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A Probabilistic Interpretation for Lazy
Nonmonotonic Reasoning’

KEN Saton*

This paper presents a formal relationship for probability theory and a class of nonmonotonic reasoning
which we call lazy nonmonotonic reasoning. In lazy nonmonotonic reasoning, nonmonotonicity emerges only
when new added knowledge is contradictory to the previous belief.

In this paper, we consider nonmonotonic reasoning in terms of consequence relation. A consequence relation
is a binary relation over formulae which expresses that a formula is derivable from another formula under in-
ference rules of a considered system. A consequence relation which has lazy nonmonotonicity is called a ra-
tional consequence relation studied by Lehmann et af. [8].

We provide a probabilistic semantics which characterizes a rational consequence relation exactly. Then, we
show a.relationship between propositional circumscription and consequence relation, and apply this semantics
to a consequence relation defined by propositional circumscription which has lazy nonmonotonicity.

1. Introduction

This paper is concerned with a formal relationship
between nonmonotonic reasoning and probability
theory. Nonmonotonic reasoning is a formalization of
reasoning when information is incomplete. If someone
is forced to make a decision under incomplete informa-
tion, he uses common sense to supplement lack of infor-
mation. Common sense can be regarded as a collection
of normal results. These normal results are obtained
because their probability is very near to certainty.
So common sense has a statistical or probabilistic
property.

Although there is much research which simulates
behavior of nonmonotonic reasoning based on probabil-
ity theory [15-17], there is no formal relationship be-
tween nonmonotonic reasoning and probability theory,
as Lifschitz [10] pointed out.

In this paper, we consider nonmonotonic reasoning
in terms of consequence relation [2, 6-8]. Consequence
relation is a binary relation over formulae and expresses
that a formula is derivable from another formula under
inference rules of the considered system. The researchers
consider desired properties in a consequence relation
for nonmonotonic reasoning.

Gabbay [2] was the first to consider nonmonotonic
reasoning by a consequence relation and Kraus et al. [6]
gives a semantics for a consequence relation of non-
monotonic reasoning called preferential consequence
relation. The semantics is based on an order over possi-
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ble states which is similar to an order over interpreta-
tions in circumscription [12] or Shoham’s preference
logic [20].

Lehmann et al. [8] define a more restricted conse-
quence relation called rational consequence relation
and shows that a consequence relation is rational if and
only if it is defined by some ranked model. A model is
ranked if a set of possible states is partitioned into a
hierarchical structure, and in a rational consequence
relation the previous belief will be kept as long as the
new knowledge does not contradict the previous belief.
This nonmonotonicity can be said to be /azy because
only contradictory knowledge can cause a belief revi-
sion.

Moreover, they investigate a relationship between
Adams’ logic [1] (or equivalently, e-semantics [16]) and
rational or preferential entailment in which a condi-
tional assertion is followed by a set of conditional asser-
tions. Although Adams’ logic is based on probabilistic
semantics, it only considers consistency and entailment
for a set of conditional assertions and does not consider
probabilistic semantics for a consequence relation.
Since nonmonotonic reasoning systems define conse-
quence relations, we must modify Adams’ logic to give
a probabilistic semantics to these systems.

In this paper, we provide a probabilistic relation
which characterizes a rational consequence relation ex-
actly. To do so, we define a closed consequence relation
in the limit. This property means that there exists a
probability function with a positive parameter x such
that a conditional probability of a pair of formulae in
the consequence relation approaches 1, and a condi-
tional probability of a pair of formulae not in the rela-
tion aproaches « except 1, as x approaches 0.

Then, we can show that a consequence relation is
closed in the limit if and only if the consequence rela-
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tion is rational.

We apply this result to giving a probabilistic semantics
for circumscription [12], because circumscription has a
similar semantics for a rational or preferential conse-
quence relation and circumscription can define a conse-
quence relation each of a pair of which consists of
original axiom and derived result. We can show that a
consequence relation defined by circumscription is a
preferential consequence relation, but not necessarily a
rational consequence relation. Especially, we can show
that if there are some fixed propositions or if we
minimize more than three propositions in parallel, then
the consequence relation defined by this circumscrip-
tion is always non-rational.

However, in some cases, we can separate a set of inter-
pretations into a hierarchy, and so, we can provide a
probability function so that a consequence relation de-
fined by the circumscription in these cases is equivalent
to a consequence relation defined by the probability
function.

2. Consequence Relations and Their Models

In this section, we briefly review a work on conse-
quence relation by Lehmann, Kraus and Magidor [6, 8].
A summary of the work is found in [7].

We consider a propositional language. In the proposi-
tional language L, we shall use a set of propositional
symbols (finite or infinite). Then, formulae in L are de-
fined as follows.

1. A propositional symbol is a formula.

2. If A and B are formulae, then —A and 4 DB are

formulae.

3. An expression is a formula only if it satisfies the

above conditions.
If A and B are formulae, then AAB, AVB, A =B are ab-
breviations for (4> —B), "ADB and (ADB)A
(BDA), respectively. We use F for false and T for true.

We use a set of all possible worlds, %, to give a truth
value to every propositional symbol. We define a
satisfaction relation = over % and L as follows.
ue Usatisfies a formula A4 (written as u=A4) if and only
if the following conditions are satisfied.

1. If A is a propositional symbol P, then u(P) is

true.

2. If Ais of the form —B, then u does not satisfy B

(written as u=B).
3. If A is of the form BDC, then u=B>C, then
either u=B or u=C.
We consider a binary relation over formulae called con-
sequence relation ~ which has some desired property in
a considered reasoning system. Intuitively speaking, A
kB means that if a state of knowledge is 4, then B is
derived from A by inference rules defined in a con-
sidered reasoning system. The following class of conse-
quence relations is closely related to nonmonotonic
reasoning systems.

