Translation of the IPSJ Best Paper Award papers

Object-oriented Real-time Programming
in Concurrent Process Language

KATsumr MarUYAMA* and NOBUYUKI WATANABE*

Object-oriented programming is a programming approach for improving switching program maintainability.
A switching program is a severe real-time and multi-processing system, and therefore suitable concurrent object
models and an appropriate language are necessary. This paper discusses a concurrent object model for real-time
multi-processing applications, and presents object-oriented programming techniques using an accustomed con-
current process language. Compared with the development of a new and ideal object-oriented language for real-
time applications, this approach may be provisional. However, this approach is advantageous in that
developments cost and training time are insignificant, since existing environments can be used and programmer
education shortened. In this paper, Chill is used as the base language, but these techniques may be applied to

other concurrent process languages.

1. Introduction

Switching programs (the control program of
telephone switching systems) have very long lives (more
than 10 years), are very frequently updated (new service
introductions), and are very large (Mega lines of codes)
systems. Thus, improving the program maintainability
has been strongly required. To answer this requirement,
object-oriented programming is promising.

A switching program must provide severe real-time
and multi-processing services, controlling many switch-
ing system resources. Therefore, conventional object-
oriented programming, such as with Smalltalk-80 [1],
are insufficient, especially with respect to concurrent
processing capability and run-time efficiency.

We have been studying the object-oriented switching
program, and have devised a ‘‘concurrent object
model’’ for real-time multi-processing applications. To
implement a program of this model, the development of
a new ideal object-oriented language is desired.
However, the introduction of a new language requires
long development time as well as programmers to be
educated. Object-oriented programming in an ac-
customed language, if possible, is very advantageous.
This paper presents object-oriented programming
techniques for the concurrent process language “Chill”’
[3]. Chill was designed by CCITT for real-time program
developments, and has been widely used all over the
world, including NTT. These techniques can also be ap-
plied to other concurrent process languages. A ‘‘very
simple’® pre-processor can improve readability and

This is a translation of the IPSJ Best Paper Award paper that ap-
peared originally in Japanese in Transactions of IPSJ, Vol. 31, No. |
(1990), pp. 88-97.

*NTT Communication Switching Laboratories.

Journal of Information Processing, Vol. 15, No, 2 1992

writability, almost to the same level of programs writ-
ten in genuine object-oriented languages. A prototype
switching program was developed using these techni-
ques, and the obtained results were satisfactory.

2. Switching Programs and Object-oriented Program-
ming

A switching program is a typical real-time and multi-
processing system. It controls very many thousands of
common resources, such as subscriber lines, trunk
lines, switching paths, service circuits, etc. These
resources have the following characteristics: (a) Each
has its own state, (b) there are multiple instances of the
same class, (c) they are allocated/freed from/to idle
resource pools on request, and (d) their actions are ac-
tivated by commands. Other components of a switching
program, e.g., call controls, service analyzers, etc., also
have similar attributes. This shows that most com-
ponents of a switching program have ‘‘object-oriented’’
natures.

Therefore, logical switching components can be im-
plemented as software objects, and a switching pro-
gram can be systematically constructed as a collection
of communicating objects. Because a switching pro-
gram must provide several thousands of telephone
switching services at the same time, a very efficient
multi-processing capability is required. We designed the
following ‘‘concurrent object model”’ which includes
‘““‘concurrent objects’’ and ‘‘sequential objects’’. The
former model has concurrent processing capability with
some extent of overhead, while the latter model has no
concurrent processing capability with little overhead.
(See Fig. 1)

Object-oriented Real-time Programming in Concurrent Process Language

Instance
N Variable
Concurrent
9= Methods
|
(a) Concurrent Object
7 instance
kVanable !
» ey Instance
[- —— Variable
S— =Tt T
Methods Message

(b) Sequential Object

Fig. 1 Concurrent object and sequential object.

(1) Concurrent Object

A concurrent object is a capsule comprising
stance variables’’, “‘methods’’ and a ‘‘thread’’. Here,
the thread is a concurent execution unit. Concurrent
objects can run concurrently by themselves. Message
passing to concurrent objects is called ‘‘concurrent
message’’. A concurrent message is an asynchronous
communication, and a sender object is not blocked
when a message is sent out. In a switching program,
asynchronous communication is essential because there
are many situations where the message sender can not
be blocked waiting for the message acceptance by a
receiver.

