for each [X]r(s) in PL,(A, B) do
begin
PL.(4, a)
<PLi(4, a)U{[X]1r( )};
PLz(a, b)
«PLy(a, b)U{[X ) )}
end
end
else
begin /+ BB =% af = abé «/
for each Ce NUX and Ye NUX
do
for each [Y]«u) in PL(B, C)
and [X]r(s) in PL,(4, B) do
if s=t and u=q then
begin
PL.(4, a)
<PL(A4, a)U{[X]1r( )};
PL.(a, b)
<PLa(a, )U{[X]1r( )}
end
end
end;
/* Replacing nonterminal as the second symbol
with terminal symbol #/
for each Be N, Ze NUZ, and a, be X do
if [Z]p(q) is in PL,(a, B) and FT.(B, b)#¢ then
PL:(a, b)—PLa(a, b) U IZ]p(g)}
end.
[STEP 10]

The case of A =>a=>¢. That is, computing
FT\(A, a) and FTy(a, b) when S’ 2> udy => uay =
uy => uabt.

begin

for each A such that (4, p)e Q do
for each a, be 2 do
for each [X]q(r) in PL,(A4, a)NPL:(a, b) do
for each Xe NUZX do

begin
FTi(4, @)<FT\(4, a)U{[X]p( )};
FTa(e, b)«<FTa(a, H)U{[X]p( )}

end

end.

[STEP 11]

Constructing the required parsing table. That is, ©
type production indices are converted to 7 type produc-
tion indices by deleting (r) from [Z]p(r).

begin

for each Ae N, and a, be 2 do
delete (r) from [Z]p(r) in FT,(A, @) and FT,(a,
b)

end.

[End of Algorithm]

K. YosHIDA and Y. TAKEUCHI
6. Proof

Here, we prove T(= T+ T3) is the semi-LL(2)parsing
table for the given G, where T, and T, are N XX part
and X' x 2 part of FIRST table constructed by Step 11 of
Algorithm 6 from G, respectively. 7 type production in-
dices are necessary in constructing parsing tables, and
in the final step of Algorithm & (Step 11), they are con-
verted to 7 type production indices. Thus, n type pro-
duction indices are used only in the construction of the
parsing table, and they are equivalent to t type produc-
tion indices as far as related to parsing.

Thus, to show that the constructed parsing table is
valid, it is enough to prove the following:

S =2 udv = uay = uabf <> [X1pe Ti(A, a), and
[Ylpe Ta(a, b) (1)
where X, Ye NUXU{¢}, and if X=¢ then Y=%y or
Y=¢, and if X #¢then Y=X=Wy, FT{, FT}, PL{, PLi,
and EF' indicate the values (namely, nil or a set of n
type production) added by the application of Step i of
Algorithm @ to FT,, FT;, PL,, PL,;, and EF, respec-
tively. FT{, FTY/, PLY/, PLY’, and EF"" indicate the
values (namely, nil or a set of 7 type production) added
by the application of Step i or Step j to FT,, FT,, PL,,
PL,, and EF, respectively.
Since the given grammar is a semi-LL(2), to prove the
relation (1), it is enough to prove the next relations:
Case (i) A—>a, and a« => ab¢
S % udv == uay = uabé&v
«>FT*(4,a)a[ 1p, and
FTy**@, b)s [ 1p,
Case (i) A—F>a,a =2 g,and v = b¢
S’ 2> uAv => uav = uav = uab({
~—FT”(4,@>[ 1p, and
FT3*@a, b)> ["V]p,
Case (iil) 4>, a =2 ¢, and v = aby
s = UAv => uav = uv % uaby
<> FT°(A, @) ["V]p, and
FT3(a, b)> ["v]p.

As mentioned before, there are cases to decide context-
dependently an applicable production, that is,
dependently on a grammar symbol on the immediate
right of the nonterminal to apply the production. (the
above cases, (ii) and (iii)). Therefore, we must use 7
type prodiiction indices in the following proof.

Proof of Case (i)
Since G does not produce any cyclic derivation, the
following derivation is done in finite steps:

*
A =>a=> abv
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where a, be =, and ve (NUX)*. If the number of steps
in the derivation is ko(=k+ 1), then the above deriva-
tion can be rewritten as follows:

A=>a=>abv
where k is a non-negative integer. This derivation can
generally be rewritten as follows:
A = a=u Xy =2 X,v,= abn,, and n,=v 2)

where X; = ¢ and k,<k,. Then, grammar G must
have the following production:

A_p’ﬂlxlvl

where u, =% ¢. Thus, the following relation can be ob-
tained from Step 1 of Algorithm &:

A _p’,u1X|V1, and h = €
<> FT\(4,X)>[ 1p(p), and
FTi(X, Dv)s[ 1p(p)if Xie 2.