K. SaToHn

Definition 1 (Kraus, Lehmann and Magidor) A conse-
quence relation that satisfies all six properties below is
called a preferential consequence relation.
If A=B is a tautology and A~ C, then B~ C.
(Left Logical Equivalence) (1)
If ADB is a tautology and C+ A, then Ck B.
(Right Weakening) 2)

AR A. (Reflexivity) (€)]
If A~B and A~ C, then A~ BAC. (And) 4)
If A~ C and B~ C, then AVB~C. (Or) (5)

If A-B and A~ C, then AANB~C.
(Cautious Monotony) (6)

A model theory for preferential consequence rela-
tions is investigated by Kraus, Lehmann and Magidor
[6] as follows.

Definition 2 (Kraus, Lehmann and Magidor) Ler V and
U be a set and V< U and < be a strict partial order on U
(foranyse U, —(s=<s)and foranys, t, u, if (s<t) and
(t=<u), then (s<u)). We shall say that te V is minimal
in V if and only if there is no se V, such that s<t.
Definition 3 (Kraus, Lehmann and Magidor) Let VC U.
We shall say that V is smooth if and only if Vie V,
either 3s minimal in V, such that s=<t or t is itself
minimal in V.

Definition 4 (Kraus, Lehmann and Magidor) A preferen-
tial model W is a triple {S, I, <> where S is a set, the
elements of which will be called states, I:S— % assigns a
world to each state and < is a strict partial order on S
satisfying the following smoothness condition: for all
Ae L, the set of states AL ({slseS, I(s)=A} is
smooth.

Definition 5 (Kraus, Lehmann and Magidor) Let W be a
preferential model {S, I, <) and A, B be formulae in L.
The consequence relation defined by W will be denoted
by & wand is defined by: A~ wB if and only if for any s
minimal in /f, I(s)=B.

There is the following relationship between a

preferential consequence relation and a preferential
model.
Proposition 1 (Kraus, Lehmann and Magidor) 4 binary
relation t~ on L is a preferential consequence relation if
and only if it is the consequence relation defined by
some preferential model.

There is an important subclass of preferential conse-
quence relations called rational consequence relation.
Definition 6 (Lehmann and Magidor) A preferential con-
sequence relation ~ is said to be rational if and only if
it satisfies the following condition.

If AC and A+ —B, then AAB~C.
(Rational Monotony) (@)

Rational monotony was proposed by Makinson as a
desired property for a nonmonotonic reasoning system
and corresponds to one of the fundamental conditions
for minimal change of belief proposed by Gardenfors
[3].

An intuitive meaning of the condition of rational
monotony is that the previous conclusion stays in the
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new belief if the negation of the added information is
not in the previous belief.

An alternative view of rational monotony is obtained
by the contrapositive form of the above definition:

If A~ C and AAB¥ C, then A~ 1 B.
This means that if adding B makes the previous belief
being retracted, B will be exceptional when the state of
knowledge is 4.

A model theory for rational consequence relations is
investigated by Lehmann and Magidor [8] as follows.
Definition 7 (Lehmann and Magidor) A ranked model
W is a preferential model {8, I, <) for which the strict
partial order < may be defined in the following way:
there is a totally ordered set  (the strict order on Q will
be denoted by <) and a function r:S— Q such that s<t
if and only if r(s)<r(t).

Intuitively speaking, a model is ranked if a set of
states is partitioned into a hierarchical structure.

There is the following relationship between a rational
consequence relation and a ranked model.
Proposition 2 (Lehmann and Magidor) A consequence
relation is rational if and only if it is defined by some
ranked model.

3. Relationship between Rational Consequence Rela-
tion and Closed Consequence Relation in the Limit

From this point, we assume the set of propositional
symbols in L is always finite.
Definition 8 Let L be a propositional language. Then
probability function P, on L with positive parameter x
is a function from a set of formulae in L and positive
real numbers to real numbers which satisfies the follow-
ing conditions.

1. Forany Ae L and for any x>0, 0sP,(A)=<]1.

2. Forany x>0, P,(T)=1.

3. For any Ac L and Be L and for any x>0, if

ANAB is logically false then P,(AVB)=P,(A)
+ P.(B).

If we ignore a parameter x, the above definition
becomes the standard formulation for probability func-
tion on L [3]. We introduce a parameter x to express the
weight of the probability for every states. Spohn [21]
uses a similar probability function to relate his Natural
Conditional Functions to probability theory.
Definition 9 Let A, Be L. We define the conditional
probability of B under A, P.(B|A) as follows.

1 if P.(A)=0
P.(AAB)
P,(A)
Definition 10 A probability function P, on L with

positive parameter x is said to be convergent if and only
if for any Ae L, there exists o such that

lin& P.(A)=a.

P.(BlA)=
( ) otherwise.

Now, we define a consequence relation in terms of the
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above probability function P,.

Definition 11 A consequence relation t is said to be
closed in the limit if and only if there exists a convergent
probability function P, on L with positive parameter x
such that for all Aec L and Be L,

ArB ifand only if lin‘} P.(BIA)=1.

Intuitively speaking, if a pair, {4, B) is included in the
closed consequence relation in the limit, then we can let
the conditional probability of B under A4 approach 1 as
much as possible and if not, the conditional probability
will approach some value except 1. This intuitive mean-
ing will be justified later.

Now, we show the equivalent relationship between a
rational consequence relation and a closed consequence
relation in the limit.

Theorem 1 [f +~ is rational then +~ is closed in the limit.
Proof:

From Proposition 2, if ~ is rational, then there exists
some ranked model W=<S§, /, <> such that for every
pair of formulae A and B, A~ B if and only if A+~ 4 B.
Since the language is logically finite, there exists a finite
ranked model with a finite number of ranks. Let the
number of ranks be n(n=1). Let #; be the number of
states at the i-th rank (States which are higher in < is in
a higher rank).

