Translation from Transactions of IPSJ

Reasoning for a Logic Circuit Synthesis Expert System

KEISUKE BEKKI*, TAKAYOSHI YOKOTA*, TOHRU NAGAT*,
NORIKO NAKATSUKA* and NOBUHIRO HAMADA*

Most first-generation expert systems are rule-based systems with separate inference engines. To build this type
of expert system, experts’ knowledge must be described as a large unstructured collection of rules. But this is
especially difficult for complicated design problems such as logic circuit design. Therefore a reasoning
mechanism must be established that is suited to building expert systems for design problems.

This paper shows that the logic circuit design process can be decomposed into two phases. The first includes
routine design, which is largely top-down, while the second is bottom-up. A new reasoning mechanism is pro-
posed that can control both top-down and bottom-up design. This reasoning mechanism has been implemented
in Prolog according to an object oriented programming paradigm, and an expert system called ProLogic built
for logic circuit design. Logic circuits synthesized by ProLogic are evaluated and found to be similar to those
designed by human experts, confirming the usefulness of the proposed reasoning mechanism.

1. Introduction

In order to shorten the design period for VLSI chips,
their design automation has been researched extensively
in recent years. High-level synthesis such as architec-
tural and register-transfer-level synthesis, however, is
not automated and is done manually. This is because
high-level synthesis is a complicated procedure with the
following characteristics:

1. A design object has a hierarchical structure;

2. Top-down design, in which lower layers are
designed by using the design results of upper layers, and
bottom-up design are flexibly combined to synthesize
logic circuits;

3. When a solution that satisfies the specifications
cannot be found, the design is reattempted, using
another design strategy;

4. Design methods vary along with functional
modules;

5. Design methods are modified according to the
progress of design object fabrication technology.
These characteristics are common to almost all design
problems. Therefore, building expert systems for design
problems is difficult, and few practical systems have
been reported.

Most expert systems are rule-based systems with
separate inference engines. Experts’ knowledge must be
represented as a large unstructured collection of rules.
Using these rules, the expert systems derive solutions.
Usually, rules are expressed by a simple if-then type of
This is a translation of the paper that appeared originally in
Japanese in Journal of IPSJ, Vol. 31, No. 6 (1990), pp. 753-762.

*Hitachi Research Laboratory, Hitachi Ltd. 4026, Kuji, Hitachi,
Ibaraki 319-12, Japan.

Journal of Information Processing, Vol. 15, No. 1, 1992

structure. However, since the structure’s knowledge
representation ability is relatively low, it is very difficult
to create an exact representation of the knowledge for
solving complicated problems. Therefore, in building
expert systems for such complicated problems, there is
a gap between the complexity of the problem to be
solved and the knowledge representation ability offered
by an expert system. This gap must be filled by
knowledge engineers, and poses the most difficult prob-
lem in building expert systems.

Our proposal for solving this problem is the concept
of generic tasks [7, 8]. Most problem-solving method-
ologies can be classified into six types of tasks, called
generic tasks, and expert systems for a specified prob-
lem domain can be built easily by combining the most
appropriate tasks. Analysis of design problems shows
that they can be classified into three classes:

1. Design problems in which neither design
strategies nor design elements are given;

2. Design problems in which design elements but
not design strategies are given; and

3. Design problems in which design strategies but

not design elements are given.
For class 3 design problems where top-down design is
possible, a generic task, called a routine design, was for-
mulated in which the activity is plan selection and
refinement.

We have been researching the methodology of
building expert systems for high-level synthesis of
VLSIs [4—6] belonging to class 3. However, since the
search space for selecting design elements is huge, high-
level synthesis cannot be solved without taking a
bottom-up approach as well as a top-down approach.
Thus, we cannot obtain a satisfactory solution for

42

VLSI design by using a routine design provided by an ex-
pert system. Therefore, in order to build expert systems
for design problems more easily, we must extend the
concept and functions of the previously formulated
generic tasks.