Concurrent objects, however, have time-and-space
overheads because they require run-time context swit-
ching and their own stack memory spaces. Therefore it
is not economical to implement thousands of resource
objects as concurrent objects. Objects requiring no con-
currency are to be implemented as sequential objects.
(2) Sequential Object

Sequential objects are capsules of an ‘‘instance
variable’’ and ‘‘methods”’. They have no threads and
cannot be executed by themselves. They are executed by
the threads of message-sender-side objects. Therefore,
message sender and message receiver are sequentially ex-
ecuted. Message passing to sequential objects is called
‘‘sequential message’’

Fig. 2 shows a general view of the object-oriented
switching program system, in which all components are
implemented as objects [8, 9]: (a) Service analyzer ob-
jects determine the service from the dialed directory
number, (b) service scenario objects describe the call
handling procedure of each service (ordinary call, free
call, etc.), (c) call control objects are allocated one per
call basis, and carry out the call handling according to

203

Caller Service Callee .
Analyzer | | Analyzer | | Analyzer | |Subscriber
Object Object Object Database
A A
[/ AN
x V4 Z N
— A o S
N
Call Call
Control |egller Callee | Control
Object Object
Subsc-Line SpwchPalh Trunk-Line
Object Object ‘_,(;a"'n

O

+-Call-2

I -~
Subsc-Line Trunk-Line
Dnver Dnver Driver
Object Object

[Notes] Com:urren Saqucnual

Object Object

Fig. 2 Switching program model based on object-oriented con-
cept.

Mcssage Passing

the service scenario, (d) resource objects such as
subscriber line resource objects, switched path resource
objects, and trunk line resource objects represent the
resources of switching systems. These components are
allocated/freed from/to idle resource pools. Com-
ponents requiring concurrency (ex. call control objects)
are implemented as concurrent objects, but most com-
ponents (such as resource objects) are implemented as
sequential objects. When a call is originated, and
originating-side call control object (called ‘‘caller”) is
allocated. The caller receives dialed directory numbers
and asks for the service analyzer object. The service
analyzer object determines the service and the
terminating line. Then, a terminating-side call control
object (called “‘callee’’) is created. Callers control the
originating-line-side, and callees control the ter-
minating-line-side. In this way, call processing pro-
ceeds.

3. Concurrent Object Model for Real-time Applica-
tions

This chapter explains concurrent objects and sequen-
tial objects of the ‘‘concurrent object model’’ in detail.

3.1 Concurrent Object and Concurrent Message

A concurrent object has the following characteristics:

(1) A concurrent object is a capsule of ‘‘instance
variables”’, ‘““method’’ and a ‘‘thread’’.

(2) A thread is a concurrent execution unit, and con-
sists of a ThCB (Thread control block) and a Stack
area. A thread provides an environment for method ex-
ecution. Concurrent objects can run by themselves
using their own threads.

(3) Message passing to concurrent objects is called

204

concurrent messages and are expressed as follows,
B<<u(n);

where, B: destination object ID; u: message name; and
n: message parameters. When this statement is ex-
ecuted, the message “‘u(m)’’ is sent to the destination ob-
ject “B’.

(4) Concurrent messages are asynchronous com-
munication, and sender objects are not blocked when
messages are sent out. A concurrent object has its own
message queue, and delivered messages are put into this
queue. Under the scheduler’s control, a concurrent ob-
ject gets a message from its message queue, and ex-
ecutes the method required by the message.

(5) If a reply value is returned, a pair of ‘‘request-
message sending’’ and ‘‘reply-message receiving’’ is
used. The following extended expression is provided for
readability:

=< u(n);
here, ““x’’ is a variable that receives the reply value.

3.2 Sequential Object and Sequential Message

A sequential object has the following characteristics:

(1) A sequential object is a capsule of ‘‘instance
variables”’ and ‘‘methods”’.

(2) Having no threads, they cannot be executed by
themselves. They are executed by the threads of
message-sender-side objects. Therefore, message sender
and message receiver are sequentially executed (in fact,
this message passing is mapped to an indirect procedure
call (see Chapter 5)).