Let a function P, on L with positive parameter x be
defined as follows:'

n
2 niaxi™!
def =1

P(A)=

i—1

ni*xx
i=1
where 57 is the number of states at the i-th rank that
satisfies A.
This assignment satisfies the following conditions.
1. Every states of the same rank has the same
probability.
2. The probability of a state in the (i+ 1)-th rank is
x times as much as that of a state in the i-th rank.
Then, P; is a convergent probability function.
1. For all Ae L and for all x>0, since 0<ni <z,
and at least 7,#0, 0<sP,(A)=<1.
2. For all x>0, since n,»r=n,~, P.(T)=1.
3. Forall Ae L and Be L and for all x>0, since if
AAB is logically false, n#'*=n{+n’, P.(AVB)
=P,(A4)+P(B). )

4. For all A, since lime(A)=£, lim P,(A)
always exists. =0 mo x=0

Consider a relation over L, ' defined as follows.
ArF’B if and only if ling P.(BlA)
We will show that "=,
If P,(A)=0, there is no state which satisfies 4 and

'This assignment is suggested in [8].
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therefore, for any Be L A~ wB. In this case, since
P.(BlA)=1, A+'B.

Let P.(A) be not equal to 0. There exists a state
which satisfies A. Let mr(A4) be the minimum rank
where some state satisfies 4. Then,

. PAANB) _ nal,
lim Px(BlA)=lim = ) =

If A~ wB, then for any s minimal in A, I1(s)=ANB.
And any s minimal in A is at the minimum rank in rank-
ed model. Therefore, n.4)="nmr4) and so,

lirrolPx(BIA)=1.

— .
N mr(a4)

Thus, A~'B. ~
If A¥ B, then there exists some s minimal in A4, /(s)
¥ ANAB. Therefore, n:5, #ni.4), and so,

lirr(} P.(BIA)#1.

Thus, A*'B.

Therefore, ~ y is closed in the limit. o
Now, we prove the converse of the above theorem.
Lemma 1 Ler P, be a probability function with positive

parameter x. If P,(A)#0, then

lirlng(BlA)=] if and only if lirrolPx(—\BlA)=0.

Proof:
Si if P,(A)=0, P.(BIA PAANB) Th i
ince i (A)# ( )= PA) en, since
P.(A)—P,(AAB) P,(AA—B)
-P.(B = = s
! (Bl4) P.(A) P,(A)
lingPx(ﬁBIA)=1—linng(B|A)=0. a

Lemma 2 Ler P, be a probability function with positive
parameter x. If ADB is true and hm P,(ANCIB)=1,
then 11m P.(ANCIA)=1.

Proof.

If P,(B)=0, then P,(A)=0 since P.(A)<P.(B)
from A D B. If P,(A)=0, then the conclusion is always
true. Let neither P,(A) nor P.(B) be equal to 0. Since
ADB, P,(A)=<P,(B). Thus, since

P.(ANBAC) P,((A/\B/\C)<
= =1
P.(B) P.(A)

if lin(} P.(ANCIB)=1, then ling P.(ANCIA)=1. a

Lemma 3 Let P, be a probability function with positive
parameter x. If ADB is true and hm P.(ANCIA)=0,
then 11m P,(ANCI|B)=0.

Proof.

If P,(B)=0, then P,(A)=0 since P,(A)=<P.(B)
from ADB. If P,(A)=0, then the assumption is always
false. Let neither P,(A4) nor P,(B) be equal to 0. Since
ADB, P,(A)=<P.(B). Thus, since

K. SATOH

<P,((A/\B/\C) P,(AABAC)
T P(B) T P4
if lirrg P.(AACIA)=0, then lirrg P,(ANC|B)=0. o
Lemma 4 Let P, be a probability function with positive
parameter x. [f AD B is true and hm P.(AIC)=1, then
11m P.(BIC)=1.

Proof.

If P,(C)=0, then the conclusion is always true. Let
P,(C) be not equal to 0. Since ADB,P,(AAC)<
P.(BAC). Thus, since

P.(ANC) P, (BAC)
<

P(C) = P«(C) "7

if linol P,(AIC)=1, then lin‘} P.(BIC)=1. O

Lemma 5 Let P, be a probability function with positive
parameter x. If ADB is true and 11m P,(BIC)=0, then
11m P,.(AI1C)=0.

Proof.

If P,(C)=0, then the assumption is always false. Let
P.(C) be not equal to 0. Since ADB, P,(AANC)=<
P,(BAC). Thus, since

P.(ANC) P.(BAC)
0= = s
P.(C) P.(C)

if li_l)g P, (BIC)=0, then ling P.(AIC)=0. o

Lemma 6 Let P, be a probability function with positive
parameter x. If lin(} P,(BlA)=1 and lin(} P.(ClA)=1,
P and X

then ling P.(BAClA)=1.

Proof:
If P,(A)=0, then the conclusion is always true. Let
P,(A) be not equal to 0. Since lin(} P, (BlA)=1, lin(}
X X

P,(TBlA)=0 from Lemma 1. Since (mBAC)D B,
!‘i_r.r(}P,(ﬁB/\CIA)=O from Lemma 5. Since P,(AAC)
=P, (AN BAC)=P,(AANBAC),

lim P,(BACIA)

=i P.(ANBAC)

T r@

=1in[} P,(CIA)—lirrol P,(—BACIA)

=1-0=1. o
Lemma 7 Let P, be a probability function with positive
parameter x. If linol P.(CiA)=1 and lin(} P.(CIB)=1,
then lirrg P.(CIAVB)=1.

Proof:

If P,(A)=0 or P,(B)=0, then the above statement
becomes a tautology. Let neither P,(A4) nor P,(B) be
equal to 0. Since lin(} P,(ClA)=1, lin(} P,(ClA)=0
from Lemma 1. Since P,(—ClA)=P,(AA—CI|A) and
AD(AVB),
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lin‘} P,(AN—TCIAVB)=0 (03}
X

from Lemma 3.