In this paper, we discuss a high-level synthesis that
generates logic gate circuits from register-transfer-level
specifications. We show that high-level synthesis can be
achieved by taking both top-down and bottom-up ap-
proaches. Then, we discuss a reasoning mechanism to
control the use of top-down and bottom-up approaches
properly. Moreover, we show that this reasoning
mechanism can be implemented easily by introducing
the object-oriented programming paradigm, and that ex-
pert systems for high-level synthesis can be easily im-
plemented by using the proposed reasoning mechanism.

2. High-Level Synthesis for VLSIs

Logic circuits such as microprocessors and digital
signal processors consist of various kinds of functional
modules. Figure 1 shows an example block diagram of a
microprocessor. Its functional modules include an
Arithmetic Logic Unit (ALU), a shifter, and a micro
program sequencer. Functional modules can be
grouped into two types: modules that were previously
designed and can be used without modifying any parts,
and modules that were previously designed and can be
used after modifying some parts. From this viewpoint,
we can classify the high-level synthesis problems into
the following two classes:

Class A: Problems that can be solved by using pre-
designed functional modules without any modification.

Class B: Problems that can be solved by modifying
pre-designed functional modules.

Design problems belonging to Class A can be solved
by using a routine design that takes only a top-down ap-
proach. Figure 2 shows the structure of a stack belong-
ing to a Class B problem. The stack consists of a
counter and a Random Access Memory (RAM). we
assume that the counter and the RAM, which have been
designed previously, can be utilized without any
modification. The procedure of designing the stack then
consists of two steps, constraint propagation and
design element selection. The first step propagates many
kinds of design constraint, imposed on functional
modules of higher layers, to functional modules of
lower layers. In the second step, the functional modules
that satisfy all the design constraints are chosen from
the functional module library that includes the previous-
ly designed functional modules. For instance, suppose
that the specifications of the stack are given. At the con-
straint propagation step, the design constraints such as
bit width, delay time, size, power consumption, clock
scheme, and fabrication process are propagated to the
modules of the lower layer, namely the RAM and the
counter. At the design element selection step, the most
suitable RAM and counter, which satisfy all the con-

K. BEkk!, T. YokoTA, T. NaGal, N. NAKATSUKA and N. HAMADA

Micro Program Sequencer

Bus3
\
Bus 1
Register | Register | Register
11 7 3
Bus2
Fig. 1 Block diagram of a microprocessor.
C 1
ToptDown Stack ontrol
Design
Design Constraint
Propagation
(Bit-width, Timing,

Delay,)

Design Element
Selection

Address{ Da
Data -
2y, >
e

Fig. 2 Component structure of stack.

straints propagated from the higher layer, are selected
from the functional module library.

Design problems belonging to Class B can be solved
by using both top-down and bottom-up approaches ap-
propriately. Figure 3 shows the hierarchical structure of
a microprocessor. Each box represents a functional
module. Boxes marked ‘*’ represent functional
modules belonging to Class B. We say that the func-
tional module X includes the functional module Y if X
is in a higher layer than Y and there is a top-dowm path
from X to Y. The microprocessor in the top layer
belongs to Class B, because most microprocessors can
be designed by modifying the structures of registers,
buses, ALUs, and so on, and redesigning the control cir-
cuits. Figure 4 shows a block diagram of a
microprogram sequencer, which also belongs to Class
B. Any two microprogram sequencers of different
microprocessors are different at the logic gate level,
even if they have the same block diagram. For example,
a function set for branch address control such as a con-
ditional jump differs from one processor to another,
because the optimal function set depends on the proces-
sor architecture. Therefore, we must redesign and
modify the microprogram sequencer at the logic gate
level design, even if we use a previously designed block
structure,

One of the most important considerations is the op-
timality of the whole processor, even though only small
parts of it are modified. It is difficult to maintain the
overall optimality, because we must modify many func-
tional modules belonging to Class B simultaneously.
However, even human designers cannot do this. They

Reasoning for a Logic Circuit Synthesis Expert System
Top-Down Design

Design
Constraint

43

P

[[1

Design

egisierf [Register icro Program|
1 23 3 Sequencer

egister| | Shifter h ALU
a sft 1 aly

Element

Selection

di
ncrementer| | ROM
inc cm

Bottom-up Design

Fig. 3 Component structure of the microprocessor in Fig. 1.

