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Graphic Presentation of Chaos Generated in
Computational Fluid Dynamics

TOSHIRO ARATANI*

A method is proposed to graphically display the instability in the numerical solution of fluid dynamic equa-
tion. The Navier-Stokes equations are modified, based on the assumption that the pressure gradient is propor-
tional to the gradient of kinetic energy. Modified partial differential equations are expressed only in terms of ve-
locity components.

The resulting differential equations are approximated by the finite differences with respect to space variables,
where asymmetrical finite difference has been applied to some terms. A set of ordinary differential equations
with time are obtained. This set of equations is numerically solved by the Eulerian scheme with a finite time
step. The magnitudes of the kinetic energy at every mesh point are displayed on a graphics screen.

The numerical method is applied to a problem corresponding to a two-dimensional unsteady state fluid flow
around an obstacle, suddenly put into a uniform fluid flow stream. The number of 200 by 400 mesh points in the
discretization are large enough to simulate the vortex shedding behind the obstacle. Chaos can be observed in
the wake, owing to the propagation of numerical integration errors, at large time step. The lower limit of the

time step for the generation of chaos is determined by numerical experiments.

1. Introduction

Recent advance in computer hardware technology
has provided us inexpensive high speed computation
with large memory space. The hardware enables us to
simulate dynamic systems described by partial differen-
tial equations. As an example of the system of con-
tinuum, two-dimensional dynamics of the Newtonian
fluid is simulated by a computational numerical method
developed, as well as by a graphic display method [3, 9].

Numerical solutions of partial differential equation
greatly depend on the numerical methods used. For
fluid dynamics, many numerical methods have been
used. The representatives are finite difference method,
finite element method and boundary element method.
These methods, however, involve some difficulties as
follows [5, 8, 10, 11].

The first difficulty is the large number of divisions re-
quired for the space variables. The maximum number is
restricted to the upper limit of the memory capacity of
the computer available. Highly accurate numerical solu-
tion requires sufficiently large number of divisions,
especially for the simulation of vortices and eddies or
turbulence. The way of divisions in a direction with a
thousand for a three-dimensional scalar equation needs
1000-1000-1000-4=4 giga bytes memory spaces,
because real number needs a storage consisting of 4
bytes or 32 bits with floating-point arithmetics. The
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dynamic case requires additional storage for time mar-
ching scheme. Euler scheme requires twice as large
storage or 8 giga bytes, and Runge-Kutta scheme re-
quires four times as large storage or 16 giga bytes as in
the steady case. This way of division is still insufficient
to simulate eddies or turbulence with high accuracy. In
this work several hundred divisions are used for a two-
dimensional fluid dynamics simulation, although the
author does not claim that the results are quantitatively
real.

The second difficulty is the problem of stability. Sta-
bility of numerical solution crucially depends on the
finite difference formulae. The author has proposed an
explicit asymmetrical finite difference formulae to
momentum transport term. In this work the governing
equations are derived from mass and momentum
balances, through a different manipulation from the
derivation of conventional Navier-Stokes equation [2].

The third difficulty consists in the pressure term. The
pressure gradient is assumed to be proportional to the
difference in the kinetic energy at two neighbouring
mesh points.

Streamlines or equipotential lines are usually
displayed on a graphics. These lines, however, move
with time. The local kinetic energy or the dynamic
pressure is computed at each mesh point, and the
magnitude is used to select colors at such mesh point.
The color level set algorithm was originated by Benoit
B. Mandelbrot for his fractal graphics [3].

Numerical instability, due to the discretization of
nonlinear dynamic system with finite time step, is



18

known to produce chaotic oscillation. The numerical in-
tegrations by iterations to advance time can be a cause
for the chaotic oscillation, when the finite time
difference is so large as to give numerical instability. Far
bigger finite time step leads to the overflow in the
floating-point computation. In this case, velocity com-
ponents are reduced artificially to avoid the numerical
overflow.

2. Numerical Method

Mass and momentum balances give the equation of
continuity and the equations of motion, respectively
with the rectangular coordinates (x, y) for two-dimen-
sional incompressible Newtonian fluid flow [4], as
follows.