Since {(1113 P.(CIB)=1, Lling P,(—CIB)=0 from Lem-
ma 1. Since (MAATC)D C, !(ilr(}Px(—'A/\‘ﬂCIB)
=0 from Lemma 5. Since P,(TAATCIB)=
P.(mAABA—CIB) and BO(AVB),

lin;A P, (M AANBACIAVB)=0 )

from Lemma 3.
Since P.(AVB)—P,(AATC)—P,(TmAABATC)=
P.((AVB)AC),

lirrox P.(CIAVB)

P, ((AVB)AC)
= T P.(avB)
P.(AVB)— P,((AVB)A—C)
e P.(AVB)
==l 24RO
=0 Py(AVB)
P.(—AABA—C)
% P.AVB)
_ P.((AVB)AAA—C)
=1-lim——p VB
P.((AVB)A—AABAC)
—m P.(AVB)
because ((AVB)AAATC)=(AANTC)
and ((AVB)A—AABA—C)=(—AABAC)
=1~lim P.(AA1CIAVB)

—lirrox P,(mAABACIAVB)
=1-0-0=1

from (1) and (2). =}
Lemma 8 Let P, be a probability function with positive
parameter x. If lirrol P, (BIA)=1 and liirg P, (ClA)=1,

then ling P.(CIAAB)=1.

Proof:

If P,(A)=0 or P,(B)=0, then the conclusion is
always true because P,(AAB)=0 from P.(AAB)=
P.(A) and P,(AAB)<P.(B). Let neither P,(A) nor
P.(B) be equal to 0. Since lim P(B14)=1 and

lirrg P.(ClA)=1, lin'} P,(BACIA)=1 from Lemma 6.

Since P.(BAC|A)=P,(AABAC|A) and (AAB)DA,
lin(} P.(AABACIAAB)=1 from Lemma 2.

Therefore,
lirrg P,(CIA/\B)=ling P,(ANBACIAAB)=1. o

Lemma 9 Let P, be a convergent probability function
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with positive parameter x. If &1_{:(} P.(ClA)=1 and
!‘133 P.(BlA)#1, then LifrolPx(CIA/\B)=l.
Proof:

Since &15)1 P.(ClA)=1, 113.1 P.(—ClA)=0 from
Lemma 1. Since (BA—C)D —C,

lim P.(BA—C14)=0 3)

from Lemma 5.
Since lil‘l(‘]lPx(“BlA)#l, lin‘}P,,(BIA);éO from

Lemma 1. Therefore, since P, is convergent, there exists
« such that

lirrolP,,(BIA)=ot¢0 4
Since
P.(AABA—C)
P(—ClANB)="" =2
P.(AAB)
_P.(ANBA—C)  Pi(A)
T P.(A)  P.AAB)’

lin‘}Px(B/\'ﬂCIA) 0
lim P,(—ClANB)=—————— =" =
lim P(TC1ANB) lim P(BIA)  «
from (3) and (4).
Therefore, lin(} P,(CIAAB)=1 from Lemma 1. o

Theorem 2 If t~ is closed in the limit then + is rational.
Proof:

If  is closed in the limit, then there exists some con-
vergent probability function with positive parameter x
such that

ArB if and only if lin&P,(BlA)=l

We show that + satisfies seven properties which every
rational consequence relation satisfies.
1. Left Logical Equivalence:
From the definition of probability, it is always
valid.
2. Right Weakening:
From Lemma 4, if A D B is true and 1x1£r01 P, (AIC)

=1, then lirrox P,(BIC)=1. Therefore, if ADB

is true and CH~ A, then CH B.

3. Reflexivity:
From the definition of probability, it is always
valid.

4. And:
From Lemma 6, if lirrg P.(AI1B)=1 and lirr(}
P.(A|C)=1, then lirrol P,(AIBAC)=1. There-
fore, if A~ B and At C, then A~ BAC.

5. Or:
From Lemma 7, if lirrg P, (ClA)=1 and lin‘}

X P aad

P,(CiIB)=1, then ling P,(ClAVB)=1. There-
fore, if A~ C and B~ C, then AVBHC.
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6. Cautious Monotony:
From Lemma 8, if lin(}P,(BIA)=1 and ﬁ_l:lg

P.(CIA)=1, then liIr(}Px(CIA/\B)=l. There-

fore, if A~B and A+ C, then AAB~C.
7. Rational Monotony:
From Lemma 9, if ling P,(CIlA)=1 and ling
X X

P.(BIA)#1, then lim P,(ClAAB)=1. There-
P

fore, if A~ C and A — B, then AANB~C.

From the definition of rational consequence relation, ~
is rational. m]

Note that the first six properties do not need con-
vergence of probability function. So, in the definition
of closed relation in the limit, if we remove the condi-
tion of convergence, we can show that the relation is
not always rational but still preferential'.
From Theorem 1 and Theorem 2 we have the follow-
ing?.
Theorem 3 ~ is closed in the limit if and only if b~ is ra-
tional.
There is another characterization for a closed conse-
quence relation in the limit as follows.
Definition 12 Let L be a finite propositional language
and ~ be a consequence relation. \~ is said to be ¢-
definable if and only if there exists a function A:L*~ [0,
1] such that

forall A, Be L, A~ B if and only if A(A, B)=1 and

Sfor all €0, there exists a probability function P such

that

forall A, Be L, |P(BIA)—A(A, B)l <e.

An ¢-definable consequence relation fits our intuitive
meaning stated above and as the following theorems
show, it is actually equivalent to a closed consequence
relation in the limit and therefore, equivalent to a ra-
tional consequence relation.
Theorem 4 ~ is closed in the limit if and only if t is &-
definable.
Proof:

(1) Suppose F is closed in the limit. Then there ex-
ists a convergent probability function P, with positive
parameter x such that

At B if and only if liirg P.(BlA)=1.

Let A:L%~[0, 1] be defined as follows.
A(A, B) & lin(} P,.(BiA).