D —

Incrementer
mc
—)

Register

Y
Address

Control Memory

cm

v

Register _mir

Control Signals for Data Path

Fig. 4 Block diagram of the microsequencer.

search for the optimal solution for only one functional
module at a time. Therefore, we assume that a quasi-op-
timal solution for the whole processor can be obtained
if we optimally design the functional modules of Class
B one by one. Namely, we assume the following.
Assumption 1

Suppose that the functional module Z includes the
functional module Y of Class B. Then we can get a
quasi-optimal solution of Z if we design Y optimally
under the constraint that the specifications of Z and all
the functional modules included in Y are satisfied.

When this assumption is introduced, even if we are
designing a microprocessor that contains many func-
tional modules belonging to Class B, the modules can
be designed one by one. For example, in the microproc-
essor shown in Fig. 3, we can determine the detailed
specifications of the microprogram sequencer so that the
processor will be quasi-optimal while satisfying the de-
tailed specifications of stack, registers, incrementer,
and ROM, and the given specifications of the processor.
Therefore, in designing the microprogram sequencer,

we must finish synthesizing the functional modules in
the layers lower than that of the sequencer, such as the
stack, registers, incrementer, and ROM. Hence, when
functional modules belonging to Class B are designed,
we must use the bottom-up approach in which the func-
tional modules in the lower layers are designed before
those in the higher layers.

When the specifications of the micro-processor are
given, the design process is carried out, first, by using
the top-down approach. In this design step, the
specifications of each functional module contained in
the microprocessor are refined by constraint propaga-
tion and design element selection. We finish designing
the functional module belonging to Class A by using
only the top-down approach. Since the design data con-
tained in the module library are utilized effectively in
the top-down design approach, its search space is rela-
tively narrow. On the other hand, after finishing the
top-down design, we must carry out the bottom-up
design for the functional modules belonging to Class B.
In the bottom-up design approach, all the modules
must be combined so that the specifications are
satisfied. To do this, all module specifications must be
analyzed. Therefore, the search space for the design
becomes huge.

3. Modifying Functional Modules According to a Bot-
tom-up Approach

Bottom-up design is an operation by which the
specifications of functional modules belonging to Class
B can be refined while taking account of all the specifica-
tions of the functional modules in lower layers. The
Specifications of functional modules are classified ac-
cording to the four kinds of descriptions shown in
Table 1. They are discussed below.

3.1 Descriptions of Functional Module

1. Behavioral description
The behavioral description represents the behavior of

Table 1 Design Data Class and Descriptions.

signDataClass| 1| 11 | m| 1v| v | vI

Description

(1) Behavioral Description x| O x| O] x x

(1) Behavioral Description fo)
of Control Module X X x X X

(2) Rough Structural Scheme ol ol - -1|-] -
Description

(3) Detailed Data Path Description x| x| O] Of -] -

(4) Detailed Structural Description X X x X

X : not determined
O : determined
- :don't care

micro_operation_alu := {
decode mir<0, 3> := {
0:= dla=busl + bus2 +0;
dla = busl + bus2 +1;
dla = busl + bus2 +ct;
dla = busl & bus2;
dla = busl | bus2;
if (flag==1) dla =busl + bus2 +0;
else dla = busl + bus2 +1;
10 := if (flag==1) dla=busl & bus2;
else dla = busl | bus2;

NP WN =
WO

)

Fig. 5 Behavioral description of the microprocessor in Fig. 1.

a functional module by using a programming language
such as C. Figure 5 shows this for the microprocessor in
Fig. 1. The description is of the execution function of
the processor. According to this description, when the
value of mir<0, 3> is 0, the operation ‘dla=busl+
bus2+0;’ is executed, where mir{0, 3)> means the 0-th
to third bits of the register mir. When the value of
mir0, 3) is 1, the operation ‘dla=busl +bus2+1;’ is
executed.

2. Rough structural scheme description

The rough structural scheme description represents
the rough scheme of a functional module structure with
blocks and principal connections between them.
Figures 1 and 4 are examples.