Moreover, the derivation from symbol X; of (2) can be
rewritten as follows:

X ‘—;?llzxzvz = Xov; =k!>abﬂz

where X, %> ¢ and k,<k,. Thus, the following must be
a production of grammar G:

X, _pl",uzXﬂ’z, and Hn2 = €

That is, we get the following result from Step 1 of
Algorithm 6:

X\ 5> U2 Xy vy, and p, 2 ¢
<> FT(X), X)> [ 1pi(py), and
FT3(X, Vv)a [ 1pi(py) if Xpe 2.

The above procedure can be expressed in the general
form as follows:

* kit .
Xi=> piry Xivier = Xiv1Vier = abn,.;, i=0, 1, ---

where Xi+; % £ and kiy, <k Here, Xo=A and po=p.
Thus, the following holds:

Xi5> Hiv1 Xix1Vier, Where vigy Ay,
<« FT{(X;, Xis)2 [ 1pi(p:), and
FTY X+, "viea [ 1pi(p) if Xivie 2.
)]

Since all derivations are done in finite steps, for some in-
teger i the following holds:

Xit1Vit1=@avis1. @
In addition, for some integer j(= 1) the following holds:
aVity = aXijviej=abnisj. )

By (3), (4), (5), Step 2 and Step 8 of Algorithm 6 the
following relation is obtained:

A= a2 aby<>FT{*(A,0)3[ 1p(p), and

FTy**a, b)s 1 1p(p).

Thus, the following relation equivalent to that of Case
(i) holds:

S = udv => uav = uabév
<> FT*(4,a)>[ 1p(p), and
FTy*¥a,b)a[ 1p(p).

Proof of Case (ii)
The derivation S’ = uAv (where ve (NUZ)*) can
be decomposed in detail:

S 2 Xy => vfAv = udv => uav
= yav 5 uab(.
It is represented that, after applying Step 8 of

Algorithm 8, the relation between this derivation and
FT, and FT, is given as follows:

S =2 vXy = vfAv = uAv => uav
= wav = uab¢
—FT* (4,03 1p(p), and
FT3*(a, b)> ["V]p(q).

In order to prove the above relation, the next several
preparatory proofs should be given:

Case (ii-a)
First, it is shown that the following relation holds:
Xi => qiv1 Xiv 1 Bivs = U1 Xj-i&j-1 == uj- 10 X

<~ EF**( X}, X)) [VE]pi-(p) ©

where uj—1e Z*, B = &, &1 =€, E=BiBie1
Bi+2Biv1 = &. Further if &=¢, X;e 2, and o) e N,

>

aivt Xiet Biet

>

Aive Xiee B.»z

aj-1 Xj-1 Bj-1

>

aj X; B

Fig. 1 If §=F,6-," B — &, then ["€]p,-,(p) is added to
EF(X;, X;). However, if 8,=¢, X;e Z, and a’e N, then
[X]1p;-1(p;- 1), instead of {"€]p;-,(p), is added to EF(X;,
X,). Here a!{" denotes the rightmost symbol of string a;.
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then [V¢] is replaced with [X]]. Here, the notation o "
denotes the rightmost symbol of the string «;. (cf. Fig.
1). Since all derivations are done in finite steps, if the
number of derivation steps of (6) is ko(=k+2), then we
get the following:

X; g i1 Xiv1 B = Uj-1. Xj-1&-1 = uj—a; Xi&j.
In order that the derivation X; => a;.Xi+1 8+ holds, the
grammar G must have the following production:

Xi—> i1 Xiv1 Bin

where B+, = &. Thus, from Step 4 of Algorithm 6, we
get the following:
Xi—> i1 Xiv1 fiv) <> EFY(Xi+1, X))2 [“Bi+11pi(p)
Q)
where B;+, = ¢. Furthermore, for the derivation from
Xi+1, we also obtain the following derivation:

Xi+ = Qi+ Xiv2firva

ki
=S u Xm0y XE

where B+, = ¢ and k, <ko. Similarly, the grammar G
must have the following production because of Xji,