Then, for all A, Be L, A+ B if and only if A(A4, B)=1.
And for all A, Be L and for all £>0, there exists
J.814) Such that for all x, if d;z14,>x>0, |P«(BlA)
—AA, B)l<e.
Take any arbitrary £>0. Let J, be the smallest value
among the above J,,s14). Let a probability function P

'Goldszmidt, Morris and Pearl [4] show that the closed relation in
the limit without the condition of convergence exactly characterizes a
preferential consequence relation.

?Independently, Goldszmidt, Morris and Pearl [4] have obtained a
similar result to this theorem, as have Lehmann and Magidor.

K. SaTOH

for ¢ be defined as follows:
P=Ps(B|A).

2
Then, for all A, Be L, |P(BIA)—A(A, B)| <e.

Therefore, ~ is e-definable.

(2) Suppose ~ is e-definable. Then, there exists a
function A:L2~[0, 1] such that
for all A, Be L, A~ B if and only if A(4, B)=1
and
for all £> 0, there exists a probability function P
such that
for all A, Be L, |P(BIA)—A(A, B)| <e.

Take any arbitrary £¢>0. And let P be the above
probability function for ¢ and define the value at ¢ for a
probability function P, with positive parameter x as
follows.

P(A) = P(A).
For all A, Be L and for all £>0 and for all x, if
£>x>0, then |P.(BlA)—A(A, B)| <e.
Then, for all 4, Be L and for all £> 0, there exists & (&
is any arbitrary value such that £€>4d>0) such that if
d>x>0 then |P,(BlA)—A(A, B)| <e. Therefore, for
all A, Be L, Ll{l")l P.(BI|A)=A(A, B). Thus, P, is a con-

vergent function, and lim P,(BlA)=1 if and only if A
~B. x0

Therefore, ~ is closed in the limit. o

From the equivalence of closed relation in the limit
and e-definable relation, we also have the following
theorem.
Theorem 5 ~ is rational if and only if ~ is e-definable.
Adams [1] and Pearl [16] present a probabilistic treat-
ment of nonmonotonic reasoning called &-semantics.
This treatment is similar to our work in the sense that it
gives an infinitesimal analysis for nonmonotonic reason-
ing. However, we can show that ¢-definability implies &-
consistency if we regard a consequence relation as a set
of conditional assertion K so that A~ B if and only if
A=Be K, where A= B is a conditional assertion.
Definition 13 (Adams)
A set of conditional assertions K is said to be g-consis-
tent if and only if for all €>0, there exists a probability
Sunction P such that

if A=BeK, then P(BIA)z1-¢.

If we regard a consequence relation as a set of condi-
tional assertions K, we can say that Adams considers a
probability function P for a pair of formulae in ~ so
that P(B|A)=1—¢ but does not exclude a probability
function P such that P(B|A)=1—¢ even if A¥* B. For
example, let L contain only two propositions P and Q,
and a set of eonditional assertions be {P=Q}. The set
is e-consistent whereas the set is neither a preferential
consequence relation nor a rational consequence rela-
tion when we consider the set as a consequence relation.

This example shows that &-consistency does not
characterize a consequence relation exactly. The follow-
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ing result shows that ¢-definability implies e-consisten-
cy.

Theorem 6 Suppose a consequence relation ~ is re-
garded as a set of conditional assertions. If &~ is ¢e-
definable, then it is e-consistent.

Adams also considers g-entailment defined as follows.
Definition 14 (Adams)

Let K be a set of conditional assertions and A= B be a
conditional assertion. We say A= B is e-entailed by K if
Sor all €>0, there exists >0 such that for every
probability function P, if for every C=De K, P(D|C)
=1—0 then P(BlA)=1—e¢.

Lehmann and Magidor [8] study preferential entailment
which is closely related to e-entailment.

Definition 15 (Lehmann [7])

Let K be a set of conditional assertions and A= B be a
conditional assertion. A= B is preferentially entailed by
K if it is satisfied by all preferential models of K. We say
the set of all conditional assertions that are preferential-
ly entailed by K is the preferential closure of K.
Proposition 3 (Lehmann [7])

Let K be a set of conditional assertions. Then, the
preferential closure of K is a preferential consequence
relation. If K is a preferential consequence relation then
K is the preferential closure of itself.

Lehmann and Magidor show the following
equivalence between ¢-entailment and preferentially en-
tailment.

Proposition 4 (Lehmann and Magidor)

For every finite set of conditional assertions K, A= B is
¢-entailed by K if and only if A= B is preferentially en-
tailed by K.

Let K be a conditional assertions. Let us call all condi-
tional assertions which are g-entailed by K the e-closure
of K. Then, from Proposition 3 and Proposition 4, we
can have one-to-one correspondence between an e-
closure and a preferential consequence relation for a
logically finite language. Therefore, from the above
discussion and Theorem 5, we can say the following.
Theorem 7 Suppose a consequence relation t is re-
garded as a set of conditional assertions. If +~ is e-
definable, then it is the e-closure of itself.

4. Consequence Relation and Circumscription

4.1 Preferential
cumscription

Consequence Relation and Cir-

Here, we refer circumscription to the following defini-
tion. This is a slightly modified version of generalized
circumscription [9] as we use < instead of <.
Definition 16 Let A be a propositional formula and P
be a tuple of propositions and p be a tuple of proposi-
tional variables. Then Circum (A; <) is defined as
Sollows:

AP)AIp(A(P)AP< °P),
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where A(p) is obtained by replacing every proposition
of P in A(P) by every corresponding propositional
variable, and p < °P is a formula which includes a tuple
of propositions P and a tuple of propositional variables
p and satisfies the following two conditions:

1. Forany Q, Q«7Q

2. ForanyP,QandR, if Q<'R and R<*S, then

Q<?’s

Then, an interpretation order in circumscription is de-
fined as follows. I, <Pl if and only if Q< PR is true
when we replace every proposition Q;in Q by interpreta-
tion of the corresponding proposition P; in P under 7,
and every proposition R; in R by interpretation of the
corresponding proposition P; in P under £,.