(3) Message passing to sequential objects is called
‘‘sequential message’’, and is expressed as follows:

x:= B« u(n);
here, x is a variable that receives the reply value.

3.3 Class Definition, Instance Object and Class
Object

In Smalltalk, concepts of class definition, instance ob-
ject and class object are introduced. These concepts are
very convenient and simplify the language model;
therefore, we have adopted them. A class definition in-
cludes definitions of a class object and instance objects.
One class definition accompanies one class object. A
class object provides common features to the objects in
the class, such as object creation. Instance objects are
created by sending ‘‘Create’’ messages to the class ob-
ject. A class object is a sequential object.

The class definition has the following contents:

ClassName: CLASS;

Export/Import Part
CLASSVARS
Definition-of-class-variables
INSTANCEVARS
Definition-of-instance-variables

K. MARUYAMA and N. WATANABE

CLASSMETHODS
Definitions-of-classe-methods
INSTANCEMETHODS
Definitions-of-instance-methods
ENDCLASS;

4. Short Introduction of Chill

Chill is a suitable language for our concurrent object
model implementation because of the following
features:

[Notes: In the following examples, the Chill syntax is
slightly modified / simplified for explanatory purposes.]

(1) A strongly typed language (In Chill, ter-
minology ‘‘mode’’ means ‘‘data type’’): A MODE state-
ment defines mode names. Explicit mode conversion is
possible using notations ‘‘modename (expression)’’ and
‘“‘modename (variable)’’, The following are self-ex-
planatory.

Ex. MODE aRefM=REF a; MODE bRefM=REF
b;
DCL aRef aRefM; DCL bRef bRefM;
aRef: =aRefM(bRef); bRef M(aRef): =bRef;
/+Explicit mode conversions/

(2) Module Construct: The MODULE. . . END
construct encloses data definitions and procedure defini-
tions, as in Modula-2 [7]. Module is a convenient capsul-
ing facility. Grant and Seize statements correspond to
Export and Import of Modula. The name ‘‘v’’ granted
(exported) in the module ‘A’ can be referred to as
“Av”’ in a seizing (importing) module.

Ex. cc: MODULE;
GRANT x, y;
FROM dd SEIZE s, t; /+‘“dd!s”’ means *‘s”’
of module “‘dd”’*/
. . . data definitions and procedure defini-
tions. ...
END cc;

(3) Light-weight Process: PROCESS . . . END con-
struct defines a light-weight-process. A START expres-
sion creates a process instance, and returns its process-
ID values. (INSTANCE mode)

Ex. ee: PROCESS (i, j INT);
.. . data definitions and action statements . . .
END ee;
VAR MyPID INSTANCE;
MyPID:=START ee (10, 20);

(4) SIGNAL(Message): Signal is an asynchronous
inter-process-communication message. Signal is sent to
the specified target process directly. Signal can accom-
pany parameters. Chill signal is suitable for implemen-
ting concurrent messages of our model.

Object-oriented Real-time Programming in Concurrent Process Language

Ex. SIGNAL Sigl =(INT), Sig2=(INT, BOOL);
SEND Sigl (i+)) TO DestinationPID;

Here, DesitinationPID is the process-ID of the destina-
tion process. Sigl has an integer parameter, and Sig2
has an integer and a Boolean parameters;

(5) Selective Message Receiving: Chill has a
RECEIVE-CASE statement, which can receive one of
the nominated messages. Here, a matched action is ac-
tivated.

Ex. RECEIVE CASE

(Sigl IN x): . . . action to be taken when Sigl is
received . . .

(Sig2 IN vy, y): . . . action to be taken when Sig2 is
received . . .

ESAC;

In this example, if ‘‘Sigl”’ is received, the parameter
value is stored to the local variable ‘‘x”’, and following
statements are executed.

(6) A Conditional Critical Region like Hoare’s
Monitor [5]: This is conveniently used to implement
resource allocation objects which require exclusive ac-
cessing.

5. Internal Structures of Objects

In this chapter, we explain how the aforementioned
concurrent object model is achieved in Chill.