3. Detailed data path description

A functional module belonging to Class B is divided
into two parts: a data path part and a control part. The
former is a circuit that executes some functional opera-
tions by using functional modules such as ALUs,
shifters, and registers. The latter is a circuit that sup-
plies the functional modules of the data path part with
control signals so that data processing can be executed
correctly. Figure 6 shows an example of a detailed data
path description corresponding to the microprogram se-
quencer shown in Fig. 4.

4. Detailed structural description

The detailed structural description represents the de-
tailed structure of a functional module, which consists

K. Bekki, T. YOKOTA, T. NAGAI, N. NAKATSUKA and N. HAMADA

multiplexer
0

84

Control Memory

cm

v

I : i Register mir

L — |

Control Signals for Data Path

Fig. 6 Detailed structural description of the data path.

multiplexer
0

Control
Element
Address
Control Memory
Y
v
i Register _mir | IS

Control Signals for Data Path

Fig. 7 Detailed structural description.

of a detailed data path structure, a detailed control
structure, and their connections. Figure 7 shows an ex-
ample of the detailed structural description corre-
sponding to the microprogram sequencer shown in
Fig. 4.

A functional module is represented by design data
that are a combination of the above four kinds of
descriptions. High-level synthesis is defined as a pro-
cedure for transforming abstract design data of the
functional modules into detailed data. We define six
kinds of design data to represent the same functional
modaule at different abstract levels, as shown in Table 1.
After the top-down design has been finished, design
data for functional modules fall into one of these six
categories. For example, when the behavioral descrip-
tion and rough structural scheme description are given
as design data and the behavioral description of the con-
trol module is not given, the design data belong to Class
II.

Reasoning for a Logic Circuit Synthesis Expert System

——e——: T by behavioral
generating operator

- : Transition by data path
operator

g - —— : Transition by control module
generating operator

Fig. 8 State transition diagram for bottom-up design.

The design data belonging to Class VI are the most de-
tailed. The design of functional modules described in
this class is considered to be finished. Bottom-up design
creates less detailed design data, belonging to classes I-
V, on up to the most detailed, in class VI. Therefore, in
order to implement the bottom-up design, we must im-
plement the task that raises the design data of classes I-
V to the most detailed data, belonging to class VI. We
consider the design data belonging to one of the classes
as a state. Therefore, the bottom-up process of design-
ing functional modules is represented by a state transi-
tion diagram. Figure 8 shows a state transition diagram
of the bottom-up design. From it, we can generate
design data belonging to class VI from those belonging
to one of the classes I-V, using three operators. In this
paper we call them bottom-up operators.

These bottom-up operators are discussed in the
following section.

3.2 Bottom-up Operators

1. Behavioral-description-generating operator

The behavioral-description-generating operator
generates a behavioral description of a functional
module belonging to Class B, analyzing both the
specifications of all the functional modules in the lower
layers and the given specifications of the microproces-
sor. For example, for the microprogram sequencer, the
operator generates a behavioral description, analyzing
the specifications of the ROM, incrementers, registers,
stacks, and microprocessor. We assume that the follow-
ing specifications are given for the microprogram execu-
tion sequence:

decode mir<0, 3):={

0:=rar=mir{0, 21);)
1:={stk(rar, 1); rar=mir<10, 21>;} @)
3:=rar=stk(rar, 2)+1; A3)
4:=rar=r340, 11); @)

45

Both mir and rar are functional modules contained in
the microprogram sequencer. Therefore, operation (1),
which transfers data in mir to rar, can be executed in
the micro-program sequencer. Operation (2) can also be
executed in the sequencer, because all the functional
modules used in (2), namely stk, rar, and mir, are
elements of the sequencer. The operation + 1, which ap-
pears in operation (3), can be executed in the in-
crementer ‘inc’ by looking into the specifications of
‘inc’. The executability of the operation can be deter-
mined by looking into the specifications of the func-
tional modules in the lower layers. Therefore, opera-
tion (3) can also be executed in the sequencer. The data
in register ‘r3’ are transferred into the register ‘rar’ by
operation (4). However, register ‘r3’ is not included in
the microprogram sequencer. Therefore, operation (4)
cannot be executed in the sequencer. Now, we assume
that the output terminals of register ‘r3<0, 11)’ are
connected to the input terminals of the sequencer ‘in{0,
11)’. The operation that transfers the data from “in<0,
11)’ to ‘rar’ can be executed in the sequencer, because
all the modules used in the operation are contained in
the sequencer. We can transform a non-executable
operation into an executable one by looking into the
specifications of the modules in the lower layers, and
deciding the executability of the operation. We can ob-
tain the following behavioral description of the se-
quencer by using the behavioral description generating
operator:

decode mir<0, 3)>:={

0:=rar=mir{0, 21); 1)
1: = {stk(rar, 1); rar=mir<10, 21);})
3:=rar=stk(rar, 2)+1; 3)
4:=rar=in{0, 11); @’

b

2. Data-path-synthesizing operator

The data-path-synthesizing operator generates a de-
tailed data path description. The data path generated by
the operator executes data processing, which is de-
scribed by the behavioral description. At first, the
operator extracts the connections of the modules need-
ed to execute the behavioral description by looking into
the behavioral description of the functional modules
and the specifications of all functional modules in the
lower layers. It then transforms the connections into a
detailed behavioral description by resolving data con-
flicts occurring with them.

Let us take the microprogram sequencer as an exam-
ple. The operator extracts the connections by looking
into the behavioral description of the sequencer and the
specifications of the ROM, incrementer, registers and
stack. The behavioral descriptions (1)-(4)’ shown in the
‘‘behavioral-description-generating operator’’ section
are assumed to be given as a behavioral description of
the sequencer. The operator extracts, from operation
(1), the connection between the outputs of mir<10, 21)
and the inputs of rar. Similarly, from operation (2), it

46

extracts the connections between the outputs of rar and
the inputs of stk and between the outputs of mir{10,
21> and the inputs of rar. From operation (3), it ex-
tracts the connections between the outputs of stk and
the inputs of inc and between the outputs of rar and the
inputs of stk. In operation (3), the operation ‘+ 1’ ap-
pears. The connections for the operation ‘+1° are
easily extracted by confirming that inc can execute the
operation ‘+1°. In this way, the operator extracts the
connections needed to execute the operations by look-
ing into the behavioral description and the specifica-
tions of all functional modules in the lower layers.

Then, the operator transforms the connections into a
detailed behavioral description by resolving data con-
flicts occurring with them. In order to execute operation
(1), the connection between the outputs of mir{10, 21)
and the inputs of rar is needed. On the other hand, in
order to execute operation (4)’, the connection between
the inputs of the sequencer in{0, 11) and the inputs of
rar is needed. Therefore, data conflict occurs because
two different data meet at the inputs of rar. The data
conflict can be resolved by inserting a multiplexer to con-
trol the data flow at the point where the conflict occurs.
The operator transforms the connection into a detailed
data path description, as shown in Fig. 6, inserting
multiplexers at the points where data conflicts occur.

3. Control-module-generating operator

The control-module-generating operator generates a
detailed structural description. At first, the operator ex-
tracts the specifications of a control module. The con-
trol module is a functional module that controls data
processing on the data path so that the behavioral
description can be executed correctly. The operator ex-
tracts the specifications of the control module by look-
ing into the behavioral description and the detailed data
path descriptions of the functional module and the
specifications of all functional modules in the lower
layers. It then extracts the connections between the con-
trol module and all the functional modules contained in
the data path. The operator generates a detailed struc-
tural description by merging both the connections and
the control module into the detailed data path descrip-
tion.

As for the microprogram sequencer, the operator ex-
tracts the specifications of a control module and the con-
nection between the module and the data path by look-
ing into the behavioral description and the detailed data
path description of the sequencer and the specifications
of the ROM, incrementer, registers, and stack. We
assume that the behavioral descriptions (1)-(4)’ shown
in the section on the behavioral-description-generating
operator are given as behavioral descriptions of the se-
quencer. In order to execute operation (1), the path
from the outputs of mir{10, 21> to the inputs of rar
must be followed and the data along the path must be
loaded into the rar. To do this, we need the control
signals that cause the path to be followed and make the
rar load the data along the path. The operator extracts

K. BEKKI, T. YOKOTA, T. NAGAI, N. NAKATSUKA and N. HAMADA

the control signals needed to execute the behavioral
description by looking into the specifications of all func-
tional modules in the lower layers. Then, the operator
generates a behavioral description of the control
module and the connections between the control
modules, ROM, incrementer, registers, and stack from
the extracted control signals.