Then, we can think of the following preferential
model W=<S, I, <> where a set of interpretations for
propositional symbols (in other words, a set of possible
worlds, %) is S, and / is an identity function and < is a
strict partial order <® over these interpretations. We
say the preferential model is defined by <. As Kraus et
al. [6] pointed out, if S is finite, the smoothness condi-
tion is always satisfied. Here, we consider a finite set of
possible worlds, so the smoothness condition is always
satisfied.

Then we can have the following relationship between
circumscription and preferential consequence relation.
Definition 17 Let <* be a strict partial order over inter-
pretations. The consequence relation defined by <P? is
denoted as ~ » and defined as: At <+ B if and only if
Circum(A; <?)=B.

Proposition 5 Let <* be a strict partial order over inter-
pretations. The consequence +~ .» defined by <% is a
preferential consequence relation.

Although a consequence relation defined by cir-
cumscription is a preferential consequence relation, the
converse is not true in general. In propositional cir-
cumscription, for any satisfiable formula 4, A¥ . F!
(we say r is proper), but in preferential consequence
relation, this is not always the case.

And since we use an identity function for / in cir-
cumscription, there is a preferential consequence rela-
tion in a language which can not be represented by
circumscription in the same language.

For example, Suppose L contains only two proposi-
tions P and Q, and S consists of five states ;- - -s5s which
satisfies the following conditions:

1. I(s;))=EPAQ.

2. I(s2)= T PAQ.

3. I(s;)EPAQ.

4. I(ss)=PAQ.

5. I(ss)E 7 PAQ.

6. s51=<s; and s;<s, and there is no other pair which

satisfies <.
Note that s; and s, are mapped to the same interpreta-
tion. Let us consider a consequence relation +  where

'F is falsity.
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W=(S8,l,<>. Then, although PVQOr w(PAQ)V
(PAQ), P wPAQand Q¥ w7 PAQ. And this rela-
tion can not be expressed in circumscription of L
because for any order < *@ over interpretations if we
have PVQr < .o TPAQIV(PATQ), then we must
have an order between interpretations { P, Q} and { P,
—Q} or between interpretations { 7P, Q} and {P,
Q}, that is, P~ <(P,qu/\_‘Q or Qf" <(P.Q)ﬁPAQ. This
is because we have the states mapped to the same inter-
pretation.

We say a formula A is complete if for every formula
Bin L, A=B or A= B. A complete formula cor-
responds with an interpretation. Then, the following
property excludes a preferential consequence relation
such that two or more states are mapped to the same in-
terpretation in a corresponding preferential model.

If C is complete and AVBr —1C, then A~ " Cor B
~—C!.

Theorem 8 +~ is a proper preferential consequence rela-
tion and satisfies the above property if and only if there
is some <® such that &~ .=

Proof:

We can easily show that every consequence relation de-
fined by a circumscription is a proper preferential conse-
quence relation and satisfies the above property. We
show the converse. Suppose + is a proper preferential
consequence relation and satisfies the above property.
Let a(P) and 8(P) be complete formulae. We construct
+ <» as follows. Define o (P)<8(P) if and only if «(P)Vv
B@P)~a(P) and a(P)= B (P). Then < is a irreflexive and
transitive relation. We can show transitivity by using
Lemma 5.5 (21) [6, page 192] stating that for a preferen-
tial consequence relation, ~, if avfr~a and vy~ g
then avyra.

Suppose we collect all pairs in <: o, (P)<6:(P), - -,
a,(P)<B8,(P). Then, p<®P is defined as follows:
(1 (PIABI(P))V - - - V(cn (p)AB.(P)). First, we show if A
~ B then A .»B. Suppose A~ B. We collect all com-
plete formulae Cy, - -, C, which do not imply B. Then,
we can write Bas "CIA T CA- - AT

If A= G then A+~ <rﬁc,'.

Otherwise, that is, in the case of C;=A, we can write
A as (A,VC)V(D\VC;) where A= "DiA—C;and D, is
a complete formula which is not equivalent to C;. Then,
from the above property, (4,vC;)t~ —C; or (D,VC))H
—C, s

If (D,vC;)~ —C;, then we stop this process. Other-
wise, we continue this process until we find D; such that
(D« C;)F —1C.. This process will stop because 4 can be
represented as a finite disjunction of complete for-
mulae.

Then we can write A as DVCVE,\V---VE, where
DwCir —C; and E; is a complete formula such that
Ei=AA—C,. Then, from the construction of <P,
DWVCik ¢ C. And since E;= C;, Ei~ < Ci. Then
the fifth property of preferential consequence relation,

'"This property corresponds with (R8) in [5].

K. SATOH

A <P _‘C,'.

Therefore, A~ .+ CiA---ATC,, that is, A~ <¢B.

Now, we show if A~ _..B then A~ B. Suppose
Ar .oB. We collect all complete formulae Cy,-- -, C,
which do not imply B. Then, we can write B as
OATCA - ATC.

If Ae Cithen A~ C.

Otherwise, that is, in the case of C;&=A, since Circum
(A; <P)¥-C, there exists a complete formula D such
that De=A and D=<C;. Then, from the construction of
<P (DVC)F —C.

Then we can write A as DVCVE,\V---VE, where
DVC;~—C; and E; is a complete formula such that
E;t= AN C.. Then the fifth property of preferential con-
sequence relation, A~ —C,.

Therefore, A~ " C\A---A™C,, that is, A-B. O

4.2 Rational Consequence Relation and Circumscrip-
tion

Unfortunately, aithough a consequence relation de-

fined by circumscription is always preferential, it is not
always rational. We show it by using the following lem-
ma.

Lemma 10 Let S be a set and < be a strict partical order.
The following are equivalent.

1. There is a totally ordered set Q whose total order
is denoted as < and a function r:S~ $Q such that
s=<t if and only if r(s)<r(t).

2. Forallse S, forall te S and for all ue S, if s<t
then either s<u or u=<t.

Proof:

Suppose 1.