205

5.1 Concurrent Object

Concurrent objects can be conveniently mapped to
Chill processes: Instance variables are mapped to proc-
ess local variables; methods are mapped to process state-
ment-lists; and concurrent object definitions are map-
ped to Chill process definitions. A concurrent ‘‘in-
stance” object is created by the ‘‘Start’’ expression.
Each process instance is identified by the ‘‘INSTANCE
mode”’ value, whih is returned by the START expres-
sion, and this is used as the ‘‘concurrent object ID"’.

Figure 3 shows a concurrent object example in Chill.
A consumer has an endless loop (DO FOR EVER), in
which there is a RECEIVE_CASE statement. Arriving
messages are received and matched actions are executed
in the RECEIVE-CASE statement.

5.2 Concurrent Message Sending

The ¢‘signal’’ of Chill is an asynchronous inter-proc-
ess-communication mechanism, and is very convenient
as a concurrent message. Concurrent messages are di-
rectly mapped to Chill Signals. A message is sent by the
SEND statement, and is received by the RECEIVE
CASE statement. Concurrent message sending is map-
ped to the SEND statements as follows:

SIGNAL Msgl = (INT,BOOL); /* Message (=signal) definition */

SIGNAL Msg2 = (INT,INT);
DCL PObj, CObj INSTANCE;

Producer:PROCESS ()

DO FOR EVER; /* Endless loop */

SEND Msgl(i,Jj) TO CObj;
SEND Msg2(i,K) TO CObj;
op;

END Producer;
Consumer :PROCESS ();

e

DO FOR EVER:

/* Concurrent object (=process) definition */

/* Send “Msgl” messgae to CObj*/

/* Concurrent object (=process) definition */

/* Endless loop */

RECEIVE CASE /* receive nominated messages */
(Msgl IN x,y): ...actions to be taken when Msgl is received...
(Msg2 IN x,z): ...actions to be taken when Msg2 is received...

ESAC;
OoD;

END Consumer ;

/*** Concurrent object creation ***/
PObj := START Producer(); /* Create a concurrent object instance “Pobj” */
CObj := START Consumer(); /* Create a concurrent object instance “Cobj” */

Fig. 3 Concurrent object implementation in Chill process.

Concurrent ObjectID <<< MessageName (Parameters);
[}
SEND MessageName (Parameters)
TO ConcurrentObjectID;
(where, MessageName: Chill Signal Name; and Concur-
rentObjectID: Chill Process ID)

5.3 Sequential Object and Class Definition

As explained in sub-chapter 3.3, sequential objects
are defined by class definitions; we have also adopted

K. MAarRUYAMA and N. WATANABE

the concepts of class objects. The class definition in-
cludes definitions of (a) class variables, (b) instance
variables, (c) class methods and (d) instance methods.
They can be mapped to Chill features as follows:

(a) Class variables can be mapped to module-level
variable declarations.

(b) Instance variables definition can be mapped to a
structure-mode definition. Instance object creation cor-
responds to the variable allocation of the specified
““mode’’, and the ID of the allocated variable is used as
the sequential object ID.

(c) Class method definitions and (d) instance

CircleM :MODULE; /*** A Class definition in a Chill module ***/
GRANT Circle, Methods, New, GetTotalNum, Enlarge, Move;

/*** Instance Variable Definition ***/

MODE Circle =

STRUCT (E REF Methods,

/* Link to a Method Table */

Center STRUCT (x, y INT), r INT);

/*** Class Variable Definition **x*/

DCL

/*** Class Method Definition ***/

TotalNum INT INIT:=0;

New :PROC(JRETURNS (REF Circle); /* Creates an instance object */

DCL p REF Circle;
p := ALLOC (Circle):

p-> :=[ADDR (MethodTable), [0,0]),1];

RETURN p;
END;

GetTotalNum:PROC()RETURNS (INT);

RETURN TotalNum;
END ;

/*** Instance Methods Definition *#*x/

Move :PROC

END ;

(ObjP REF Circle, x, y INT); /* Moves the object */
ObjP->.Center.x += Xx;
ObjP->.Center.y += y;

Enlarge :PROC(ObjP REF Circle, n INT); /* Enlarge the object */

ObjP->.r *= n;
END;

/*** Method Table ***/
MODE Methods =
STRUCT (Move

PROC (ObjP REF Circle, x,y INT),

Enlarge PROC (ObjP REF Circle, x,y INT));
DCL MethodTable Methods INIT = {Move, Enlarge];

END CircleM ;

/*** Object creation and message passings

DCL cl REF CircleM!Circle ;
cl := CircleM!New();

ii*/

/* Instance object “cl” is created. */

CALL cl->.E->.Enlarge(cl,10); /* Enlarge the object “cl”, */
CALL cl->.E->.Move (cl,15,7); /* Move the object “cl¥. */

[Notes])

“var += exp;” means “var:=var+(exp) ;"

Fig. 4 Sequential object implementation in Chill module.

