Translation from Transactions of IPSJ

Rapid Learning Method for Multilayered Neural
Networks Using Two-Dimensional Conjugate
Gradient Search

TOSHINOBU YOSHIDA®

Back-propagation learning in multilayered neural networks is based on the principle of steepest descent. This
method calculates the gradient of the error function in the reverse mode of automatic differentiation. The pre-
sent paper first summarizes automatic differentiation and two-dimensional conjugate gradient search based on
automatic differentiation. A new learning method using two-dimensional conjugate gradient search is then pro-
posed for neural networks. The proposed method automatically controls the learning rate and the momentum
factor of the back-propagation. It requires computation of the quadratic forms of the Hessian of the error func-
tion. The computation time and the memory storage are proportional to the square of the size of the neural net-
work if all the components of the Hessian are computed. However, in the forward mode of automatic differen-
tiation, the quadratic forms are computed at a cost proportional only to the size of the neural network.
Numerical experiments show that the number of iterations is much smaller than for back-propagation, while the
time taken for one iteration is about three times that in back-propagation.

1. Introduction

In 1964, Wengert [1] presented a procedure for
automatic calculation of total/partial derivatives of ar-
bitrary algebraic functions. Baur et al. [3}, Kim et al. [4],
Iri [5], and Sawyer [6] proposed the reverse mode of
automatic differentiation, as opposed to Wengert’s for-
ward mode. This mode is called ‘‘fast automatic
differentiation,’’ because the reverse mode computes all
components of the gradient of a scalar function at a
cost proportional to the cost of computing the function
itself. Several automatic differentiation tools are now
available [7, 8, 10].

The back-propagation proposed by Rumelhart et al.
[11] is a gradient calculation technique in the reverse
mode of automatic differentiation. They presented a
learning method for feed-forward neural networks
based on back-propagation. Their method updates the
weights of the connection by adding the gradient
multiplied by —#n (5 is called the ‘‘learning rate’’).
Since this method is essentially based on the principle of
steepest descent, the convergence speed is slow. They
also proposed an acceleration technique: the weights
are changed by adding the sum of the gradient
multiplied by —» and the previous correction
multiplied by the ‘““momentum factor’’ «. Since the op-

This is a translation of the paper that appeared originally in
Japanese in Transactions of IPSJ, Vol. 31, No. 7 (1990), pp. 988-995.

*Department of Computer Science, Gunma University, Kiryu, Gun-
ma 376, Japan.

Journal of Information Processing, Vol. 15. No. 1, 1992

timal # and « vary in the course of the iterations, it is
difficult to fix these parameters beforehand. Vogl et al.
[12] proposed a different acceleration method, controll-
ing 7 and o dynamically.

Yoshida [13] proposed an optimization method using
two-dimensional conjugate gradient search based on
automatic differentiation. This is an iterative method
for finding the minimum of a scalar function. In each
iteration, the object function is approximated by a
quadratic function defined on the plane spanned by the
gradient direction and the previous search direction,
and the search moves to the minimum of the estimated
quadratic function. The method requires computation
of the quadratic forms of the Hessian of the object func-
tion. The computation time and the memory storage are
generally proportional to the square of the size of the
object function, if all the components of the Hessian
are computed. However, the method can compute
quadratic forms by automatic differentiation in a time
and with a storage proportional to the size of the object
function.

Using this method, we propose in this paper a rapid
learning method for multilayered feed-forward neural
networks. The method automatically controls the
parameters 7 and o. Sections 2 and 3 review automatic
differentiation and two-dimensional conjugate gradient
search, respectively. Section 4 presents notation and
definitions related to multilayered neural networks, and
describes the procedures for computing the gradient, in-
ner products, and quadratic forms in detail. In section



80

Fig. 1 Computational graph of Eq. (1).

5, we compare the proposed method with basic back-
propagation, back-propagation with inertia, and Vogl’s
method.

2. Automatic Differentiation

The details of automatic differentiation are given in
references 1 to 10. Here, only the basic ideas are review-
ed.