(V-V)=3aV,/ox+3V,/dy=0, 1))
pavV./ot=—poVi/oax—pa(V,V,)]dy
—8Tyx/ Ox— 37,5/ Ay —3p/ 3x, )
pav,/at=—pd(V.V,)/dx—pdV?:/ay
—d1,,/3x—97,,/dy—ap/dy, 3)

where V,, V, are components of the flow velocity, p is
the density of the fluid. The shear stresses .., Tuy, Tyx
and t,, are defined by

Tox=—2udV,/ox+2u(V-V)/3, 4)
Ty = Tyx= —ﬂ(a Vx/3y+3Vy/3X), 5)
Tyy=—2udV,/dy+2u(V-V)/3, 6)

with the viscosity u. Put v=u/p. From Egs. (1) to (6),
one gets

aVy/dt=—3Vi/ax—a(V,V,)]dy+2vo*V,/dx?
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v o toxay) p/ox, @)
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The expression of Eqs. (7) and (8) contains all veloc-
ity components inside the partial derivative sign 4. The
conventional Navier-Stokes equations in the text book
[4] have some velocity components outside the
derivative sign 4, by manipulating the convective terms
with the help of the equation of continuity (1).

Before finite differentiation is applied, x, y and ¢ in
Egs. (7) and (8) are transformed into dimensionless
variables, {=x/L, n=y/L and §=V,-t/L, where L is
the maximum width of a flow channel in question, V, is
the velocity in the direction of the bulk flow. Reynolds
number is defined as Re=V,-L/v, and the particle
Reynolds number is defined as Re,=ReR/L with the
radius R of a circular obstacle. K is defined as 1/(p-L).

Corresponding to Eqgs. (7) to (8), one obtains

T. ARATANI

aU,/30=—aU}/dE~a(U.U,)/ on

*U, U,
2 2
+ 20 Ux/aé /Re+ ( 3172 +aéa”)/
—Kap/ 3¢, ©)
aU,/38=—d(U,U,)/ 3¢ —aU3/ an
U, U,
2 2 hihes X
+28°U,/dn /Re+< YD +6r]8§)/Re

These equations are written in the conservative form
with  dimensionless velocities U,=V,/V, and
U,=V,/V,.

The domain of interest is discretized by using square
mesh with the mesh spacing 4é=A4#n=1/N, where N is
the number of subdivisions of the lenght L in the direc-
tion of both £ and 7. The mesh points are denoted by
(n, m) with n, m=1, 2, 3,---, N.

Equations (9) and (10) are approximated by finite
differences with respect to the space variables & and 7.
The convective terms are approximated by central finite
differences as follows,

QU E=(Uinsr,m— Ul n-1,m)/ 248), an
aUU,/ dn=Usnm+1- Uy nmir = Uenm-1- Uy nm-1)
/@24n), (12)
AU an=(U3 nme1— U} nm-1)/(24n), (13)
AUU, /3= (Uen+r.m Uy nrrom= Uen—t.m* Upone1,m)
/@4¢%). (14)

Momentum transport terms are approximated, re-
spectively, as follows,
aZUx/aéz=(Ux,n+l.m_ZUx,n,m+ Ux.n—l,m)/Aéza (15)
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Attention is paid for Egs. (17) and (20), where the
mesh node for n—1 and m—1 is utilized. The momen-
tum transport terms give the asymmetrically finite
difference model with respect to mesh node (n, m). The
conventional Navier-Stokes equation has never referred
to this mesh node (n—1, m—1) and gives the sym-
metrical finite differenced model.

The pressure gradient between adjacent mesh nodes
is assumed to be proportional to the difference quatient
in kinetic energy. Central finite difference formula is ap-
plied to yield
ap/aﬁzk{(uin+lm+ U}','H-l,m)_(u)zr.n—l,m

+U}'.rl—l,m)}/(2Aé)’ (2])
ap/an=k{(U3 nms1+ Ul ms1)= (U3 pm=1

+U)2rnm—l)}/(2A”)’ (22)
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where k is a proportional constant.

After difference formulae Eq. (11)-Eq. (20) are
substituted into the right hand sides of Eqgs. (9) and (10),
we obtain a set of ordinary differential equations in 8,
which is numerically integrated by the Euler method:

U (80+40)=U.(8)+A40-{F..(6)-N/2
+F,(0)-N*/Re—K-3p/d¢}, (23)

U,(8+40)=U,(8)+A46-{F,(6)-N/2
+F4;(8)N*/Re—K-dp/an}, (24)

for the square mesh with An=A4¢=1/N. Here we
denote by the functions F(6) the terms obtained from
Eqgs. (11)-Eq. (20). The pressure gradient terms in Eqs.
(23) and (24) are also replaced by the finite differences
of Egs. (21) and (22).

These formulae are derived for two-dimensional
unsteady state with incompressible Newtonian fiuid,
and extension to the other cases is very easy.