Object-oriented Real-time Programming in Concurrent Process Language

method definitions can be mapped to procedure defini-
tions.

A Chill module is very convenient as a class definition
capsule. Figure 4 shows a Chill module used as a
class definition capsule. This includes definitions of (a)
an instance variable mode (Circle), (b) a class variable
(TotalNum), (c) class methods (New, GetTotalNum)
and (d) instance methods (Enlarge, Move). The instance
object represents a ‘‘circle’’ characterized by a center
position (x, y) and a radius (r). When a message arrives
at an object, a relevant method is selected in the
mechanism explained in the next sub-chapters.

Chill has a special ‘‘conditional critical region”
module: REGION . . . END construct. The class object
implemented using this region is called a “‘critical
region module”. A critical region object is convenient
for resource allocation algorithm because of its ex-
clusive access nature. (A concurrent object is also ap-
plicable for resource allocation algorithm, because
received messages are serialized in its message queue
and processed one by one.)

5.4 Sequential Message
Let’s consider the following message sending:

x: =g« u(n);

When a message arrives at an object, a relevant
method must be selected and executed. Real time proc-
essing requires high run-time efficiency; the run-time
method search mechanism, as in Smalltalk-80, is too
heavy to use. Therefore, we designed the following
mechanisms.

(1) Compile-time

Methods

As a class definition is mapped to a Chill module, and
Chill is a strongly typed language, the mode and the
defining module of the destination object ‘‘f’’ can be
analyzed at compile time. From this mode and module
information, the related method having the name “‘u”’
can be uniquely analyzed at compile time. In this way, a
method can be analyzed and fixed at compile-time.

This mechanism is very efficient (no overheads are
added to procedure calls), but polymorphism flexibility
of object-oriented programming is limited (as will be
explained later). Therefore, this compile-time method
binding is applied to class methods. A messge passing
to a class object is mapped to a Chill procedure call as
follows:

Var: =ClassName « MessageName (Parameters);

3
Var: =ClassName!MessageName (Parameters);

Method Binding for Class

As you can see, the message-name is prefixed by a
module-name. Thus, even the same message name is
used in different class definitions, no name clash occurs.
(2) Indirect Method Binding for Instance Methods

Let’s assume that there are classes ‘‘A’’, ““AB’’ and

207

Method Table Method Text
E T
Instance &= Initialize-
Variable Dot Method
Print | \
Doit-
Method
e/
Print-
Instance
Variable Method
Per Class Definition
nstance Objects

Fig. 5 Internal structure of sequential object.

“AC”’, where “AB’’ and ““AC”’ both inherit ‘‘A”’, and
that all of them have the same name method ‘‘Print”’.
(Inheritance mechanism is explained in Chapter 7.)
Let’s also assume that a pointer variable ‘“ObjP’’ can
point to any object of classes “A’’, ““‘AB”’ or ““AC”’.
When a “Print()’ message is sent to the object
pointed by ‘‘ObjP”’, it is requested the right method is
selected and executed. (This feature is called polymor-
phism.) To attain this purpose, the following
mechanism has been devised (See Fig. 5):

(@) A STRUCT-mode table ‘“Method Table’’ is
allocated for each class definition as shown below. Each
field is accessed by a ‘‘message name’’ and contains a
““procedure mode’’ value (pointer to procedure) point-
ing to the relevant method text.

MODE Methods =STRUCT(MessageName PROC(. . .),

DCL MethodTable Methods
INIT=[. . . method-name . .];

(b) Each instance variable (i.e. instance object)
shall have a pointer to the ‘“‘Method Table’’.

(c) When a message arrives at the object at run-
time, the ‘“Method Table’’ is accessed, and then the rele-
vant method is accessed.