Any computational sequence of functions can be
represented as a directed acyclic graph. Let us call such
a graph a ‘‘computational graph.” For example, we
represent the following functions in the computational
graph as shown in Fig. 1:

xi=f (S wixi ). M
1

We put a memory on every edge and every node. The

memory on the edge from node u to node v has the

value dv/du, which we call the ‘‘elementary partial

derivative’’ (see Fig. 1). Each node v is given a memory

dv. We use the memories on nodes in both modes of

automatic differentiation as follows:

Forward mode Let e, ---, e, be the edges entering
node v. Each edge e; exiting from node v; has an
elementary partial derivative de;. The value dv at

node v is defined from the values dv,,---, dv, at
nodes vy, - -, v, by
k
dv= Z de,dv,. (2)

i=1
This operation is performed in the computational
graph from bottom to top, that is, in the order of
function evaluation.'
Reverse mode Lete,: - -, e be the edges exiting from
node v. Each edge e; entering node v; has an elemen-

'We call this mode of differentiation ‘‘bottom-up.”

T. YOSHIDA

tary partial derivative de;. The value dv at node v is de-
fined from the values dv,,- - -, dv, at nodes v,,- - -, v¢
by

k
dl)zz de,dv,-.

j=1

3)

This operation is performed in the computational
graph from top to bottom, that is, in the reverse
order of function evaluation.'

Let xi, -, x, and fi,---, fam, respectively, be the
nodes corresponding to the input vector x and the out-
put vector f. Let us assign dx; at node x;. If the forward
mode operations are applied, the values dfy,- - -, df. at
nodes f,," - -, fm are

df,-=z; @f;/ax)dx;, j=1,"--, m. )
In other words, the product of the Jacobi matrix Vf(x)
and vector dx=(dx,, - -, dx,) is computed. We note
that the Jacobi matrix itself is not computed. For a
scalar function f(x), this bottom-up method computes
the inner product Vf(x)-y, if vector y is assigned to
nodes x. Since this computational sequence of Vf(x)-y
can be represented in another computational graph, ap-
plication of the bottom-up method computes the value
of the quadratic form z'V?f (x)y, if vector z is assigned
to nodes x of this computational graph.

Let us assign vector y to nodes f, and apply the
reverse-mode operations. Then, the values obtained at
nodes x,,* - -, X, are

m

dx;= Zy,(af,/axi), i=1,---,n. 5)

F=
For a scalar function f (x), this top-down method com-
putes the gradient Vf(x) by assigning y=1 at node f.
The computational complexity is at most a constant
multiple of the complexity of computing the function
itself, and does not depend on the number of variables.
Back-propagation is simply a gradient evaluation tech-
nique based on this top-down method.

In summary, the gradient Vf(x), inner product
Vvf(x)-y, and quadratic form z‘V3f(x)y can be com-
puted by automatic differentiation in a time and with a
storage proportional to the size of the function.

3. Conjugate Gradient Method

Miele et al. [14] proposed a ‘‘memory gradient
method”’ for finding the minimum of a scalar function
f(x). Their method approximates the function by a
quadratic function of two variables # and « on the
plane spanned by the steepest descent g= —Vf(x) and
the previous correction p in the neighborhood of x as
follows:

'We call this mode of differentiation ‘‘top-down.”’



Rapid Learning Method for Multilayered Neural Networks Using Two-Dimensional Conjugate Gradient Search 81

1
f(X+ﬂg+ap)=f(x)+b'§+5 &'Ag, )
where b, A, and & are defined by
dg=vf(x)-g,
dp=vf(x)p,
ghg=g'v’f(x)g, ™

ghp=g'v’f (x)p,
php=p'V*f (x)p,

dg)

b= ,

( dp ®

A=(gh9 ghp), ©
ghp php

¢=("). (10)

[0

The minimizer £= (7 a)' of the left-hand side of Eq. (6)
is searched for in the two-dimensional plane, using the
minimizer of the quadratic function on the right-hand
side.

Yoshida [13] showed that the steepest descent g, the
inner products dg and dp, and the quadratic forms
ghg, ghp, and php can be computed efficiently by
automatic differentiation. He also presented another
two-dimensional search technique, which inexactly sear-
ches for the minimizer £ as follows:

1. If A is positive definite, the quadratic function on
the right-hand side of Eq. (6) is minimized by
E=—A"'b.

2. Elseif A is negative definite, the quadratic function
has a maximum, and £=—A"'b gives the maximum
point. Hence, if & is oriented in the opposite direction
A~'b, the quadratic function can be reduced.