Then, there is a totally ordered set Q and a function r
from S to Q such that s<¢if and only if r(s) <r(¢). Sup-
pose s=<t. Then, for all u, r(s)<r(u) or r(u)<r(t)
because {2 is a totally ordered set. Therefore, s<u or u <
t.

Suppose 2.

We define a binary relation ~ over S as follows:

s~tZE A (s<HAT(E=<s).

Then, we can show ~ is an equivalence relation. Reflex-
ivity and symmetry can be proved easily. We prove tran-
sitivity. Suppose (s~¢)A(t~u). Then,

TS<OATU=<S)A (<A (u<t).

From 2, if —(s<t)A—(t<u) then —(s<u) and if
(u=<t)A(t<s) then —(u<s). Therefore, s~u.

Suppose Q is S/ ~ and a binary relation <over Q is
defined as follows:

x<y if and only if 3s3((se x)A(te y)A(s=<1)).

Then, < is a total order.
Let r be a function from S to © be defined as follows.

r(s)=x such that sex.
Then s<t if and only if r(s)<r(¢). O
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Now, we give a class of circumscription whose conse-
quence relation is not rational.
Theorem 9

1. If a tuple of propositions, P does not contain all
propositions in L and for any non-trivial partial order
<"® (there are some interpretations, I and J such that
J<PI), the consequence relation defined by <P® is
always non-rational.

2. If P contains all propositions in L, then a conse-
quence relation defined by minimizing one or two pro-
positions in parallel is rational.

3. Even if P contains all propositions in L, a conse-
quence relation defined by minimizing more than three
propositions in parallel is always non-rational.

Proof:

1. Since <P is non-trivial, there exist some inter-
pretations, I and J such that J<PI. And there exists
some proposition P which is not in P. Let K be a truth
assignment which is the same as J except the assignment
of P. Then since J< ¥/, the assignment of P in [ is the
same as in J from the definition of <P®. Then, K is
different from J and 7 in the assignment of P.
Therefore, —(J<PK) and —(K<*I). From Lemma
10, the preferential model defined by <? is not ranked.
Therefore, the consequence relation defined by <P* is
not rational from Proposition 2.

2. We can easily check that a preferential model de-
fined by minimizing one or two propositions is ranked.

3. Let P contain the following minimized proposi-
tions, P, Q and R. And let the following three inter-
pretations 7, J and X satisfy the following conditions:

(a) Every assignments are the same except

assignments for P, Q and R.
(b) I= "PAQAR, JE=EPAQATR and
K= 7 PAQAR.

Then I<®K, but —(I<?J) and —(J<*K). From

Lemma 10, <P® is not ranked. Therefore, a conse-

quence relation defined by minimizing more than

three propositions is not rational from Proposition

2. o
Although rational monotony corresponds with one of
fundamental conditions for minimal change of belief
proposed by Gardenfors [3], there are several examples
in commonsense reasoning which correspond with the
third case of Theorem 9. For example, consider the
following axiom'.

A=

((JapaneseA " Abl1)D T Big)A

((Hockey-playern — Ab2) D Strong)A

((ProfessorhA — Ab3)D —Strong)A

(Strong D Big)A

JapaneseNHockey-player/A\Professor.

(If a man is a Japanese, he is normally not big, and if
a man is a hockey player, he is normally strong, and if a
man is a professor, he is normally not strong, and if a
man is strong, he is big, and the man is a Japanese pro-

'This example was suggested by David Poole.
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fessor who plays hockey.)

If we minimize Ab1, Ab2 and Ab3 in parallel with
every proposition allowed to vary and consider the con-
sequence relation ~ defined by this minimization, then
we can show the following.

A\~ (—Bigh—Strong)V(BigNStrong),
and
A, T Big.
However,
A\ABigh (T Big\ — Strong)V(BigA\Strong).

So, this case does not satisfy rational monotony.

Another example is a closed world assumption. In
this case, we minimize all propositions and so, we do
not have rational monotony if a number of proposi-
tions is more than three.

Note that if we minimize more than three proposi-
tions in a prioritized circumscription, there is a case
where rational monotony is obtained. For example, if
we minimize Ab1 prior to Ab2 and Ab3 in the above
Japanese-professor-playing-hockey example, rational
monotony is obtained.

So, one may argue that a rational consequence rela-
tion is not practically rational. However, what we
would like to say here is not whether it is rational or
not, but that circumscription in general does not have
the probabilistic semantics which we have defined so far
and that if an order defined by circumscription is rank-
ed, then it has a probabilistic rationale.

4.3 Probabilistic Interpretation for Lazy Circumscrip-
tion
In this subsection, we consider the following kind

of circumscription.
Definition 18 Circumscription < islazy if the preferen-
tial model defined by <" is ranked.
We can show that a consequence relation ~ is proper
and rational if and only if there is some <* of lazy cir-
cumscription such that k .e=r. If a circumscription
<P is lazy, the consequence relation t .. is rational.
That is, for all formulae, A, Band C,if A~ .+Cand A
¥ .» B then AABF .»C. This means that in lazy cir-
cumscription, belief revision does not occur if the
added information is consistent with the current belief.

And, if a circumsciption is lazy, we can attach a
probability function used in the proof of Theorem 1
because the preferential model defined by < ¥ is ranked.
In this case, we consider a set of interpretations % as a
set of states.
Example 1.
Let a set of propositions be { P, Q}. Then, % consists
of four possible worlds:

{{(—P, 20>, <P, 7Q),{P, 0>, {P, O}

Suppose we minimize P and Q in parallel. We denote
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the strict partial order relation by this minimization as
<™ Then the consequence relation defined by
< (7@ j5 as follows:
A(P, Q) <«oB(P, Q) if and only if
A(P, Q)A3pag (A(p, INIP, ¢)<(P, Q)))
=B(P, Q),

where (p, ) <(P, Q) is the following abbreviation:

def

(P, )< (P, Q)= (pDP)NgD QA ((PDp)
M@Dg)).