In this mechanism, objects having the same message
interfaces (this means that both objects have the same
mode ‘‘Method Tables’’) can be treated in the same
way, even though they belong to different class defini-
tions. This feature provides flexibility and advantages
to program development. For example, a switching
system has several kinds of trunk lines (lines to carry
inter-office calls), such as MF (Multi-Frequency-signal-
ing) lines, DP (Dial-Puise-signaling) lines, and
CCS7(Common-Channel-Signaling-No. 7) lines. They
are implemented as resource objects. They require
different method texts (i.e. different class definitions),
but can have the same messge interface. When a trunk
line is allocated from the idle trunk line pool, it may be
of any class, but regardless of the class it can be used in
the same way as another.

Therefore, the indirect method binding is applied to
instance methods.

ObjectID « MessageName (Parameters);
13
CALL ObjectID—.E—. MessageName

(ObjectID, Parameters);

K. MARUYAMA and N. WATANABE

6. Simple Pre-processor

The object-oriented programming technique in Chill
is explained in Chapter 5. However,program readability
and writability are not as good as a genuine object-

Here, ‘‘ObjectID”’ is a Pointer variable to the instance
variable, “‘E”’ is a field name of the instance variable
and
‘“MessageName’’ is a procedure-mode field name of the

which points to the MethodTable,

MethodTable.

[Pre-processor input]

CircleM :CLASS
EXPORT Circle, New,
GetTotalNum, Enlarge, Move;
INSTANCEVARS
MODE Circle =

STRUCT (METHODLINK,
Center STRUCT (x,y INT),
r INT);
CLASSVARS
DCL TotalNum INT INIT:=0;
CLASSMETHODS
New:PROC ()RETURNS (REF Circle);
DCL p REF Circle;
p := ALLOC (Circle):
p->:=[METHBODLINK, [(0,0],1);
RETURN p;
END;
GetTotalNum:PROC ()RETURNS (INT);
RETURN TotalNum;
END ;
INSTANCEMETHODS
Move:PROC (SELF, x, y INT);
SELF .Center.x += x;
SELF .Center.y += y;
END ;
Enlarge:PROC (SELF,
n INT);
SELF.r *= n;
END;

ENDCLASS CircleM ;

DCL cl REF CircleM!Circle ;
cl := CircleM << New();

<< Enlarge(10);

<< Movel{l5, 7):

cl
cl

|
|
|
|
1
|
|
!
|
|
1
I

!
|
|
|
[
|
|
|
[
I
!
|
|
|
|
|
|
|
|
|
|
|
t
[
|
|
|
|
|
|
|

oriented language program’s. To improve them, a

‘“‘very simple”’ pre-processor is introduced. An in-

telligent pre-processor can provide more skillful and

complex features [6], but a simple pre-processor is

welcomed from the viewpoints of debugging, educa-

tion, etc. Figure 6 shows the effect of the pre-processor:
[Pre-procassor output]
CircleM:MODULE

GRANT Circle, Methods, New,
GetTotalNum, Enlarge, Move;

MODE Circle =
STRUCT (E REF Methods,
Center STRUCT (x,y INT),
r INT);

p->:=[ADDR (MethodTable), (0,0]),1]);

MonPROC(SelfP REF Circle,
x,y INT);
SelfP->.Center.x += x;
SelfP->.Center.y += y;
END ;
Enlarge:PROC (SelfP REF Circle,
n INT);
SelfP->.r *= n;
END;

/*****x Method Table is allocated *xx*x/
MODE Methods = STRUCT (
Move PROC (ObjP REF Circle, x,y INT),
Enlarge PROC (ObjP REF Circle, x,y INT));
DCL MethodTable Methods
INIT = [Move, Enlarge]);
END CircleM;

cl:= CircleM!New();
CALL cl1->.E->.Enlarge(C1,10);
CALL cl->.E->.Move(C1,10);

[Notes) Only converted parts by a pre-processor are shown on the right-hand side.

Fig. 6 A simple pre-processor and a class definition.

Object-oriented Real-time Programming in Concurrent Process Language

The left-hand-side and right-hand-side show input pro-
gram and output program of the pre-processor, respec-
tively. The key word ‘‘SELF’’ means the instance
variable of itself. Process definitions are used as concur-
rent object definitions directly.

