Regular Paper

A-extension of Algebraic Specification

KAZUKI YOSHIDA®, AKIHIKO OHSUGA*, MORIO NAGATA** and SHINICHI HONIDEN*

This paper introduces implication and a particular symbol 4 into Algebraic Specification. Implications are
used in the specification as conditional equations to simplify writing axioms of a complicated requirement. With
respect to A, there are two ways of using this symbol. (1) As a symbol to specifiy the partiality of an operation in
axioms. Substituting 4 for the annoying description of an exceptional behavior is a particular example of this.
(2) As a symbol to mean temporarily undefined in the correspondence of operations in stepwise refinement. This
can make it easy to refine a part of the specification and validate it by term rewriting system.

Next, a new sound and complete calculus is defined to guarantee logical consistency between implication and
A. We can use this calculus to verify the correctness of stepwise refinement.

1. Introduction

A new programming paradigm based on formal
specifications is being paid attention to by researchers
and engineers of software production. Algebraic
Specification is one of the promising formal specifica-
tion methods to specify abstract data types. Stepwise
refinement is often applied to Algebraic Specification in
order to realize abstract data types. One of the merits in
Algebraic Specification is that the correctness of each
refinement can be verified formally [5].

The authors are now conducting research on a
methodology to specify the users’ requirement by
Algebraic Specification. When we specify a large-scale
and complex requirement, it is fairly difficult to write ax-
ioms only by equations. This is because the output of
an operation to be specified often varies according to
the input value. (To specify the partiality of an opera-
tion or an exceptional behavior is an example of this.)
From this viewpoint, the authors think that the notion
of a conditional equation is needed to simplify writing
axioms. Therefore, this paper introduces implication
into Algebraic Specification. The conclusion of implica-
tion consists of one equation, and the premise is a con-
junction of some equations to specify the condition
under which the conclusion holds.

Futhermore, a particular symbol A4 is introduced into
Algebraic Specification in this paper. There are two
ways of using this symbol.

1. A can be used as a symbol to specify the partiali-

ty of an operation in axioms. This enables us to
formally specify only the pure properties in the

*Toshiba Corporation Systems & Software Engineering
Laboratory, 70, Yanagi-cho, Saiwai-ku, Kawasaki, Kanagawa 210,
Japan.

**Department of Administration Engineering, Faculty of Science
and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, 223,
Japan.

Journal Information Processing, Vol. 15, No. 2, 1992

core part of the requirement by substituting A
for the annoying description of an exceptional
behavior.

2. In stepwise refinement (which is explained by an
example in Chapter 2), 4 can also be used as a
symbol to mean temporarily undefined in the cor-
respondence of operations between two succesive
steps. This can make it easy to refine a part of the
specification and validate it by term rewriting
system.

The authors think for both 1 and 2 above that specify-
ing partiality and temporarily undefined explicitly by 4
with conditions about the domain of an operation will
contribute to a clear visual review of the specification.

In accordance with the introduction of implication

and 4, a new sound and complete calculus is defined to
guarantee logical consistency between them. This
calculus can be used to verify the correctness of the cor-
respondence between two specifications with implica-
tion and A4 in stepwise refinement. (A formal discussion
on this problem is presented in {10].)

The following is a brief survey on relevant researches.

With respect to specifying partial data types, there
are many other researches. Here are some explanations
of them. In [3], the notion of order sort is introduced,
and the way to give specifications systematically on the
behaviors in executing undefined operations is research-
ed. In [8], inference rules are defined to deal with both
equations and formulas. Formulas express that the term
in the argument is evaluable. We can see whether a term
is defined or not from whether the formula of the term
is deducible or not. In [1], notions of partial initial
semantics and weakly terminal semantics are introduc-
ed for full abstractness, and sufficient, syntactically
checkable conditions for each existence are given.
Moreover, the relation between them is discussed.

Introduction of conditional equations into Algebraic

178

Specification can be seen in [4], etc.
Stepwise refinement of specification, and verification
of the correctness are explained in [5], [6] and [9].

The theoretical foundation on introducing implica-
tion and A4 into Algebraic Specification is presented in
the main part of this paper.

The contents in each section are explained briefly as
follows.

In Section 2, we show an example of stepwise refine-
ment of specification with implication and 4, and the
verification of its correctness.

In Section 3, partial many sorted algebras are extend-
ed to imaginary total many sorted algebras by adding a
particular element 4, which means undefined, and
other concepts are extended as well.