The state transition diagram shown in Fig. 8 is
represented by a directed graph. Representing state tran-
sitions by inequalities, we obtain

State VI< State IV < State II< State I, 1)
State VI< State V,)
State VI< State III. 3)

From the above inequalities, we can derive the order in
which to apply the bottom-up operators as follows:

Behavioral-description-generating operator>
Data-path-synthesizing operator>
Control-module-generating operator.)

The bottom-up process of synthesizing a functional
module is divided into six steps according to the deter-
mined design data of the module. The process is
represented by using the state transition diagram, re-
garding each step as a state. The state transition is per-
formed by using bottom-up operations. As shown in
this section, the order in which to apply the bottom-up
operators is easily derived by using the state transition
diagram.

4. Implementation

New programming methodologies introducing the ob-
ject-oriented paradigm have been studied extensively in
recent years [10]. They aim at realizing an excellent pro-
gramming environment making effective use of the
following advantages of object-oriented programming:

1. The problem structure can be easily reflected in
the program structure;

2. Higher modularity can be expected owing to the
autonomy of objects;

3. Higher common usability and reusability of pro-
cedures can be expected as a result of the inheritance
mechanism; and

4. Flexible controllability can be implemented

owing to the dynamic control of procedures such as
message passing.
These advantages of the object-oriented programming
paradigm are especially useful in expert systems for
design problems. Therefore, we built an expert system
for high-level synthesis of VLSIs based on the object-
oriented paradigm.

Figure 9 shows the system structure of the expert
system, named ProLogic. It consists of four sub-
systems: a template object data base, a refinement
operator data base, an instance object data base, and a
task controller that controls the reasoning for design
problems. These subsystems are discussed below.

Reasoning for a Logic Circuit Synthesis Expert System

» -Domain Knowledge.

- Task Controller
Specifications Top-Down Design
Evaluation of
Propagation Functions

c e

U

Bottom-up Design
Evaluation of
Refinement Functions

for Bottom-upOperators]

Fig. 9 System structure of ProLogic.

4.1 A Template Object and an Instance Object

In ProLogic, every functional module, such as a
register, a counter, or a stack, is represented as an ob-
ject. All the objects needed to describe functional
modules are classified into two kinds, template objects
and instance objects. The former are objects that repre-
sent only the concept of a functional module such as a
counter or register. The concept of the functional
module is a generic procedure or structure needed in syn-
thesizing the module, and does not correspond to any
entities of the functional module. On the other hand, in-
stance objects represent the entity of the functional
module; for example, when there is an object that
represents a register with eight-bit width named ‘r1’, the
object represents the entity of ‘r1’ and is an instance ob-
ject. An instance object is generated according to the
concept described in the template object. Figure 10
shows an example of a template object for the
microprogram sequencer. In ProLogic, two
mechanisms are provided in order to describe the con-
cept of the functional module. One is an object variable
and the other is a refinement function.

(1) Object variable

The object variable is described as a string of
characters that is initiated with a large character similar
to a Prolog variable. Bit, D1, and T, which appear in
Fig. 10, are all object variables. Any values, such as
numerics, lists, and atoms, can be assigned to an object
variable. For example, we can assign [0, 10] to Bit and
[1, p1] to T. When appropriate values have been as-
signed to all the object variables in the template, the
names of objects are changed to those of instantiated
functional modules such as ‘r1’ and are copied. The
copied objects are instance objects generated by the
template objects.