The pre-processor performs conversion as follows:

(a) A CLASS...ENDCLASS is converted to a
‘“MODULE. . . END”.

(a) A ‘““Method Table” is allocated and initialized.

(b) A Method Table link is put into the instance
variable mode definition.

(¢) The method formal parameters ““SELF’’ are con-
verted to ‘‘SelfP PEF mode-name’’.

(d) Instance variable references ‘‘SELF’’ are con-
verted to ““SelfP—"".

(e) Sequential message sendings are converted as
aforementioned.

(f) Concurrent message sendings are converted as
aforementioned.

7. Inheritance Technique

Let’s assume that the class definition (Chill module)
““A”’ has the instance variable definition (‘‘a’’) and
method definitions (‘“‘New’’, “m1’’). Other modules
can seize and inherit these definitions. Using this techni-
que, class definition ‘“‘AB’’ inherits from class defini-
tion ““A”’ in Fig. 7.

This inheritance technique requires the programmer
to understand the inheritance-relationship in the in-
stance variable definition; however, it is very simple and
easily extended to multiple inheritances. Practical merit
is large.

Figure 7 includes mode errors, however. An ‘‘explicit
mode conversion’’ is necessary when a ‘“‘REF ab’’ value
is assigned to a *‘REF a’’ variable, but they are omitted
here for simplification. From the viewpoint of in-
heritance, the Chill mode-check rule on pointers is too
strict, and explicit mode conversions are necessary to
apply the inheritance. It is hoped that the mode check
rule will be modified so as to allow the assignment of a
sub-class pointer value to a super-class pointer variable.

Ex. MODE a=STRUCT (f INT), ab=STRUCT (f
INT, g BIT(32)); DCL Pa REF a, Pab REF ab;
Pa:=Pab:/ It is hoped that this assignment will
be allowed.x/

Pab: =Pa; /«This is of course illegals/

8. Related Languages

From the viewpoint of modeling, our concurrent ob-
ject model has some similarities to object-oriented
research languages: ‘““ABCL/1” [4] is an Actor model
based language, and ‘‘Concurent Smalltalk’’ [4] is a
Smalltaik-80 upper-compatible language. Here, we ab-
breviate them as ABCL and CS talk, respectively.

(1) ABCL objects are of the concurrent type.

209

However, ABCL objects, which receive only “NOW”’
type messages, whose methods (scripts) exit when Reply
statements are executed, and whose messages do not ar-
rive concurrently, can be mapped to our sequential ob-
jects. This improves the effeciency.

(2) CStalk has Non-Atomic objects and Atomic Ob-
jects. The former are Smalltalk compatible objects.
They can run concurrently sending asynchronous
messages. The latter are exclusively accessed objects;
here, arrived messages are serially processed. They cor-
respond to our critical region objects.

(3) The ““Past-type’’ message in ABCL and the asyn-
chronous method call in CStalk correspond to our con-
current messages.

(4) The ““Present-type’’ message in ABCL and the
synchronous message in CStalk correspond to our se-
quential messages.

9. Evaluations

An object-oriented prototype switching program was
implemented using this technique [8, 9]. The results are
as follows:

(1) This concurrent object model is suitable for
switching program structuring. Logical components of
a switching system can be appropriately implemented
as software objects.

(2) Proper use of concurrent objects and sequential
objects lead to simple multi-processing and good real-
time efficiency.

(3) The run-time overheads of sequential objects
are not so large. Compared with Smalitalk-like
languages, the strong typing allows a processing shift
from run-time to compile-time, the non-automatic gar-
bage collection eliminates overhead, and the large ob-
ject granularity improves efficiency. Overheads, compar-
ing with procedure-oriented programming, are caused
by (a) message passings by indirect procedure-calls, (b)
instance variable access via methods, and (c) increase of
procedure calls (i.e., small and numerous methods).
Overheads for procedure-oriented programming may
be 20%.

(4) The time-and-space overheads of concurrent ob-
jects are those of concurrent process systems. The Chill
process is very efficient and favorable for our applica-
tions. Concurrent message passing requires only about
100 dynamic steps.