= aj+2 Xiv2Bivat
Xi+1 g 2 Xiv2Bi+2

where Bis2 =% ¢. Then, from the relation between the
above production and Step 4 of Algorithm 6, we get the
following:

Xini 57 a2 Xivafisa

<> EFY(Xi+2, Xi+1)3 [PBis2l piri(Dis1) 8)

where B;+2 = ¢. In like manner, the following is ob-
tained:

Xiv272 Qie3 Xiv3fiss
<> EFY( Xi43, Xi+2)2 [VBis3)Dis2(Dis2) )

where Bi+; = &. Thus, in general, the following
representation is valid:

Xivmo ditm+1 Xivm+1 Bivm+1
<> EFY( Xism+1s Xivm)D [(DBi+m+ 1) Dism(Dism)

where Bi+m+1 = €. Since all derivations are done in
finite steps, for some integer m the following holds:

Xism1=Xj—1.
Thus, Xj can be denoted as follows:
X5 Ui Xj-i&j-1 == Uy Xk

where &=8,¢;-) = & and k< kn—,. Thus, the follow-
ing holds:

Xj-172 o X; ;<> EF(X;, X;-1)3 ["8]1 pj-1(pj-1)
(10

where f; =% ¢. By the procedure of Step 5 of Algorithm
6, we get the following from (7) and (8):
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Xi = Qi1 Xiv1 Bt = Uiv1 Xiv1Biv1
=7 Uin1Qis2 Xiv2biv2
> EF4/5(Xi+z, X)3 [V pivi(p) 1
where uis1e * and &42=Bis28i+1 = &. In additioin,
by the procedure of Step 5 of Algorithm 6, the follow-
ing holds from (11) and (9):

*
Xi = Uira Xiv2liva 52 Uiv20i+3 Xiv3ins

> EFY3%(Xi13, X)2 [Vé13) pivao D)

where 26 Z* and &3=pBis3Bi+2Bi+1 = €. By the
repetition of the application of Step 5 of Algorithm 6,
we get the following result:
Xi = ai+1 Xiv1Bi+1 = l‘j—lz\’j—lfj—l = llj—loljz\’jfj
> EF*3(X;, X)3 [Y]pj-(p) (12)
where &=8,;&_1=8;Bi-1" " -Bi+1 =% ¢. In the produc-
tion of (6.7), if Bi+1=¢, Xi+1=ae Z, and a;+,"e N, we
get the following by applying Step 4 of Algorithm 6:
X —> aina <> EF*(a, X)> [alpi(p). a13)

Therefore, if g;/=¢, X;e 2, and a{’e N, then [V¢)]
Dpi—1(p) in (12) is replaced with [Xj1p;-1(pj-1).

Case (ii-b)
Secondly, it is shown that the following holds using
the result of Case (ii-a):

A e (S,‘X,"}’i and X; =*> lﬁ—]/\’j—] }" = u,'—|5szj}’
<> PLY*(X;, “y)> ["V]p;-(q), and
PLY("y, Py)s ("Vpi-(q) if Vye X

14

>

o
>
<

Gist Xist Tist

D..

§i-1 Xi-1 1ri-1

P>

8 T
*
Fig. 2 If y=y;y,_y *yiss => ¢, then ["V]p,_,(q) is added to
PL,(X], My,). Further if "'y,c Z then ["]p;_,(g) is added
to PL,("y;, ®y), where v=yy,.



An Algorithm for Constructing a Semi-LL(2) Grammar’s Parsing Table

where  p=py’ =y¥-1- yies => & v=py, and
u;_ e Z*. (cf. Fig. 2). Clearly, the following is valid
from Step 3 of Algorithm 6:

A _q’ J,X;y;
<> PL{(X;, “y)> [“y]4q(q), and
PLYVyi @3 [Mv1q(q)
if Wy,e T and Pyi#e.  (15)
By applying Step 6 of Algorithm 6 to (6) and (15), we
can obtain the result (14). Finally, using the result of
Case (ii-b) it is shown that the relation described in the

earlier part of (ii) is valid. From Case (ii-b), the follow-
ing holds:

X—>BB6, B v, B i& == v-1BAL,
and ¢ 2 ¢
<> PLi'(4, “8)3 ["V]p;-i(¢), and
PLY% ("8, ®6)> ["V] p;-i(q) if Voe X

where v=¢&6 and v;-,e Z*. Thus, we can obtain the
following:

s = u; Xy => u;fBoy =, u;Bdy = uxB;_\&' oy
= uxf; ALy
<> PLY%(A, Py)> (] pi-(q)
PLYS My, @y)3 [ pj-(g) if Vye T
(16)

where (=&8y, &6 =% ¢, and w; and uxe Z*. Now,
assume that

A=>a=%a and &y = bn

in (6.16). Since the derivation A =% g is done in finite
steps, this derivation can be rewritten as follows:

A= a=>a
where k is a non-negative integer. By using Step 1 and
Step 2 of Algorithm 6, we get the following:

A= a=>a<>FT\ (4,03 1p(p). an

In addition, applying Step 7 of Algorithm 8 to (16) and
(17), the following can be obtained:

§' 2 u; Xy = u,fBdy => u;Bdy 2> uif;ALy
2 U, ALY => Unaldy => unaldy
> FT3(a, “y)> ["¢1r(q) (18)

where {=£&dy, and &0 = ¢.
Now, the derivation &6y =% bn described before can
be rewritten as follows:

&y <>y =2 by,

Thus, applying Step 1 and Step 2 of Algorithm 6 to the
above derivation, we get the following:

y=>y = bn<>FT\* Wy, b)a[ 1r(). (19)
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Applying Step 8 of Algorithm 6 to (18) and (19), the
following holds:

Unaldy = unay = unabn

<> FT3%a, b)> ["{1p(q) (20
where {=£&dy. Thus, from (16), (17), and (20) we get the
following:

S' % u, Xy => u;,fBOy => u; By

=2 u,AEdy => UnalOy
X u.0ldy = unay =5 unabn
<~>FT"A,a)>[ 1p(p), and
FT3*a, b)= ["{lpr(q)
where {=¢&0y.

Taking into consideration that g is the index of a pro-
duction causing the appearance of A onto sentential
form, and p is the index of the first production to be ap-
plied to A for deriving a terminal g, the next relation de-
scribed in the beginning of (ii) can be obtained:

S = vXy => vBAv = uAv

= uav 2> uav <> uab{
<> FTi'(A,a)> 1p(p), and
FT}*(a, b)> ["VIp(@).

Proof of Case (jii)
Next, it is shown that
S’ 2 udv = uav 2> uv 2 uaby
<> FT%A, a)> ["]p, and
FTa, b)s ("]p. 21
In this case, the following hold:
A=p>a=*>t:andv=*>ab|//. 22)

The proof of (22) is reduced to either case (i) or (ii).
That is, if v=X,Xa- - - X, (Where, X;e NUX), X, Xz -+
Xi-1 =% &, Xi =% £, and v/ =X;+1 X2 - Xa, then the
relation (6.22) is classified to the following two cases of
(iii-a) or (iii-b):
(ii-a) X' = (v = abyv’
<> FT\ (X, a)> [ 1p(p), and
FTi*a,b)a1 1p(py),
(iii-b) X' = v’ = av' = av” L abv”
<> FT{*(X;, @)> [ 1pxp2), and
FT3%a, b)> ["V']1pq). (23)

The proof of cases (iii-a) and (iii-b) is reduced to the
same ones as these of cases (i) and (ii), respectively.
Assume that v=X,X;" - Xa, XiX2'  Xi-y = ¢, and
®y=X; in (21). Then, the proof on PL,(A4, X)) and
PL,(X;, Xi+1) is reduced to the same ones as Case (ii-b).
That is, in the following relation (24), if X;e N or
Xi+1€ N, then it must be replaced with a terminal, using
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Step 9 of Algorithm 6:
S = Xy => uAv
<> PLi(A, X)> ["v]q(g), and
PLY*(X;, Xn1)o ["Wg() if Pve 2 (24)
where v=X,X;- - X, and X, - - Xi-; => ¢. That is, ap-

plying Step 9 to the cases (iii-a), (iii-b), and the relation
(24), we get the following:

s = vXy => uAv 2 yy uaby

<> PLY%%(A, a)> ["V]q(q), and
PL3*"(a, b) 5 ["VIg(@). @5)
Further, because of A => « = ¢, by applying Step 10

of Algorithm 6 to (25), the following result can be ob-
tained:

S’ =-'-‘>C=q’uAv=‘,>uav=*>uv="$uabv/
> FT{A,a)3 ["V]p( ), and

FT'(@a, b)s ["VIp( ). [Q.E.D]

7. An Example
The tables Fig. 3 through Fig. 10 show the content of

tables at each step of Algorithm @ applied to the non-
strong semi-LL(2) grammar represented below.