3. Programming Examples

Source programs written in a subset of BASIC
language are shown in List 1 and List 2. Sources are
compiled to 32 bit CPU machine codes by the author’s
compiler system, named SUPER-NOVA387. NOVA im-
plies Numeric Operations on Vast memory Area. The
32 bit floating-point arithmetics are executed by coproc-
essor of 180387 NDP.

Grammar of the compiler expects lower case
character names from a to z. to be 32 bit integer
variable storages. 32 bit CPU i80386 registers direct
drive arithmetics can be executed at 5 MIPS. The upper
case character names from A to Z, AAto ZZ, Aato Zz
and AO to Z9 imply 32 bit real variables. The floating
arithmetics are processed by coprocessor for these real
variables at 0.5 MFLOPS.

Dimension area of the compiler system is to access
the protect memory space at the 32 bit addressing mode
of 180386 CPU. Gigantic main memory space is directly
accessed by the compiler system. With intelligent
parser, generated codes by the compiler system can
cope with the objects written by assembler programm-
ing.

200 % 400 pixel dots directly correspond to the mesh
nodes. No. 405 and 406 memories are work spaces to ad-
vance time steps. Kinetic energy at a mesh node is col-
ored at 7 colors modulus of 20 cycles or 140 levels. If
the kinetic energy exceeds 2.0, velocities are reduced to
zero, to avoid numerical divergence greater than chaos.

The coefficients C and D are defined as 40-N?/Re
and A6-N/2. R=30 [m] and L=400 [m)] are cited in
the dynamic simulation with N=200 divisions. K, in
List 1 and List 2 is equal to k/p.

4. Examples

4.1 Chaos in Wakes of Cylindrical Obstacle

Kinetic energy in the wake behind a circular cylinder
is obtained by List 1. For Re=200, the graphic patterns
are shown in Fig. 1 at K,=0.5, with 40=0.000625.
With slight increase, 46=0.00063, bifurcations to
chaos are seen outside the wake as a ghost image, as
shown in Fig. 2. At Re=200, the coefficient
C=40-N?/Re greater than 0.124 produces numerical
instability.

Patterns at Re=400 with 46=0.00126 are shown in
Fig. 3. At Re=400, the coefficient C greater than 0.125
induces the chaos. Instability is observed both in the
outer edge and in the wake similar to the cancer cell
growth. The chaotic pattern prevails as time proceeds
owing to the propagation of numerical integration er-
rors.

At Re=800, chaos proceed only inside the wake as
shown in Fig. 4. At Re=800, the finite time steps
0.00063 = A6 <0.00074 give the bifurcation pattern in-
side the wake, while with 40 =0.00075, chaotic random
patterns grow. Bifurcation causes halftone colors in
Figs. 2 to 4 until chaotic pattern grows. This instability
is not the true image of fluid flow, but the result of the
nonlinear discrete dynamics. Chaos comes from the
numerical instability of time integration applied to the
nonlinear system [1-3]. The momentum transport term
is known to be effective in stabilizing the numerical solu-
tion. The coefficient D=A46-N/2 in the convective
terms is less than 0.1.

4.2 Chaos Trailing on Joukowski Aerofoil

A Joukowski aerofoil with the angle of attack 18° is
used as another numerical example to test the numerical
method. In Figs. 5 and 6, the kinetic energy around the
aerofoil is illustrated for 46=0.00125 and 0.00126, re-
spectively. With Re=400, K,=0.5, the pattern shows
the same stability properties as in the case of a circular
cylindrical obstacle.

5. Conclusion

The numerical method developed in this work is
useful to check the numerical instability. Chaos is
formed by the numerical instability caused by a large
time step after the bifurcation patterns. The threshold
of the time step for the stable integration is determined
by numerical experiments for the present method.

The algorithm of the method is fitted for papaliel
processor or array processor. Extension to the three-
dimensional fluid flow is easy with the new method.

Moreover, the transient behavior of the energy pat-
tern should be visualized besides flow pattern visualiza-
tion, to check the propagation of the numerical integra-
tion errors [2, 3, 5].
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Fig. 1

Kinetic
Obstacle.

Energy,

Re=200,

46=0.000625,

Circular
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Fig. 2 Kinetic Energy, Re=200, A0=0.00063, Circular Obstacle.
Chaos Generation.
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Fig. 3 Kinetic Energy, Re=400, 46=0.00126, Circular Obstacle. Fig. 4 Kinetic Energy, Re=800, 46=0.00075, Circular Obstacle.
Chaos Generation. Chaos Generation.
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Fig. 5 Kinetic
Aerofoil.