The preferential model defined by <> @ is ranked (Fig.
1). In the figure, a lower interpretation is more
preferable than an upper interpretation. In pro-
babilistic semantics, we regard this order as an order of
probability. This means that a lower interpretation is
more probable than an upper interpretation. Moreover,
we make the probability function of an interpretation
in (i+ 1)-th rank be x times as much as that of an inter-
pretation in i-th rank so that we can ignore less pro-
bable interpretation as x approaches 0.

Let #; be a number of interpretations in i-th rank and
n? be a number of interpretations satisfying A4 in i-th
rank. From Fig. 1, ;i=1, n=2 and m;=1.

Let a probability function P, with a positive
parameter x be defined as follows.

3
Z'l?*xi 1

def i=

Em*xi—n
i=1

Then, this function is convergent and

nt +r72mx+;73*x
T 142+’

P.(A)=

1 if P.(A)=0
lim P.(B1A)= 3 nah) .
x—0 —— otherwise

N mr(4)

where mr(A) is the minimum rank where some inter-
pretation satisfies A4.

Intuitively, making x approach 0 means that we con-
sider only the most probable interpretations which
satisfy A and the fact that P,(B|A) approaches 1 means
that in all the most probable interpretations which
satisfy A, B is extremely probable. This is a pro-
babilistic semantics for lazy circumscription.

Let ~ be a consequence relation as follows.

Fig. 1 Strict Partial Order by Minimizing P and Q.

K. SATOH

Ar B if and only if lin(} P.(BlA)=1
Let us check if PvQr 7PV Q.

Since {PATQ>EPVQ, mr(PvQ)=2. And since
n4¥e=2 and VOV D=2,
p{PVONCPY O
lim P.(—PVQIPVQ)= TR = 1.
Therefore, PvQr — PV Q. This corresponds with the
result of PVQF .0, PV Q. However, suppose we

check if PvQrPA Q.
Since n VNN D= pPAT0=,

nfre
lim P.(PA—QIPVQ)= ,

#1.

Therefore, PvQr PA—Q. This corresponds with the
result of PVQF . r.oo PA Q. Actually, K~ is equivalent
to ~ <. from Theorem 1.

Example 2.

Another example is the ““flying bird and non-flying
penguin’’ example.

Suppose that we consider a set of proposition { B, P,
F} where B expresses ‘‘bird’’, and P expresses
‘‘penguin’’ and F expresses ‘‘flying’’, and we maximize
PD —F prior to BDF. We denote the strict partial
order relation by this maximization as < ‘%, Then
the consequence relation defined by <P js as
follows:

A(B, P, F)t c.».nB(B, P, F) if and only if

A(B, P, F)NT3b3p3 f(A(D, p, /IND, p, /)<(B,
P,F))=B(B, P, F),
where (b, p, f)<(B, P, F) is the following abbrevia-
tion:

b, p, I<(B, P, F)=

(PDF)D(PD A
(((PDF)=(pD> NDUBDF)D(BDOMA
—(((pD HD(PDF)A

(P2 N)=(PDF)DbDS)D(BDOF)))).

We use prioritized formula circumscription [13] to ob-
tain the above formula. We minimize both —(BDF)
and —(PD —F) but minimize D (PD —F) at higher
priority than —(BD F). This corresponds with maximiz-
ing (PD —F) prior to (BDF).

Then, the consequence relation defined by < &5 s
rational, because the preferential model by <&/ js
ranked (Fig. 2).

Let 7: be a number of interpretations in i-th rank and r]f
be a number of interpretations satisfying A4 in i-th rank.
From Fig. 2, n,=4, n,=2 and n;=2.
Let a probability function P, with a positive
parameter x be defined as follows.
3
A i-1
- & _nftndaxtniex?
23] - 4+2x+2x?

P(4)=
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o]

Fig. 2 Strict Partial Order for Flying Bird and Non-flying
Penguin.

Then, this function is convergent and

1 if P,(A)=0
lim P,(BlA)= { nar8
x=0 ) ) otherwise
Nmr(4)

Let + be a consequence relation as follows.
Ar B if and only if ling P.(BlA)=1

Let us check if BA(PDB)HF.

Since {B, P, F>=BA(PDB), mr(BA(PDB))=1.
And since MNP =pB=1 and pINPIBNF= yBAF— |
BAF

lim P.(FIBA(PD B))=lim P,(FIB)=%=1.
x— X 2

Therefore, BA(PDB)~F. This corresponds with the
result of B/\(PDB)]"‘ <(B.P.F>F.

And, suppose we check if PA(PDB)t~ —F.

Since {B, P, T F)>=PA(PDB), mr(PAN(PDB))=2.
And since n5MP2B =88 =1 and NYNPBINTF = p PABATF — |

lillg P.(—FIPNPDB))= lin(} P.(—FIPAB)

PABATF
n2
=———=],

PAB
ni*

Therefore, PA(PD B)~ —F. This corresponds with the
result of PA(PDB)t is.p.5F.

5. Conclusion

We propose a probabilistic semantics called a closed
consequence relation in the limit for lazy non-
monotonic reasoning and show that a consequence rela-
tion is closed in the limit if and only if it is rational.
Then, we apply our result to giving a probabilistic
semantics for a class of circumscription which has lazy
nonmonotonicity.

We think we need to do the following research.

1. Lazy circumscription is defined in terms of order
over interpretations. But we do not have a syntactical
characterization for lazy circumscription. We would
like to know which form of a formula characterizes a
lazy circumscription.

2. We would like to know a probabilistic semantics
which exactly characterizes a class of consequence rela-
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tions defined by the whole class of circumscription.

3. Wecan not apply our result to Default Logic [18]
or Autoepistemic Logic [14] because a consequence rela-
tion defined by these logics is not even preferential as
shown in [11]. We must extend our results to apply
them to these logics.
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