[Example] Non-strong semi-LL(2) grammar

1. S—aAaa 4. A-b

2. S—bAba 5. A-e

3. S—Aa

S A a b $
S [ 13¢3 | 111) | [ J2(2
[ 13(3) | [ 13(3)

A [ J4a®
a [ |1
b [ 32¢2) [[ 133 | [ 12(
$

Fig. 3 FIRST-table for G, constructed from Step 2 through Step 1
of Algorithm 8. The entry marked with * denotes one en-
tered in Step 2, and the other entries are entered in Step 1.

S A a b $
S [$10C0)
A [al1(1) | [bJ2(2)
[a]3(3)
a [ali(1)
b [bJ2(2)
$ [$10¢0)

Fig. 4 PF-table for G; constructed from Step 3 of Algorithm 6.
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The sets Q and R for the above sample grammar are
given:

0={@, )}
R={(S, a, 3)’ (Av b9 4)}

8. Evaluations
To evaluate the capabilities of Algorithm 6, we com-

pared Algorithm 6 with Aho-Ullman’s method under
the following conditions:

S A
S
A
[a13(3)
b
$

Fig. 5 END-FOLLOW-table for G; constructed from Step 5
through Step 4 of Algorithm 6.

S A a b $
S [$30C0)
A [ad1(1) | [b]2(2)
[al3(3)
a fal1(1) [a]3(3)" |
b [bJ2¢2)
$ [$J0¢0)

Fig. 6 PF-table for G; constructed from Step 6 through Step 3 of
Algorithm 6. The entry marked with * denotes one entered

in Step 6.
S A a b $
[ 13(3) | [ () | [ J2(2)
[ 13(3) | [ 13(3)
A [ 14
a [ ) |01 | LI | [$13(0)"
b [J2¢2) | [ 133 | [ J2(2)
[ala1)" | [bJa(2)"
[a4(3)"

Fig. 7 FIRST-table for G, constructed from Step 8 through Step 1
of Algorithm 6. The entries marked with * denote ones
entered in Step 7, and the entry marked with ** is entered
in Step 8.
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S A a b $
S [$1o¢o
A [a1(1) | [bJ2(2)
[a13(3)
a [aJ1(1) [a13(3)
b [b12(2)
$ [$30C0)

Fig. 8 PF-table for G, constructed from Step 9 through Step 3 of
Algorithm 6.

S A a b $
S L1333 |01 [ [ 12D
[ 13(3) | [ 13(3)
A [als5( > | [ Ja(®
[b15C )*
a L ¢ | Ly | L3 | [$33(0)
[al5C - falsC )"
b [ J2¢2) | 13(3) | [ 12(2)
[alaCl) | [bJa(2)
[ala(3)
[b35( )*
$

Fig. 9 FIRST-table for G, constructed from Step 10 through Step
1 of Algorithm 6. The entries marked with * denote ones
entered in Step 10.

a b $

s| i [ 12

L13 | [
Al [al5 | [ 14

[bl5

a| [N | [N [$13

[al5 [al5
b| [13 | [12

[a]a | [bl4

[bl5
$

Fig. 10 Parsing table for G;. n type production indices are
transformed to 7 type.

(a) computer used: SUN-3 Model 60M,

(b) OS and language used: UNIX/PASCAL,

(c) sample grammars: PASCAL- (PASCAL
minus) [7] and ISO PASCAL [8].

(PASCAL- grammar is a subset of ISO PASCAL.)

All the programs required for parsing table construc-
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Table 1 The experimental construction time of parsing tables for
PASCAL- (time unit: sec).

Algorithm 6 (Authors) X [ Aho-Ullman Y XY |
Calculation Calculation 0.24
. for set Q for set FIRST | ' '
0.26 4 I
Calculation | Calculation | |
for set R | for7T;
Step 1 1 Convers.mn of 128.54
productions
11.61
| ! Constructing
Step 11 [ tables
Total | 11.87 E Total

Table 2 The experimental construction time of parsing tables for
ISO PASCAL (time unit: sec).