In Section 4, the symbol 4 and implication are in-
troduced into the equational language. A new calculus
is defined for these extensions and its soundness and
completeness are proved.

In Section 5, conclusions are made on this research
and the prospects for further research are mentioned.

Some necessary propositions for the proof of Pro-
position 5 are proved in the Appendix.

2. Example

In order to realize abstract data types, stepwise refine-
ment is ofter applied to Algebraic Specification. One of
the merits in Algebraic Specification is that the correct-
ness of each refinement can be verified formally [5].

This section explains the stepwise refinement of
specification, and the verification of its correctness in
the authors’ proposed framework.

Let us consider a specification of screen editor as an
example. Refinement and varification in this example
are as follows.

*Step 1

At first, we roughly specify all axioms which must be
satisfied by the screen editor. The following is one of
them.

delete(insert(E, C))=E)]
Here,
insert : editor, character— editor

(an operation which inserts one character into
the screen editor)

delete : editor—editor.

(an operation which deletes one character from
the screen editor)

So, the axiom (1) represents the general property of the
screen editor.
» Step 2

Now, we decide to realize the screen editor by a pair
of buffer and cursor-place.

K. YOSHIDA, A. OHSUGA, M. NAGATA and S. HONIDEN

Sorts in Step 1 are transformed as follows.
character— character
editorw— list X (nat X nat)

(This correspondence can be imagined if we consider
that /ist is a list of character strings which represents
buffer, and that nat X nat represents a cursor-place by
the row and column numbers.)

The following operations are prepared for this realiza-
tion.

insert’ : string, nat, character—string

(an operation which inserts one character be-
tween the Ny and N+ 1, characters of a string)

delete’ : string, nat—string

(an operation which deletes the N— 1., character
from a string)

retrieve : list, nat— string

(an operation which retrieves the N, element
from a list)

overwrite : list, nat, string— list

(an operation which overwrites the N, element
of a list by a string)

The following axioms hold between these operations.

<(ILl, N)=true imply

overwrite(L, N, S)=A4)
<(ILI, N)=true imply

retrieve(L, N)=4 A3)
<(ILI, N)=false imply

retrieve(overwrite(L, N, S), N)=S “)
eq(C, “{CR>’’)=false imply

delete’ (insert’'(S, N, C), N+ 1)=S)

<(ILl, N)=false imply
overwrite(overwrite(L, N, S), N,

retrieve(L, N))=L (6)

A is a symbol to mean undefined.

|L| returns the length of list L.

It is assumed that<and eg are functions which have
already been defined. <returns true when the first argu-
ment is less than the second argument, otherwise false.
eq returns frue when the first argument is equal to the
second argument, otherwise false.

Then, we consider the correspondence of operations
between Step 1 and Step 2 on the basis of the require-
ment. At first, for each operation of Step 1, the parti-
tioning of the input values is specified according to the
difference in the output. For example, there is generally
a difference in the output of insert according to whether
the element of character in the input is {CR) or not.

A-extension of Algebraic Specification

This is written by using implications as follows.
eq (C, “CR>”’)=true imply
insert(E, C)=4
eq(C, “{CR)>”)= =false imply
insert(E, C)=4

4 is a temporary symbol to avoid specifying in detail.

Then, for each case partitioned above, the operations
of Step 1 are expressed by those of Step 2 according to
the requirement. But when the requirement for some
case is vague, we can postpone specifying the case while
we go into partial verification and further refinement
only with a partial correspondence of the operations.
As long as 4 remains in the correspondence of opera-
tions, we will be able to notice by visual review that the
specification is incomplete, even when we are in a fur-
ther refinement step.

With respect to the correspondence of operations, for
example, let E be a vector [L, Ro, Co], then

eq(C, “CR>”’)= false imply
insert([L, Ro, Co], C)

=overwrite(L, Ro, insert’(retrieve(L, Ro),
Co, C)), Ro, Co+1].

Moreover,
eq(Co, 1)=false imply
delete([L, Ro, Co)])

=[overwrite(L, Ro, delete’(retrieve(L, Ro),
Co)), Ro, Co—1].

We call this consideration of correspondence of sorts
and operations between two specifications as in the
above refinement.