3. Elseif 4 is non-singular, the quadratic function has
a saddle point, that is, A has a positive eigenvalue and a
negative eigenvalue. The function has a minimum along
the line corresponding to the positive eigenvalue, and a
maximum along the line corresponding to the negative
eigenvalue. Vector — A4 ~'b is the composition of the vec-
tor to the minimum point and the vector to the max-
imum point. Hence, the value of the quadratic function
can be reduced by setting vector £ as the composition of
the vector to the minimum point and the opposite vec-
tor to the maximum point. Vector & is given by the
following equations:

c= v(ghg—phpy +4ghp’ (1)
1 /ghg—ph 2gh

éz__(y g—php  2ghp )A_,b’ (12)
¢\ 2ghp  php—ghg

4. Otherwise, « is set at 0, and the minimum is search-
ed for along the steepest descent.
The following is an optimization algorithm based on
these ideas.
Algorithm CG (Two-Dimensional Conjugate Gra-
dient Search)
CG1 Initialize xe R", p:=o0, f.s:=sufficiently large

number, and r:=N.
CG2 Compute f:=f(x) and g:= —Vf(x).
CG3 If ligli<e, stop.
CG4 If f<fou, go to CGS5.
Otherwise, set p:=p/2, x:=x—p, r:=N and
return to CG2.
CG5 Compute b and A.
CG6 If det A=0or r=N, go to CG7.
If A is positive definite, set &:=—A"'d, r:=r+1and
go to CGS8;
else if A is negative definite, set £&:=A47'b and go to
CGS8;
otherwise, set & by using Eqgs. (11) and (12), and go to
CG8.
CG7 Set r:=0, a:=0.
If ghg>0, set n:=—dg/ghg;
else if ghg <O, set n:=dg/ghg;
otherwise, set n:=1.
CG8 Set p:=ng+ap, x:=x+p, and return to CG2.
Here ¢ is the stopping parameter and N is the restart
parameter. That is, « is set at 0 every N iterations.
Let the object function f be a quadratic function of
an n-dimensional vector x defined by

1
f(x)=c+b-x+3x’Hx, (13)

where H is a positive definite matrix of size n X n, b is an
n-dimensional vector, and c is a scalar. For this object
function, it can be proved that the above algorithm
generates search steps that are mutually conjugate with
respect to H. These are exactly the vectors generated by
the conjugate gradient method by Hestenes-Stiefel-
Daniel’s rule [13]. In other words, if the object function
is a quadratic function, Algorithm CG is the usual con-
jugate gradient method and finds a local minimum in at
most n iterations.

4. Multilayered Neural Networks

The neural network model considered here is a
multilayered feed-forward analog network with one in-
put layer (layer 0), n—1 hidden layers (from layer 1 to
layer n—1), and one output layer (layer n). Layer & has
m; cells. Let us denote the output of the jth cell in layer
k by x,’-‘, and the weight of the connection from the ith
cell of layer k—1 to the jth cell of layer k by wj. The
value wf is regarded as the threshold value, and x& ' is
always 1. The output function f'is assumed to be a twice
continuously differentiable increasing function. The out-
put of the jth cell in layer & is given by

M-y

yi= 2 wixt ™!, (14)

xi=f(y). (15)

The training data is a collection of pairs (x,, ¢;) of input
and desired output, where



82

Fig. 2 Computational graph for the equations in Step TD5 of

Algorithm TD.
Xo=(Xa1, Xa2," * 5 xa.mo)y
€=(Ca1, Ca2," " ca.m,,)y (16)

a=1,2,---,N.
We define the error function R(w) by

R(W)— Z Z (xaj cﬂj) ’ (17)

a=1j=
where w is a vector consisting of all the weights wf.» that
include the thresholds w}‘g, and xj; is the output for the
input x,.

The purpose of the learning in the neural network
model is to realize the input-output relation specified by
the training data. This is done by searching for the
weights w that minimize the error function R(w). We
adopt Algorithm CG for the search. We present
concrete algorithms for computing the steepest gra-
dient, inner products, and quadratic forms required in
Algorithm CG.

The details of the algorithm for computing the
steepest descent g= — VR(w) by the top-down method,
that is, by back-propagation, are as follows:
Algorihm TD (Computation of the Steepest Descent

Direction)

TD1 Set R:=0, g:=o0,
and repeat following steps from TD2 to TD6 for all
a=1,--, N.

TD2 Set x% =x,. For k=1to n, do

e

k _k—1
ZW,,x, ,

TD3 Compute R: =R+—2— Z (x]—cq)
j=1

TD4 Compute dy;:=(x]—c;)f (¥]).
TDS For k=n down to 2, do

X =f(y).