Energy,

Re=400, 46=0.00125,

Joukowski

Fig. 6 Kinetic Energy, Re=400, 46=0.00126,
Acrofoil. Chaos Generation.

Joukowski
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1]"CIR426" 2D Fluid Dynamics (Circular Object) by T.Aratani Oct. °90

List 1 Source Program for Circular Obstacle.

2]DIM U (406, 200), V (406, 200) :CLS :CLS 2 :Kp=0.5 :Lm=2
3] Dt=0.00126:n=200:N=CSNG (n) :Re=400 :Uo0=1 :R=30:R2=R*R tm=n-1
4] DN=DtsN :C=Ns*DN/Re :D=DN#+0. 5 :r=CINT(R2) ts=ns2-1
5] LINE(0, 0)-(639,399),1,BF:LINE (100,101) - (400, 299), 0, BF
6] LOCATE 15,21:? "Circle Re=";Re;” N=";N;” C=";C;” D=";D
71 FOR i=0 TO 406
8] FOR j=0 TO n :U (i, j)=U0:V (i, j)=0
9] x=1-75 :y=j-100:z=x*x:z=y*y+z:IF z<r THEN U(i, j})=0:GOTO 10
10] U=U (i, j) :V=V (i, j) :UV=UsU+ (VeV}
111 p=CINT (UVs139) :p=p MOD 7+1:a=i+100:b=-j+300:PSET (a, b), p
121] 10 NEXT j:ON STOP
131 NEXT i: LOCATE 20,23:? "Kp=";Kp;” Lm=";Lm
14]FOR t=0 TO 350: LOCATE 36,23:? "Dt=";Dt;” t= Dt *" 1t
15] FOR i=1 TO s
16] FOR j=1 TO m:x=i-75 :y=j-100 :z=xsx:z=ysy+z:IF z<r THEN 30
171 X=U{(i, j) :P=U(i, j+1) :Q=U(i, j-1) :E=U(i+1, j) :F=U(i-1, j):0=U(i-1,j-1)
18] Y=V (i, j) :U=V (i, j*+1) :V=W(i, j-1) :G=V (i+1, j):H=V (i-1, j) :K=V(i-1, j-1)
19] FF=FsF:EE-E+E:FH=-H+H+FF :EG=G*G+EE:UU=UsU:VV=VsV:PU=P+P+UU:QV=Q*Q+VV
201 Sx=Kps{FH-EG} : Sy=Kps*{QV-PU}
211 X2=X+X: Z=E+F-X2 1Z=Z+7Z+P+Q-X2 :2=72+Y+K-V-H :W=FF-EE
22] S=Q*V-{PsU)} :W=W+S+Sx:S=ZsC :A=WsD+S+X :U (405, j) =A
23] Y2=Y+Y: Z=U+V-Y2 :Z2=2Z+7Z+G+H-Y2 :Z2=Z+X+0-Q-F :W=VV-UU
24] S=F*H-{E*G} :W=W+S+Sy:S=Z+C :B=WsD+S+Y :V (405, j) =B
25] AB=A*A+{B#*B)}:IF AB>Lm THEN U (405, j)=0:V (405, j)=0
26] p=CINT (AB+139) :p=p MOD 7+1:a=i+100:b=-3+300:PSET (a, b), p
271 30 NEXT j:ON STOP
281 FOR j=1 TO m: U (0, j)=U0:V (0, j)=0
29] x=i-75 :y=j-100 :z=x*x:z=ysy+z:IF z<r THEN 40
301 U(i-1, j)=U(406, j) :U (406, j) =U (405, j)
31] V{i-1, j)=V (406, j) :V (406, j) =V (405, j)
32] 40 NEXT j:ON STOP
33] NEXT i:0ON STOP

34 INEXT t:STOP

List 2 Source Program for Joukowski Aerofoil.