(2) Refinement function

In ProLogic, a function that refines specifications can
be defined, and is called a refinement function. Ex-
amples are the functions mult (4, D1) and next (1, T),
which appear in Fig. 10. The bottom-up operators
defined in Section 3.2 are also implemented as refine-

47

micro_sequencer := {
object_variables := {

bit_length : Bit
delay : D1
timing : T

components_definition := {

cm<Bit> = {
type : rom
timing: next(l, T)
delay : mult(4, D1)
}

rough_structual_scheme_description := (
rar[out] = cm[address_in};
inc[out] = stk[in];
rar[out] = inc[in];

)
detailed_data_path_description := {
data_path_synthesis

detailed_structural_description := {
control_element_synthesis

behavioral_description := {

repeat {
mir = cm(rar);
next
extract(Bhv)
)

}

)

Fig. 10 Template object of the microsequencer in Fig. 4.

ment functions. The behavioral-description-generating
operator is implemented by using the refinement func-
tion ‘extract (Bhv)’, the data-path-synthesizing operator
by using ‘data_path_synthesis’ and the control module
generating function by using ‘control_element_syn-
thesis’. The specifications of the functional modules
can be refined by evaluating the refinement functions.
When all the refinement functions in the object have
been completely evaluated, the design process for the
module described by the object is finished. The refine-
ment function procedure is defined in the refinement
operator data base and is described in an ordinary pro-
gramming language such as FORTRAN, C, or Prolog.
The evaluation priority of the refinement functions is
controlled by the task controller as described next.

4.2 Task Controller

In ProLogic, the refinement functions used in the
top-down design approach can be explicitly disitinguish-
ed from those used in the bottom-up design approach.
As we mentioned in Section 2, the design process con-
sists of two steps. In the first step, the specifications of

48

the functional modules are refined by using the top-
down approach. In the second step, the bottom-up
approach is taken. Therefore, we must control the
reasoning so that the refinement functions used in the
top-down approach can be executed first and then those
used in the bottom-up approach can be executed.

1. Control method for evaluation of refinement
functions used in the top-down approach

The process of top-down design consists of design
constraint propagation and design element selection.
Design constraint propagation can be executed by
assigning values to object variables and evaluating the
refinement functions used in the top-down approach.
These functions are called propagation functions. In
the template object shown in Fig. 10, next (1, T), mult
(4, D1), and add (1, B) are all propagation functions.

The procedure for evaluating a propagation function
is defined in the refinement operator data base. The
task controller can control the evaluation priority
of propagation functions. This priority can be defined
explicitly as follows.

1 mult
2 add
3 next

In the design constraint propagation phase, the pro-
pagation functions are evaluated in this order.

As shown in Fig. 10, all functional modules in the
lower hierarchy are defined in the component_defini-
tion slot of a template object. The design constraints
can be propagated via this slot. For example, when the
object variable T is assigned to [1, pl}, the start timing
of ¢cm is determined to be next (1, [1, p1]). Then, the
propagation function next (1, [1, pl]) is evaluated and
determined to be [1, p2]. In this way, we can determine
the components_definition by means of refinement func-
tion evaluation and object variable assignment.

2. Control method for evaluation of refinement
functions used in the bottom-up approach

There are three bottom-up operators in ProLogic, as
mentioned in Section 3.2. The bottom-up operators are
implemented as refinement functions used in the bot-
tom-up design approach. The refinement functions
used in the bottom-up approach should be defined by
taking account of their orders of application, shown in
inequality (4). The evaluation order of the refinement
functions of the bottom-up operators can be defined ex-
plicitly as follows:

1 extract
2 data_path_synthesis
3 control_element_synthesis

In the bottom-up design approach, the refinement func-
tions corresponding to the bottom-up operators are
evaluated in the defined order.

K. BEkkI, T. YOKoTA, T. NaGAl, N. NAKATSUKA and N. HAMADA
5. Execution Results and Their Evaluation

We implemented ProLogic in the logic programming
language Prolog, and synthesized a microprocessor that
contains about 36,000 transistors by using ProLogic.
ProLogic synthesized the logic circuits according to the
design strategies described in the template objects.
Therefore, the synthesized block structures of the
microprocessor in all layers are the same as those design-
ed by human experts. The number of transistors syn-
thesized by ProLogic is less than 105% of the number
designed by human experts. The quality of hardware
synthesized by ProLogic is almost the same as that of
hardware synthesized by human experts in terms of the
block structure and quantity of hardware, which are the
two most important parameters determining quality.
This confirms that the reasoning method discussed is
suitable for building expert systems for logic circuit
design.