T. YOSHIDA

dyi = (Z wﬁdyf)f(y.-*"),

dwiz=dyix{™', ghi=gh—dw}.
TD6 Compute dw):=dy,x?, g,!,~:=g,l-,~—dw},-.
The equations in Step TDS are derived from the com-
putational graph shown in Fig. 2.

The following are the details of the algorithm for
computing the inner products dg and dp and the
quadratic forms ghg, ghp, and php by the bottom-up
method.

Algorithm BU (Computation of Inner Products and

Quadratic Forms)

BU1 Set dg:=0, dp:=0, ghg:=0, ghp: =0, php:=0,
and repeat the following steps for all a=1,---, N.
BU2 Set x%=x,, gx%=o0, px%=o0, ggx"=o,

grx’:=o, ppx°:=o.

For k=1 to n, do BU3.

BU3 For j=1 to my, do

M-y

_ k_k-1
yt—Z WiiXi
ey

gy:= Z‘, (ghxt™

k—1

+ w/lgxl )»

i

py:= Zo (pix! ™ +whipxt™,

My—y

g99y.= E (2gﬂyxr +le gxt ),
gpy:i=2 (gipxi ™' +pigxt " +wigpxtTh,
ppy:= Z(]) @pipxt "+ wippxt™h,

X[ =f() gxSi=f'(Ngy, pxi=f"(»)y,
99%;:=1"(»)ggy+/"(»)gy*
apx;:=f"(¥)gpy+£"(¥)gy py,
ppx;:=f"(9)ppy+1"(»)py*.

BU4 For j=1 to m,, do

uI=x; —cgj,

dg:=dg+ugx;],

dp:=dp+u px],

ghg:=ghg+(gx;y +u ggx,

9hp:=ghp+gx]px]+u gpx;,

php:=php+(px;) +u ppx;.

The equations in Step BU3 are derived from the com-
putational graph shown in Fig. 3 as follows:

The inner product gxf=vx!-gis obtained at node x5
in the middle part of Fig. 3 by the bottom-up method, if
gx{ " and g are assigned to nodes x} ' and w, respec-
tively. The right part of Fig. 3 represents the process of

computing gxf. The computational graph of the inner
product px; shown in the left part of Fig. 3 is obtained



Rapid Learning Method for Multilayered Neural Networks Using Two-Dimensional Conjugate Gradient Search 83

Fig. 3 Computational graph for the equations in Step BU3 of
Algorithm BU.

in the same way. The bottom-up method computes the
quadratic form ggx*=g'v3x g at node gx| by assigning
gxf™', g%, ggx¥', and 0 to nodes x!~', wf, gx!~', and
g%, respectively. The quadratic form gpx;=g'Vixip is
obtained at node gx* by assigning pxf~', pk, gpoxi™',
and 0 to nodes x{~', w, gxf~', and g, respectively.
The quadratic form ppx ! is obtained in the same way as
99%;.

Let us estimate the amount of computation and
storage in algorithms TD and BU. Let N (v) denote the
number of elements of v. According to the definition of
this network model, the number of cells N(x) and the
number of connections N (w) including threshold are

N@)=3 m, (18)
k=0
N(W)';kzi:] mk(mk_1+1). (19)

Algorithm TD uses the storage assigned to w and x
for the evaluation of R, and the storage assigned to w,
g, x, y, and dy for the evaluation of R and g. If the out-
put function fis

fFH=2/(1+exp (—yN)—1, (20)

its derivative and second derivative are
SOH=a-xM/2, @n
£ (h==xif (). 22

In this case, f’(yf) and f”(yf) are computed from x,'~‘,
and there is no need to store the vector y. Hence, the
amount of storage needed for computing R and g is
2N (w)+2N(x), which is twice the amount of storage
needed for computing R. The numbers of multiplica-
tions and additions in Step TD2 are both N (w), and the
number of operations for computing f is N(x)—mo.
Hence, R is computed by these operations and a few
operations in Step TD3, namely, m,+ 1 multiplications
and 2m, additions. Steps TD4, TDS5, and TD6 involve
2N (w)+m,—m(my+1) multiplications, 2N(w)
+2m,—N(x)—mym, additions, and N(x)—mq f’s.
Hence, R and g are computed by almost three times the
number of operations for R.