(5) The combination of Chill and a very simple pre-
processor enables good program readability and
understandability. Inheritance is also possible (with
some limitations). However, it is hoped that the pointer
mode compatible rule of Chill will be extended as ex-
plained in Chapter 7 to eliminate explicit mode conver-
sions for secure asssignments.

10. Closing Remarks

Object-oriented programming is a suitable approach
for improving switching program maintainability. A

210

[Pre-processor input]

A:CLASS ;
EXPORT a,a_ ... ?
INSTANCEVARS
MODE a_ =~

STRUCT (al INT, a2 INT);

MODE a =

STRUCT (METHODLINK,

A a_);
CLASSMETBODS

New:PROC ()RETURNS (REF a);

ceee

END;
INSTANCEMETHODS
ml:PROC (SELF,...):
SELF.A.a2 := ...

cee

END ml;

ENDCLASS A ;

AB:CLASS ;
SUPER A;
EXPORT ab,ab_ ... :
INSTANCEVARS
MODE ab_ =

STRUCT (bl INT, b2 CHEAR)

MODE abM =
STRUCT (METHODLINK,
A Ala_,
AB ab_);
CLASSMETHODS

New:PROC ()RETURNS (REF ab);

END;
INSTANCEMETHODS
m2:PROC (SELF,...);
SELF .AB.bl :=

SELF.A.al := ...

END;

ENDCLASS AB ;

K. MARUYAMA and N. WATANABE

[Pre-processor output}

A:MODULE;
GRANT a,a_ ... ;

MODE a =
STRUCT (E REF Methods,
A a_):

ml:PROC (SelfP REF a ...);
Selfp->.A.a2 := ... ;

....Method Table (omitted)....
END A ;

AB:MODULE ;
From A SEIZE ALL;
GRANT ab,ab_ ... ;

MODE ab =

STRUCT (E REF Methods,
A Ala_,
AB ab_);

m2:PROC (SelfP REF ab ...);
SelfP->.AB.bl := ... ;
SelfP->.A.al := ...;

....Method Table (omitted)....
END AB;

DCL ObjA REF Ala;
DCL ObjA REF AB!ab;

ObjA := A << New ();
ObjAB := AB << New ();

ObjA << ml(i);
ObjAB << m2(J):

ObjAB << ml(i);

ObjA := A! New();
ObJAB := AB! New();

CALL ObjaA->.E->.ml(ObjA, 1);
CALL ObjAB->,E->.m2 (ObjAB, j);

CALL ObjAB->.E->.ml(ObjAB, 1);

Fig. 7 Inheritance technique in Chill.

Object-oriented Real-time Programming in Concurrent Process Language

switching program is a severe real-time and multi-proc-
essing system, and therefore appropriate concurrent ob-
ject models and an efficient language are necessary. This
paper discussed a concurrent object model for real-time
multi-processing applications, and presented object-
oriented programming techniques using an existing con-
current process language. Compared with the develop-
ment of a new and ideal object-oriented language for
real-time applications, this approach may be provi-
sional. However, this approach is advantageous in that
the development costs and training time are insignifi-
cant, since existing environments can be used and pro-
grammer education shortened.

In this paper, Chill is used as the base language, but
these techniques may be applied to other (concurrent
process) languages, such as Modula.

211

References

1. GOLDBERG, R. Smalltalk-80: The I
tion, Addison-Wesley (1983).

2. DaHL, J. et al. The Simula 67 Common Base Language.

3. CCITT recommendation: Z.200 CCITT High Level Language
Chill, CCITT, 1988.

4. YONEZAWA, A. and Toxoro, M. (eds.) Object oriented concur-
rent programming, MIT Press.

5. Hoarg, C. A. R. Monitors: an Operating System Structuring
Concept, CACM, 18, 9 (1975).

6. STrOUSTRUP, B. The C+ + Programming Language, Addison
Wesley.

7. WirTH, N. Programming in Modula-2, Springer-Verlag.

8. MARUYAMA, K. et al. A Concurrent Object-Oriented Switching
Program in Chill, IEEE C ication M ine, 28 1 (Jan. 1991).
9. MARUYAMA, K. et al. A Concurrent Object-Oriented Switching
Program in Chill, Proceedings of ISS°90.

and its i