1]17"ATC4267 2D Fluid Dynamics (Aerofoil) by T.Aratani, Nov. °90

2]DIM U (406, 200), V (406, 200), W (406, 200) :CLS :CLS 2 :Kp=0.5:Lm=2
3] Dt=0.00126:0=200:N=CSNG (n) :Re=400 :U0=1 :R=30:R2=R*R :m=n-1
4] LINE(10,1)-(610,398),1,BF:LINE(101, 110) - (480, 300), 0, BF

S] DN=DtsN :C=N+*DN/Re :D=DN=0. 5 :r=CINT (R2) :s=ns*2-1
6 ]LOCATE 14, 21:? "Joukowski 18° Re=";Re;” N=";N;” C=";C;” D=";D

7] Pi=3. 141593 :RT=-Pi/10:CS=COS (RT) : SN=SIN(RT)
8]FOR i=0 TO 406:FOR j=0 TO n:W(i, j)=0:NEXT j:NEXT i :P=-5:Q=3:RC=45
9] RR=RC*RC-{Q*Q} :SR=SQR (RR) :Pa=ABS (P) :A=-Pa/SR+1:A=RC+*A

10] A2=A*A:Pp=Pi/5000:FOR i=0 TO 10001:1=CSNG(i) :IP=1+Pp

11] Si=SIN(IP) :Co=COS (IP) :R=RCsCo+P:1=RC*Si+Q:RI=R*R+{1+1}

12] AR=A2/RI:X=Re¢{1+AR}:Y=1%{1-AR) :XX=X+CS-{Y*SN} :YY=X*SN+{Ys*CS}
131 x=CINT (XX) : y=CINT (YY) : p=x+200:q=200-y

14] PSET(p,q), 7:x=x+100:y=y+100:W(x, y) =1 :NEXT i

15] FOR i=0 TO 406 :f=0

161 FOR j=0 TO n U (i, j)=0:V (i, j)=0

17] W=W(i, j): IF W=1 THEN f=1

18] IF f=1 THEN 80

191] U (i, j)=U0:U=U(i, j) :V=V (i, j) :UV=UsU+{VsV}
20] p=CINT (UV+34) :p=p MOD 7+1:a=i+100:b=-~j+300:PSET (a, b), p
211 80 NEXT j:ON STOP

22] NEXT i

23] FOR i=0 TO 406 =0

24] FOR j=0 TO n :k=n-j

25] W=W(i, k) : IF W=1 THEN f=1

26] IF f=1 THEN 90

27] U(i, k) =U0:U=U{(i, k) :V=V (i, k) :UV=UsU+{VsV}
28] p=CINT (UV+139) :p=p MOD 7+1:a=i+100:b=-k+300:PSET (a, b), p
291 90 NEXT j:ON STOP

301} NEXT i :LOCATE 20,23:? " Kp=";Kp;” Lm=";Lm

31] FOR i=0 TO 406:FOR j=0 TO n:W{(i, j)=U(i, j) :NEXT j:NEXT i

23
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List 2 Source Program for Joukowski Aerofoil.

32]FOR t=0 TO 1320 :LOCATE 36, 23:?

Dt=";Dt;” t= Dt *";¢t

33] FOR i=1 TO s

34] FOR j=1 TO m:W=W(i, j):IF W=0 THEN 30

35] X=U(i, j) :P=U(i, j*1) :Q=U(i, j-1) :E=U i+, j) :F=U(i-1, j) :0=U(i-1, j-1)
36] Y=V (i, j):U=V(i, j*1) V=V (i, j-1) :G=V(i+1, j) :H=V(i-1, j):K=V(i-1, j-1)
371 FF=FeF:EE-E+E:FH-H*H+FF :EG=G*G+EE

38] UU=UsU:VV=V+V:PU=P+P+UU:QV=Q+Q+VV

39] Sx=Kp* {FH-EG) :Sy=Kp* {QV-PU}

40] X2-X+X:  Z=E+F-X2 :Z=Z+Z+P+Q-X2  :Z=Z+Y+K-V-H :W=FF-EE
41] S=QeV-{PsU] :W=W+S+Sx:S=Z+C :A=WsD+S+X :U (405, j)=A
42] Y2-=Y+Y:  Z=U+V-Y2 :Z=2+Z+G+H-Y2  :Z=Z+X+0-Q-F :W=VV-UU
43] S=FsH-(E*G} :W-W+S+Sy:S=Z+C :B=WsD+S+Y :V (405, j) =B
44] AB=AsA+{B*B}:1F AB>Lm THEN U (405, j) =0:V (405, j) =0
45 p=CINT (AB+139) :p=p MOD 7+1:a=i+100:b=-j+300:PSET (a, b), p
46] 30 NEXT j:ON STOP

471 FOR j=1 TO m:U(0, j)=U0:V (0, j)=0:W=W(i, j):IF W=0 THEN 40
48] U(i-1, j)=U(406, j) :U(406, j) =U (405, j)

491 V(i-1, j) =V (406, j) :V (406, j) =V (405, j)

50] 40 NEXT j:ON STOP

511 NEXT i:ON STOP

52 INEXT t:STOP
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