1 Algorithm 6 (Authors) X Aho-Ullman Y X:Y
Calculatioﬂ Calculation f 1.38
forset Q | | for set FIRST | :
| 1.47 ¢ —
Calculation Calculation
' for set R for T,
‘ Step 1 ' Convers‘lon of ‘ 2388.55
i productions ‘
l | i 190.69 —
Constructing
Step 11 ! |
P tables | [
! | ]
| Toad | 19206 Total L 28993 | 12 |

tion are programmed by a single programmer to
minimize differences based on the way of programming.

Speed of Table Construction

First, PASCAL- and ISO PASCAL grammars are
converted to semi-LL(2) grammars by hand. After this,
we made five experiments by Algorithm 6 and Aho-
Ullman’s method, respectively. Each value in Table 1
and Table 2 indicates the average time resulted from
these experiments.

For both cases of PASCAL- and ISO PASCAL, the
times required by Algorithm # are about 1/10 or less
than those by Aho-Ullman’s. Since the parsing table for
ISO PASCAL, constructed by Aho-Ullman’s method,
is too large to store on the memories of the used com-
puter, total time of Aho-Ullman’s method in Table 2
does not include the time required to fill table with com-
puted values. Thus, in practice, the total time by Aho-
Ullman’s method will be larger than indicated on Table
2.

The time required for calculating the sets Q and R is
negligible since each value is only 1.8-2.14% of the
total values in Table 1 and Table 2. The set Q is

" calculated by using the algorithm proposed in the article

[6]. The set R can be calculated easily by using an
algorithm similar to one for set Q.
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Memory Area Required for Constructing Tables

Memory space required in constructing tables can be
divided roughly into two parts, namely, the code por-
tion and table portion. The latter is greatly subjected to
the grammar to be processed, but the former is not.

Tables to be considered are a parsing table, a produc-
tion table, and some more tables used temporarily in
the construction of the parsing table. The temporary
tables used by authors are a part of FIRST-table, PF-
table, and END-FOLLOW-table etc. While the size of
parsing table, in the case of authors’ method, is decided
by the numbers of non-terminals and terminals of the
grammar to be processed, in the case of Aho-Ullman’s
method, it is decided by the number of newly generated
non-terminals, T;, and terminals. (cf. Fig. 11 and Fig.
12). Table 3 illustrates the number of nonterminals and
productions increase to 8 and 16 times the original
number in both cases of PASCAL- and ISO PASCAL
grammars, respectively.

Table 4 indicates the actual memory area occupied by
parsing tables constructed for PASCAL- and ISO
PASCAL grammars. An entry of the parsing table by
authors may include two or more 7 type production in-
dices, which is implemented by a linked-list using
pointers.

The values on the row I of Table 4 include memory
area used for these pointers, and also they include
memory area required for the parsing table, the produc-
tions, and all temporary tables used for constructing
parsing table.
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z —{$} $
N
z -{$}
$
Fig. 11 The structure of authors’ parsing table. Rows and
Columns are labeled with elements of the sets

(NUZ—{$})U{$}) and ((Z— {$})U{8}), respectively.

(Z-{8H?U(Z-{$DH

Fig. 12 The structure of Aho and Ullman’s parsing table. We
can’t construct the oblique portion of this figure as a part
of array because authors’ computer does not have
enough memory size, but we can code this part of tables
in the parsing steps. Rows and Columns are labeled with
elements of the sets (FU(Z—{$})U{$})) and (&
—{$H2UEU{$})U{e}), respectively. (Z—{$})? denotes
a set of terminal string of length 2.

Table 3  Actual numbers of production rules, terminals, and non-terminals resulted from rewriting Wirth’s production rules for applying Aho’s

algorithm (in the cases of PASCAL- and ISO PASCAL).

PASCAL grammar

ISO PASCAL grammar \

semi- LL(Z)

semi;}:L(2) Authors ho-Ullman ! ‘ Authors | Aho-L;zllman Xy Y,
i | L |
+ |
Numbers of productions 98 804 1:8 247 | 247 3997 1:16 ‘
Numbers of nonterminals 54 54 | 427 1:8 151 151 2369 1:16 |
Numbers of terminals 46 61 61 61 |

Table 4 Actual memory area required in the construction of parsing tables for PASCAL- and ISO PASCAL (memory unit: byte).