« Verification

We verify that the above refinement is correct by a
calculus which is newly defined in accordance with the
introduction of implication and 4. (Refer to Section 4
in which this calculus is defined.) That is to say, one of
the necessary conditions for the correctness of refine-
ment is that all the transformed axioms of Step 1 accord-
ing to the correspondence are derivable from axioms of
Step 2 by this calculus [10].

For example, (1) is expressed by the operations of
Step 2 as follows.

eq(C, “{CR>”’)=false imply
[overwrite(L’, Ro, delete’ (retrieve(L’, Ro),
Co+1)), Ro,Co]
=[L, Ro, Co]

(Let L’ be overwrite(L, Ro, insert’(retrieve(L,
Ro), Co, C)).)

This can be derived from axioms (4), (5) and (6)

There is another condition for correctness, but this
will not be argued here. (A formal discussion on verifica-
tion is presented in [10].)

179

» Step 3

Operations such as retrieve, overwrite, insert’, and
delete’ defined in Step 2 are refined by head and tail
which are primitive operations on the list. We omit the
detail because the procedure is the same as in Step 2.

When a specification is refined step by step, the cor-
rectness of the final result with respect to the initial
specification is guaranteed by verifying the correctness
between each two successive steps [5].

3. Many Sorted Algebra

In this section, several notions of many sorted
algebra are extended in accordance with the introduc-
tion of 4. This extension is indispensable because 4 is a
particular element which means undefined.

Fundamental terms S-set, S-function (S-mapping),
S-sorted system of variables, and assignment used
throughout this paper are defined in [4].

Furthermore, signature, X-algebra and partial 2-
algebra are defined in the same way as in [4]. ALG/(2)
and ALG(ZX) denote the class of all Z-algebras and par-
tial Z-algebras, respectively.

For any Ae ALG(ZX), A-extension A’ is defined as
follows. 4 is an element which means undefined.
Definition 1 Let Z=(S, a:Q2—S*xS) be any signa-
ture and A=((Aslse S), (¢”1oe 2))e ALG(ZX).

Then A’, defined as follows, is called the A-extension
of A.

(1) For every se S,

A{=AU{4¢}.
(2) For every ae Q(g:4—*5), (A is an empty string.)
4 =g".
(It is always assumed that o is defined in 4.)
(3) For every e 2(g:w—s) and awe A,

% (a.)=0"a.) (fa.edoma?)

a8 (otherwise). ul
This is a strict extension, that is, for any ie {1, .. .,
n}=dom w,
a"'(awm, PR Aﬁ;,'), ey aw(,,))=A§".

The following proposition holds with respect to a 4-ex-
tension.
Proposition 1 For every Ae ALG(ZX), the A-exten-
sion A’ of A is a Z-algebra.
(Proof) Let A’=((A:lse S), (6 |ce Q)) be the 4-ex-
tension of 4.

For every ae Q(a:w—s), its fundamental operation
¢ defined on an S-set (A!|se S) is, for any a.e 4.,

'Originally, w denotes a string of n sorts. (n is a natural number.)

But sometimes we consider w to be a function from {1, ..., n} to §.
A, denotes A,y X *** XAy

180

o*(a,)=0%a.) (if awe doma*)
a3 (otherwise).
Afe A! and 6(a,)e A, S A;, so
i A~ A

and trivially this function is total.

Similarly, when w=A4, in particular.

Therefore, A’ is a 2-algebra. u}

According to Proposition 1, for any Ae ALG(ZY), its
A-extension A’ belongs to ALG,(ZX). Therefore we can
make a A-extension recursively because ALG,(X) is a
subset of ALG(ZX'). But we prohibit this by the next
definition.
Definition 2 Let Ac ALG(Z2) and A’ be the 4-exten-
sion of A.

Then, the 4-extension of A’ is A’ itself. o

Let ALG’(Z2') denote the set of all A-extensions made
from every partial 2-algebra in accordance with Defini-
tion 1 and Definition 2. After this, this set, ALG'(ZX), is
always considered in the discussion of semantics.

2-homomorphism is defined between two arbitrary
2-algebras of ALG’(2X).
Definition 3 For A, Be ALG’(ZX), an S-function
f=(F;: A~ B|lse §) is said to be a Z-homomorphism
from A to B, denoted by f: A—B, if it satisfies the
following conditions:

(1) For every se S,

fiddH=4z2.
(2) For every oe Q(g:A—5),
fileh=a".
(3) For every o Q(o:w—s), any a,€ A,

Sf(a @) =a%(fu(aw)).