In Algorihm BU, if fis given by Eq. (20), y need not
be stored. The amount of storage used in this algorithm
is 3N (w) for w, g, and p, and 6N (x) for x, gx, px, ggx,
gpx, and ppx. Since N(x) generally is much smaller
than N (x), this algorithm computes inner products and
quadratic forms in a little more than three times the
storage used for R. The numbers of multiplications and
additions in this algorithm are approximately 14N (w)
+1IN(x) and 12N(w)+3N(x), respectively. The
number of operations for computing each of f, f’, and
f" is N(x). Hence, inner products and quadratic forms
can be evaluated in about 14 times the number of opera-
tions for R. The operations in one iteration of
Algorithm CG are mostly the operations in Algorithms
TD and BU. Therefore, the number of operations in an
iteration is at most six times the number of operations
required for back-propagation.

5. Computer Simulations

In this section, the proposed method is compared
with basic back-propagation, back-propagation with in-
ertia, and Vogl’s method. The following simulations
were done on a personal computer.' The programs for
the simulations were written in C language.

5.1 Neural Network Model and Its Learning Subjects

We used a neural network model with four layers.:
The input layer has 20 cells, the first and the second
layers have 10 cells each, and the output layer has 2
cells. The output function is given by Eq. (20). The net-
work distinguishes signals from two autoregressive
models (AR1 and AR2) of six degrees. For example, if a
signal from ARI is given to the input layer as a 20-
dimensional vector, the output cell corresponding to
ARI1 outputs the value + 1, and the other output cell the
value —1.

In Training A, three signals each from AR1 and AR2
are used as training data. In Training B, 10 signals each
from ARI1 and AR2 are used as training data.

'CPU: 80286, arithmetic co-processor: 80287, clock: 10 MHz.



84

LnglO(R)

30 60 90 120 150
CPU (s)
(a) basic back-propagation

Logyo(R)

CPU (s)
(b) back-propagation with inertia

T. YOsHIDA
2 X ~ T
e .
R )
o NN
3 A...\:\.\\.\j.: ........
LR
o e - 3 SR
e, B "~
S
O T O TR
) : .
30 60 90 120 150
CPU (s)

(c) Vogl’s method

Logy o (R)

CPU (s5)
(d) the proposed conjugate gradient method

Fig. 4 Convergence behaviors for Training A using four learning methods.

5.2 Learning Methods

In the basic back-propagation method, the weights w
are changed according to the rule

w:=w+ng, 3)

where g= —VR(w). In Training A and B, the learning
rate n was 0.3 and 0.05, respectively.

Back-propagation with inertia changes w by the
following equations:

p:=ng+ap,

w:=w+p. @4

In Training A and B, the learning rate n was 0.3 and
0.05, respectively, while the momentum factor « was
0.8 in both. In these methods, if overrun occurs, that is,
if R increases, the values of w backtrack as described in
Step CG4 of Algorihm CG.

Vogl’s method controls the parameters 7 and « in Eq.
(24) as follows:

If R is greater than the previous value of R,

then w backtracks, and set n:=8n, a:=0.
Otherwise, set 7: =¢n, a:=ay.

In Training A and B, the parameters ¢, 8, and oy were
1.05, 0.7, and 0.8, respectively.

In the proposed conjugate gradient method, the
restarting parameter N was 100.

5.3 Results

The convergence behaviors for Training A and B in
10 trials with different initial values are shown in Figs. 4
and 5, respectively.

In Training A, the basic back-propagation iterated
100 to 160 times in 150 seconds. Its convergence was
very show, as shown Fig. 4(a), and the error R did not
decrease below 1072, The computation time for one
iteration was 0.9 second. If » is less than 0.3, the occur-
rence of overrun decreases, but the convergence
becomes slower. In the opposite case, if # greater than
0.3, the overrun occurs more often, so the convergence
becomes slower. The back-propagation method with in-
ertia and Vogl’'s method converged to R < 1072 in about
30 seconds. However, the error R decreased very slowly
after 40 seconds. The computation time for one itera-
tion was 0.95 second. The proposed method converged



Rapid Learning Method for Multilayered Neural Networks Using Two-Dimensional Conjugate Gradient Search 85

Logy (R}

CPU (min)
(a)

Logyo(R)

CPU (min)
(b)

Fig. 5 Convergence behaviors for Training B using the four learning methods: (a)-(d) are the same methods as in Fig. 4.

to R<10™*in 16 to 36 iterations. The computation time
for one iteration was 2.8 seconds, which was about
three times that in back-propagation.