The knowledge base of ProLogic consists of the
refinement function data base and the template object
data base. In an ordinary expert system, domain
knowledge for the specialized problem is registered in
the knowledge base. Therefore, a different expert
system can be built by replacing the knowledge base.
With ProLogic, it is also possible to build another ex-
pert system by exchanging the refinement functions and
template objects. The reasoning discussed in this paper
controls the design process, which is divided into two
steps, the top-down design approach and the bottom-
up design approach. The top-down design approach is
suitable for design problems in which the design
elements are refined according to experience and
knowledge of design. On the other hand, the bottom-up
design approach is suitable for design problems in
which the design elements are synthesized and combin-
ed correctly by analyzing the specifications. We can
adapt the reasoning mechanism to various design prob-
lems. As an example, we considered a software design
problem. When software is designed, its function is
decomposed into many sub-functions according to ex-
perience and knowledge about software design. Each
sub-function is refined as a program module. Then,
each module is synthesized and a program is generated
by using control statements such as if and while. The
procedure for decomposing the software into sub-func-
tions can be implemented by using the top-down design
approach. The procedure for program module synthesis
can be implemented by using the bottom-up approach.

6. Conclusion

We have discussed a new methodology for building
an expert system for high-level synthesis of VLSIs. We
found that design problems could be decomposed into
two steps: top-down design, which is known as routine
design, and bottom-up design. We therefore developed

Reasoning for a Logic Circuit Synthesis Expert System

a reasoning mechanism that can control both the top-
down and bottom-up design approaches.

We built an expert system that can execute the propos-
ed reasoning. Then, we showed that the reasoning
mechanism can be easily implemented by introducing
an object-oriented programming paradigm and using
Prolog. An expert system for high-level synthesis, nam-
ed ProLogic, was built according to the proposed
reasoning. The block structure of the logic circuits syn-
thesized by ProLogic was confirmed to be as good as
that designed by human experts. The total amount of
hardware synthesized by ProLogic is less than 105% of
that specified by humans. Therefore, the quality of the
logic circuits is considered to be as good as that of cir-
cuits designed by human experts.

Acknowledgements

We would like to express our sincere thanks to Dr.
Yukio Kawamoto and Mr. Masao Yanaka of Hitachi
Ltd. for giving us the opportunity to carry out this
research project. We would also like to thank Dr.
Hideo Maejima, Mr. Koyo Katsura, and Mr. Shigeru
Matsuo of HRL for many helpful discussions regarding
the CMOS VLSI logic design.

49

References

1. THoMAs, D. et al. Automatic Data Path Synthesis: JEEE, Com-
put., 16 (Dec. 1983), 59-70.

2. KowaLskl, T. J. et al. The VLSI Design Automation Assistant:
From Algorithms to Silicon, IEEE, Design & Test, 2 (Aug. 1985), 33-
43.

3. Kowawski, T. 3. et al. An Artificial Intelligence Approach to
VLSI Design: Kluwer Academic Publishers, 1986.

4. Yokora, T. et al. A VLSI Design Automation System Using
Frames and Logic Programming: JEEE, Proc. 3rd CAIA (Feb. 1987),
296-301.

S. HaMaDpA, N. et al. Expert Systems for VLSI Design, Hitachi
Review, 37, 5 (1988), 339-344.

6. BEKKI, K. et al. A Method for Microprogramming Control Logic
Synthesis: Trans. IPS Japan, 29 (1988) 605-613.

7. CHANDRASEKARAN, B. Generic Task in Knowledge-Based Reason-
ing: High-Level Building Blocks for Expert System Design, IEEE Ex-
pert (1986), 23-30.

8. CHANDRASEKARAN, B. Towards a Functional Architecture for
Intelligence Based on Generic Information Processing Tasks: Proc.
1JCAI-87 (Aug. 1987), 1183-1192.

9. BRrROWN, D. and CHANDRASEKARAN, B. Knowledge and Control
for a Mechanical Design Expert System: JEEE Comput., 19-7 (1986),
92-100.

10. KaAMIMURA, T. Object-Oriented Extensions of Procedural
Languages; J. IPS Japan, 29, 4 (1988), 310-317.