PASCAL- grammar

i 1SO PASCAL grammar

1
I - S
[ Authors X, Aho Ullman Y, X;: Y2

;

Authors X, Aho-Ullman Y, [ XY,
Memory for code (A) 65560 60896
Tables 1. all tables* (B) 161552** 7530080
II. a parsing table ! 60228 7439496
and productions*** ‘
Total (A)+(B) 1 227112 7590976

| e B S

1:0.93 65560 60896 1:0.93 !

| 558896** | 71947144 5

1:124 (o 179732 ‘ 71805620 1:400 \
L ! I
1:33 | 624456 72008040 | Lus |

*The values on the row consist of memory area for the parsing table, production-rules, and all the tables required for constructing a parsing

table.

**In authors’ parsing table, it is possible to enter multiple r type production indices into a single cell of tables. In such the case, it is im-
plemented by a linked list linked from the cell. The values marked with ** involve memory area for these linked lists.
***The values on this row are for only the memory area of parsing table and production-rules used for parsing.
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As far as a parsing table and productions are concern-
ed, memory area required by authors’ method is reduc-
ed to about 1/120 to 1/400 of Aho-Uliman’s. This ten-
dency of the decrease in memory area will be presumed
for other programming languages, also.

The memory area for code portion by authors’
method is slightly larger than Aho-Ullman’s. However,
because the ratio of the code portion to the whole re-
quired memory area is about 10% to 20%, it does not
matter.

In the case of Aho-Ullman, the more the size of gram-
mar becomes large, the more rapidly the number of con-
verted productions and converted nonterminals in-
creases. As illustrated in Table 3, in the case of produc-
tions, comparing the number of original productions of
PASCAL- with that of ISO PASCAL, the latter is
about two times and a half of the former. After the con-
version, however, this ratio becomes to about five
times. Furthermore, in the case of nonterminals,
although the ratio of number of original ones is about
two point and eight, after the conversion, this ratio
becomes to about five and a half. That is, by the conver-
sion, the ratio increases to two times the original one in
both cases of nonterminals and productions. As il-
lustrated in Fig. 12, Aho-Ullman’s table size varies in
proportion to the number of converted nonterminals.
Thus, it is guessed that Aho-Ullman’s table becomes
rapidly larger than the authors’ when the size of gram-
mar becomes larger.

9. Conclusions

As mentioned in the introduction, there are many
difficulties in constructing parsing tables of LL(k) gram-
mars, k=2. One of these is that the constructing
method itself is very complicated. Another one is that
the very large area of memory is needed for the construc-
tion.

This paper proposed a constructing algorithm of pars-
ing tables in the case of k=2 of semi-LL(k) grammars
that is slightly restricted LL(k) grammars, and showed
the validity of the algorithm. Moreover, we compared
results by our algorithm with ones by Aho-Ullman’s
method using PASCAL- and ISO PASCAL grammars.
The former’s table-construction time is about 1/10 of
that of the latter, and the memory area for parsing table
and productions is about 1/120 to 1/400 of that of the
latter.

Furthermore, from its property, Aho-Ullman’s
method is necessary to convert productions, by which
the number of productions increases into 8-16 times the
original one.

The above results of comparison are guessed to hold
generally for all grammars other than ones used as the
examples, from the property of Aho-Ullman’s method.

Although Aho-Ullman’s method has an advantage to
be applied not only to semi-LL(2) grammars but also to
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LL(2) grammars, Algorithm 8 is practically quite useful
because it is easy to implement and most of LL(2) gram-
mars can be converted into semi-LL(2) grammars.

The outline of a parsing method, which is based on
the parsing table constructed by Algorithm @ proposed
in this paper, is given in Appendix B. The detail of the
parsing algorithm is given in the article [1]. Moreover,
the properties of semi-LL(k) grammars are given in the
article [1], also.
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In this case, if EF(A4, B)> [X]p(s) and PL,(B, Y)
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3 [Z1q(r), then [V]p(r) is added to PL,(A4, Y). In addi-
tion, if Y= X then [V]p(r) is added to PL,(Y, W),
where W=®4, 8,8,-1---fi => ¢, and &nbn-y- - & =
e. X denotes the leftmost symbol of a string
BnBn-1---B1, and Z the leftmost symbol of a string
Enlny - & If X#¢ then V=X, otherwise V=2Z.

Appendix B

We describe the outline of a parsing algorithm based
on the parsing table proposed in this paper. The de-
tailed algorithm is discussed in the article [1].

First, a stack, an array, another region, variables,
symbols, and so on used in parsing, are described:

(1) R: stack storing parsing history.