In Training B, basic back-propagation with fixed 7
converged very slowly. This is because the optimal 7
varies in the course of the iterations. In the fastest trial
of back-propagation with inertia, the error decreased to
nearly 1072 in 483 iterations and 70 overruns in about
1500 seconds. In the fastest trial of Vogl’s method, the
error decreased to below 1073 in 276 iterations and 27
overruns in 820 seconds. The computation time for one
iteration was 2.7 seconds. In the proposed method, nine
trials converged to R <1073, The fastest trial converged
in 40 iterations and 6 overruns in 375 seconds, and the
slowest trial converged in 98 iterations and 30 overruns
in 970 seconds. The computation time for one iteration
was 9.0 seconds, which was about three times that in
back-propagation.

6. Conclusion

In this paper, we have proposed a rapid learning
method for multilayered neural networks based on two-

Log o (R}

Log)o(R)

CPU (min)
)

dimensional conjugate gradient search. This method
gives optimal control of the learning rate and the
momentum factor. The gradient, inner products, and
quadratic forms are computed by automatic differentia-
tion. The storage required for these computations is
about three times the storage required for representing
the network, and the number of operations needed dur-
ing one iteration of the proposed method is at most six
times that in back-propagation. Computer simulations
have shown that the number of iterations for the pro-
posed method is much less than that in back-propaga-
tion, while the time needed for one iteration is about
three times that in back-propagation. If a parallel com-
puter is used, the ratio of the computing time during
one iteration of the proposed method to the back-pro-
pagation will be reduced, and more rapid learning can
be expected. Subjects for future study include examina-
tion of Miele’s exact two-dimensional search and
development of learning methods using higher-order
derivatives.



86
Acknowledgements

The author is greatly indebted to Professor Kenichi
Kanatani of Gunma University for his helpful advice on
ways to improve the manuscript.

References

1. WENGERT, R. E. A Simple Automatic Derivative Evaluation Pro-
gram, Comm. ACM, 1, 8 (1964), 463-464.

2. RALL, L. B. Automatic Differentiation: Techniques and Applica-
tions, Lecture Notes in Computer Science, 120, Springer-Verlag,
Berlin (1981).

3. BAurR, W. and STRASSEN, V. The Complexity of Partial
Derivatives, Theor. Comput. Sci., 22 (1983), 317-330.

4. Kim, K. V., NESTEROV, YU. E., Skokov, V. A., and CHERKASSKII,
B. V. An Efficient Algorithm for Computing Derivatives and Ex-
tremal Problems, Ekonomika i matematicheskie metody, 20, 2 (1984),
309-318.

5. IR, M. Simultaneous Computation of Functions Partial
Derivatives and Estimates of Rounding Errors—Complexity and Prac-
ticality, Jpn. J. Appl. Math., 1, 2 (1984), 223-252.

6. SAWYER, J. W., JR. First Partial Differentiation by Computer
with an Application to Categorical Data Analysis, American Statisti-
cian, 38, 4 (1984), 300-308.

T. YOSHIDA

7. lwata, N. Automatization of the Computation of Partial
Derivatives (in Japanese), Master’s Thesis, Information Engineering,
Graduate School, University of Tokyo (March 1984).

8. KUBOTA, K. and Ir1, M. Formulation of Fast Automatic Differen-
tiation and Its Implementation System (in Japanese), The Institute of
Statistical Mathematics Cooperative Research Report, Application of
Graph Theory to Numerical Computation, 61-CR-14 (1987), 154-
163.

9. KuBorTa, K. and Iri, M. Formulation and Analysis of Computa-
tional Complexity of Fast Automatic Differentiation (in Japanese),
Trans. IPS Japan, 29, 6 (1988), 551-560.

10. YosHipAa, T. Automatic Derivative Derivation System (in
Japanese), Trans. IPS Japan, 30, 7 (1989), 799-806.

11. RUMELHART, D. E., HINTON, G. E., and WiLLiAMS, R. J. Learn-
ing Representations by Back-Propagating Errors, Nature, 323 (1986)
533-536.

12. Voai, T. P., Manais, J. K., RIGLER, A. K., ZINk, W. T., and
ALCON, D. L. Accelerating the Convergence of the Back-Propagation
Method, Biological Cybernetics, 59 (1988), 257-263.

13. YosHipa, T. Conjugate Gradient Method with Two-Dimen-
sional Search Using Automatic Differentiation, Journal of Optimiza-
tion Theory and Applications, in preparation.

14. MIELE, A. and CANTRELL, J. W. Study on a Memory Gradient
Method for the Minimization of Functions, Journal of Optimization
Theory and Applications, 3, 6 (1969), 459-470.