A 2-homomorphism f:A—B is called a Z-isomor-
phism, if there is a 2-homomorphism g:B—A with

fiogs=Ids, g°f=Ids forevery seS.

Id,, denotes the identity mapping on 4.

A Z-homomorphism f:A— B is called surjective (in-
Jective) if f:A;— B; is surjective (injective) for every
se S. m]

We can say that a X-isomorphism is a bijective 2-
homomorphism.

The next proposition holds with respect to a 2-
homomorphism. This fact is used in the proof of later
propositions.

Proposition 2 Let T=(S, a:2-S* X §) be any signa-
ture and A, B, Ce ALG'(2).

A composition of two Z-homomorphisms f:A—B
and g:B—C is defined, denoted by

geof:A-C

as g © fi(a)=g,(fs(a)) for every se S and any ae A,.
Then, this composition is again a Z-homomorphism.
Moreover, this is associative.

K. YosHIDA, A. OHSUGA, M. NAGATA and S. HONIDEN

(Proof) At first, we show that g ° f is a Z-homomor-
phism.
(1) For every se S,

s ° S(A)=g:(f(4F)=g.(45)=AE.
(2) For every ge Q(o:4-s),
g5 ° f(6)=g(file") =g,(c®)=0C.

(3) For every ge Q2 (0:w—s) and any (ay, . . . , a,)
€ Aw;

gsefia(a, . .., a,))
=g.(fi(c%a, . . . ,a)))
=g, (fun(@), . . . > fwin(@n)))
(w(i) denotes the i, element of sorts string w.)
=a(guy (@), - - s Guin(Frim(@1)))
=a(gwn ° fun(@), . . ., Iwiny © Swin(@n))-

From (1), (2), (3) above, we can conclude that g « fis a
2-homomorphism.
Associativity follows from the fact that a -
homomorphism is a function. [m]
A Z-term is defined as follows in accordance with the
introduction of 4.
Definition 4 Let >=(S, a:Q2—-S*x S) be any signa-
ture and »:X—S be an S-sorted system of variables.
Then,

T(Z, X)=(T(Z, X)lse S)

in an S-set which is formed according to the following 1
and 2.
1. T*(Z, X)is the smallest S-set which is defined in-
ductively by using X and £ as follows.
(1) For every xe X,

xXe T*(Z, X)p(x).
(2) For every oe Q(g:1-5),
o T2, X),.

(3) For every e Q(g:w—s), if (4, ...,)
e T*(Z, X). then

oty ..., t)eTHZ, X),
2. For every se S,
T(Z, X)=T*(Z, X){4}.

4 is called a symbol of undefined.

An element of T(Z, X) is called a Z-term on v. D

In the above definition, especially when X=¢, the S-
set is denoted by T(X), and an element of T(X) is
called a free 2-term.

Z-term algebra is defined using T(Z, X) above.
Definition 5 Let X=(S, a: 2-S*xS) be any
signature and »:X—S be an S-sorted system of
variables. Then X-algebra A, defined as follows, is
called a Z-term algebra on v.

(1) For every se S,

A-extension of Algebraic Specification

A=T(Z, X)s.
(2) For every oe Q (0:4—5),
gt=g.
(3) For every ge Q (o:w—s) and any (4, ... ,1,)
€A,
a’(t, ..., =4, if @te As)(ti=4y)
o(t,...,t,) otherwise.
This 2-term algebra A is denoted by T(Z, X') (the same
symbol as the set of 2-terms). o

It is needless to say that T(2, X)e ALG'(X).

In the above definition, especially when X=¢, T(Z,
¢) is called a free Z-term algebra denoted by T(2),
which has a very important role in considering the
semantics of specifications.

By the way, properties of all 2-terms will be proved
by considering two cases.

(1) Do the properties hold for 4?

(2) Do the properties hold for all 2-terms except 4?
Specifically, a structural induction can be used to prove

Q).
4. Equational Logic

Ordinary equational logic is extended in this section,
which is an important part of Algebraic Specification.
That is, implications are introduced into Algebraic
Specification, which are used as conditional equations.
Accordingly, a new calculus is defined which copes with
implications and 4, and its soundness and completeness
are proved, so that logical consistency between implica-
tions and 4 is guaranteed.

At first, language symbols will be defined.
Definition 6 Let Z=(S, a:Q2—5*xS) be any signa-
ture and X be a set of variables. A set of language sym-
bols, denoted by L(Z, X), consists of the following.