(2) M: one dimensioned array storing a program text.
(3) CURRENT, and CURRENT,: variables storing
the terminal symbol looked currently on the text for par-
sing and the terminal symbol being right adjacent to the
symbol in CURRENT, on the text, respectively.

(4) TOP and NEXT: symbols indicating the top sym-
bol and the second symbol from the top in the stack R,
respectively.

(5) i: positive integer used as the subscript of M (i),
the i-th element, of array M.

(6) Y: variable storing production index.

Next, several actions executed in parsing are de-
scribed:
(i) POP: taking out the symbol in TOP from stack R.
The length of R is reduced by its one element, TOP is
replaced by NEXT, and the next of NEXT becomes
NEXT.
(ii) PUSH(p): Stack R is extended toward the top by
the length of righthand side of the production with in-
dex p and the right-hand side is stored on the extended
part of R, such that the leftmost symbol of the
righthand side comes onto new TOP.

Finally, set operation N,
U=T(TOP, CURRENT)) A T(CURRENT,,
CURRENT>),
is defined as follows.
[Definition]
For any Ae N, a and be &, and T(X, Y), set opera-
tion N is defined by:
@If ([ 1pe T(A, aPA(l 1pe T(a, b)), then
[ lpeU.
@If ([ 1pe T(A, a)A([X]pe T(a, b)), then
[ 1lpeU.
BIf ((X1pe TA, a)A([X]1pe T(a, b)), then
[ lpeU.
(@Otherwise, U=¢.

The value of set U is classified into three cases:
(a) Case |UI=0.
| Ul =0 means U=¢. In this case, there is no produc-
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tion to be applied. Thus, the parser concludes that the
program text is wrong.
(b) Case |UI=1.

For example, if U={[ ]p} then production p
should be applied regardless of the symbol in NEXT. If
[ 1has any symbol, for example, [X]p, then the parser
must decide whether it selects production p or not de-
pending on NEXT.

(¢) Case (Ul z2.

@D Case[ lpeU.

In this case, from (i) and (ii) of Theorem described
later, U becomes as follows:

U={l 1p, [Xilps, [X2lp2," - -, [Xulpu},

where n=2. This means that there exist the following
derivations:

* *

S’ = Ay => Uy = uably:
* *

S 2> w Ay, => way: => way, == wraby;
* * x*

S’ => w3 Ay; => wyay; => U3y => wabys,

and so on. However, since all the above derivations
begin with production A —a, the parser selects produc-
tion p as the first step of the derivations.

® Case[ lp&U.

In .this case, from (iii) of Theorem, U becomes as
follows:

U={[X1]plv [X21p27 T [X"]p"}’

where n=2, X;# X, and 1 =i, jsn. If NEXT =X, then
there is no production applying to TOP except pi.

(® If parsing is neither case (O nor @, from
Theorem the parser concludes that the program text is
wrong.

[Theorem]
Let a grammar be semi-LL(2). If set U has two or
more elements, then none of the following cases hold:

@ [ Ip,l la,p#q
) [ Ip, [X1q, p#q
(i) [X]p, [X1g, p#q

where U=T(A, a)"T(a, b).

Parsing Algorithm
begin
R«“S$%’; /% Initialization of stack R */
M«text ‘$$’; /» Initialization of array M x/
i—1;
CURRENT, <M (i);
CURRENT «M((i+1);
repeat
if TOP=CURRENT, and NEXT=CURRENT;
then
begin
POP; POP;
i—i+2;
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CURRENT, < M(i);
CURRENT, «~M(i+1);
end
else
if TOP=CURRENT, then
begin
POP;
i—i+1;
CURRENT, <~ CURRENT;;
CURRENT,-M((i+1);
end
else
if TOPe 2 then text error
else
begin
find U such that
U=T(TOP, CURRENT,) N
T(CURRENT,, CURRENT));
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case
| Ul =0: text error;
[UlI=1:

if there exists [ ]p in U then
select p and Y+ ‘p’
else
if there exists [NEXT]p in Uthen
select p and Y+«*p’
else text error;
Ul z2:
if there exists [ ]pin U then
select p and Y<‘p’
else
if there exists [NEXT] p;in U then
select p; and Y+ ‘p/
else text error;
end of case;
POP; PUSH(Y);
end
until TOP=$’ and CURRENT,=‘®’
end.
[End of Algorithm]