(1) all variable symbols xe X

(2) undefinition symbol 4; for every se S

(3) all constant symbols o Q

(4) all operation symbols ae Q

(5) parenthesis ()

(6) acomma |,

(7) an equality symbol =

(8) an implication symbol D m)

Next, equation and (elementary) implication of L(Z,
X) are defined by using T(Z, X) in the same way as in
[4]. However, the semantics of these formulas are
changed in accordance with the introduction of 4. This
will be defined later.

By the way, equational logic can be interpreted as a
many sorted algebra, because it is a first order logic
whose logical symbols and predicate symbols except
equality are excluded. So, extended assignment are de-
fined on the basis of assignment. With respect to
assignments, those which assign 4 to a varialbe are left
out of consideration. Let :X— S be an S-sorted system

181

of variables. The set of assignments of elements in an S-
set A'=(AU{A4%}1se S) to v is denoted by A;.
Definition 7 Let Z=(S, a:2—S*xS) be any signa-
ture, »:X—S be any S-sorted system of variables, and
Ae ALG’(Z). Then for any ae A,, extended assign-
ment of a on A is a 2-homomorphism a*:T(2, X)— A,
defined as follows.
(1) For every xe X,

A0 (X) =au(n (X).
(2) For every se S,

ag(A,)=4%.
(3) For every ae Q(ag:4—s).

a%(g)=0c".
(4) Foreveryoe Q(o:w—s)and any twe T(Z, X),
a%(a(t.))=oaf(1,). a

Especially, when X=¢ in the above definition, ex-
tended assignment is called evaluation.

The next two propositions concerned with the above
two notions explain a universal property of 7(ZX, X)
and 7(2).
Proposition 3 7(ZX, X) is a free algebra [2] over X in
ALG'(2).
(Proof)

1. Ttis clear that T(Z, X)e ALG'(X).

2. At first, mapping w:X—7T(2, X) is defined as

u(x)=x.

Then, it is shown that for any Ae ALG’'(Z2) and any
ae A,(v:X—s), its extended assignment a®: T(ZX, X))
—A is a unique 2-homomorphism which makes the
following diagram of mappings commutative, i.e. a* ©
u=a,

X —— >T(5,X)
\laax
A

The diagram in Proposition 3

It is clear from Definition 7 that a® is a 2-homomor-
phism and a=a* o u. So, it remains to show that a® is
the only X-homomorphism. Assume that there is
another Z-homomorphism

hT(Z, X)~A

which satisfies # © u=a. It can be shown by structural in-
duction that h=a*.
(1) For all constant symbols o T(2, X),

a*(o)=ad"=h(0).
For all variables xe T(Z, X),

a*(x)=a(x)=h(x).

182

For all undefinition symbols 4, T(Z, X),
a”™(d;)=4¢=h(4;).

(2) Assume that o(fy,...,t)e T(Z,X) and
azx
t)=h) for i=1, ..., n, then

a®(a(ty, . . .,))=0@=(t), ..., d* (1))
=ag(h(t), . . - , h(tn))
=h(o(t, . . . , 1))

From (1) and (2) above, A=a®. This shows that a* is
the only Z-homomorphism. D
The above fact is used in the proof of later proposi-
tions.

The next proposition holds as a special case, X=¢, in
Proposition 3.

Proposition 4 T7(X) is a free algebra over ¢ in
ALG'(X). u]

This proposition about 7(Z') is important when the
semantics of specifications is considered.

Next, tautological elementary implications will be de-

fined before a discussion is made on a new calculus
which can cope with implications and 4.
Definition 8 Let 2=(S, a:2—8*x S) be any signa-
ture. For every se S, let v::{x, y, z} =S be the S-sorted
system of variables with v,(x) =v(y)=v.(z)=s. Then,
the following elementary implications are called
tautological :

REF;: (v ¢DOx=x),
(vs; pD A= A4,). (¢ is an empty set)
SYM;: (vsx=yDy=Xx),
(vs; As=xDx=4;),
(vs; x=A; D As=X).
TRA;: (v; x=y, y=zDx=2),
(vs; 4s=y, y=224,=2),
(v x=y,y=A,Dx=A4,).
For every ge Q with g:w—s (let w be a string of »

sorts.) and every je {1, . . . , n}, an S-sorted system of
variables is defined

Vo ii{Xts - o o s Xm ¥, 2128

by v, (x:)=w(i) for every ie {1, . . . , n}, and v,,,(»)
=w(J), v,.;(z)=s. Further tautological elementary im-
plications are defined with this S-sorted system of
variables:

REP, ;: (o ji X;=y,2=0(X1, . . . , Xn)D
z=G(X1, oo Xj=1s Yy Xjtls o o o rxn))s
(Vo.5s Xi=Awijyy Z=0(X15 . . ., Xn) D2=4;5).
Finally,
TAUT(Z)

={REF,|se S}U{SYM;|se SYU{TRA;lse S}V
{REP,loe Q, :w=s,j=1,...,n}

K. YOSHIDA, A. OHSUGA, M. NAGATA and S. HONIDEN

is called the set of rautological elementary implications
of Z. o
Strictness of A-extension is taken into account in the
definition of REP, ;. Calculus which can cope with im-
plications and 4 is defined by using TAUT(Z').
Definition 9 An equation (v; fi=#) with v:X—-S is
said to be &/ -derivable from a finite set of equations (v;
G), denoted by

.Sfl—(l/; GDI|=12)

where & is any set of elementary implications, if it is
derivable using only the rules of derivation D1 and D2
below:

D1 For every (v; t=t')e (v; G),

S H=(v; GDt=t').

D2 If
@) (u; HOt=t')e TAUT(2)J with u:Y—S,
(b) there is an assignment ae T(ZX, X),, such that

& +(v; GOa™(p)=a"™(p"))
for every (u;p=p')e (u; H),
it follows that
A = (v; GDa™(t)=a*(t")).
IMP(s/) denotes the set of all elementary implications

(v; GOt=t') with ' +—(v; GDt=t'). u}
For any implication (v; GDH),
S+—w;GOH)

is defined as
A =; GOt=t')

for every (v; t=t')e (v; H).

Now, the other part, semantics of the formulas, will
be defined.
Definition 10 Let (v; £=¢’) be an equation of L(Z, X))
on v:X—S and Ae ALG'(Z). Then, an assignment
ac A, is called a solution of (v; t=t') in A, denoted by
(A, a)=(v; t=1"), if it satisfies the following conditions
(assuming that ¢, t'e T(Z, X),):

1. Ift#A4,and ¢’ %4,

a%(1) =47, a®(')=47,
2. Ift=A,0rt'=4,,
a%(1)=a"(')=47.
A set of solutions of (v; t=1")in A is denoted by Ay ~r).
Let (v; G) be a set of equations of L(Z, X) on

v:X—S. Then, a set of solutions of (v; G) in A, denoted
by Aq;c), is defined as

{ae A,| for all (v; t=t")e (v; G), (A, a)=(v; t=1")}.

o
Definition 11 Let (v; GDt=¢') be an elementary im-
plication of L(Z, X) on v:X—S and Ae ALG'(2). If
Aw:6yS Apie=ry, then (v; GDt=1') is said to be satisfied
(or hold) in A, denoted by

and a*(¢)=a"(¢').

A-extension of Algebraic Specification

AE@; GDt=1).

Let (v; GDH) be an implication of L(X, X) on
v:X—=S. If Aw.6)S Awmy, then (v: GDH) is said to be
satisfied (or hold) in A, denoted by

Ae=(v; GDH).

Let o be a set of (elementary) implications of Z and ¢
an (elementary) implication of X, If £ is satisfied by all
A-extensions which satisfy 7, then ¢ is called a conse-
quence of &, denoted by & =¢. n]

Then, the calculus in Definition 9 is proved to be

sound and complete by using induction on the represen-
tation of IMP(«/) and some propositions in the Appen-
dix.
Proposition 5 Let X=(S, a:2—-5*%xS) be any
signature, & any set of elementary implications of X,
and (v; GO H) any implication of L(Z, X') on v: X—S.
Then,

11 &+ (v; GDH) implies & =(v; GDH).

[2] & E=(v; GDH) implies & —-(v;GDH).

(Proof)

[1] First, it will be shown that &/ -derivability is

sound for elementary implications.

The proof is based on the inductive representation

IMP(s)=UZ, IMPi(sf).

(1) Let(r; GDt=t")e IMPy() with r:Y—S. From
the definition of IMPy (&), either (r;t=t')e (r; G)
(Case 1), or t=¢'=ye Y (Case 2).

Case 1 Because A(.c)=M Au-nl(r; t=t)e (r; G)},

A(nG)gA(r;z:-l')

(See Appendix)

holds for every (r; t=t")e (r; G).
Case 2 Because (7; G) is a set of equations on r: Y-S,

Ay EAr=A(ry~y

holds for every ye Y.

(2) Now, it is assumed that this proposition is true
for every elementary implication of IMP;(«) (i=0).
If

(r; GDt=t')e IMP.(A)
then, there are
(u; HOom=m')e TAUT(Z)\J
with w:Z—-S and te T(Z,Y),

such that condition (b) of D2 is satisfied with respect to
(r; G), that is,

(r; GOt (p)=t*(p'))e IMP()

holds for every (u;p=p’)e (u;H), and t*(m)=t¢,
t*(m’)="r". Now, let ac A(.c). Then, we have to show
that

ac A¢yu=ry.

Consider an assignment a* o t:Z—A. Then, for any
me T(Z, Z),

183

@ © O (m)=a"(t(m))

because T(Z, Z) is a free algebra.
For every (u; p=p’)e (u; H),

A€ A(rter(p)=tex(p)
because
(r; GOt (p)=t*(p’))e IMP().

Here, two cases will be considered.
Case 1 p=A4, or, p’=A (hereafter, the sort index is
omitted)

1*(p)=4, or, 1*(p’)=4
Since a€ Arytex(p) ~tex(p))»
a*(t=(p)=a=(t*(p'))=4",
that is,
@)=(p)=(@" °)"(p")=4".

So, a* o t is a solution of (u; p=p’) in A.
Case2 p#Aandp' #A

t*(p)#4 and t¥(p')#4.

Since ae Aritex(py~tex(pns
2% (t*(p) =44, a*(t*(p)=4"
and
a”(t”(p)y=a=(t(p)).
We can rewrite these as follows:
@ = " (p)#4”, (@™ 9)*(p)=4a"
and
@ ° O™ (p)=(@" >)" (p").

This means a* t is a solution of (4; p=p’) in A.
From Case 1 and Case 2 above, we can conclude that

a™ o te Awn).
Since (u; HOm=m')e TAUT(Z)UA,
a” o te Awm=m)-

Here, two cases will be considered again.
Casel m=4,or,m=A4

t=t*(m)y=4, or, t'=t*(m')=A4
Since a® (1% (m)) =a™ (1 (m’)) =44,
a%(1)=a%(¢')=4".
So, a is a solution of (r; t=¢’) in A.
Case2 m#=A4 and m'#4
t=t*(m)#A4 and ' =t*(m’)=4
Since a® o te Awm=m)»
a” (1) =a" (1*(m)) = 44,
a=(¢)=a"(t*(m")) =44,

184

and
2% (1) =%t (m) =a% (t* (") =2 ().
This means a is a solution of (r; t=t') in A.
From Case 1 and Case 2 above, we can conclude that
ae Ai=r)-

From (1) and (2) above, it has been proved that &/-
derivability is sound for elementary implications.
Next, it will be shown that &/ -derivability is sound
for implications. Let (v; GD H) with v:X— S be any im-
plication with &+ (v; GDH), and let A be any /-
algebra. (sf-algebra means a A-extension which
satisfies all elementary implications of «/.) We have to
prove that
ac Ayy~ry results from ae A
for every (v; t=t)e (v; H). & +(v; GD H) means
A+ GOt=t")

for every (v; t=t')e (v; H). The soundness for elemen-
tary implications guarantees

A E=w; GOt=t"),
so that,
€ Apio) S Awiar

The above has proved that «/-derivability is sound for
implications.
[2] Assume that A, SAe;x) for any of-algebra
A. Then,
F("Q(Gy U)(;:;G)QF(JJ, G’ v)(U:H)

because F(&, G, v) is an &/ -algebra. (See Definition
A.2 and Proposition A.4.)

Now let us define ie T(Z, X), with v:X—S by, for
every xe X,

i(x)=x,
then, from Proposition A.3,
i, Gle F(#, G, V)uny iff &+(v; GDI"(H)).
Since [i, Gle F(#, G, V)w:6)s
[i, Gle F(#, G, v)w:n).
Moreover, since i(x) is an identity map on 7(Z, X), we
can conclude that
A +—(@w; GODH). o

5. Conclusion

This paper has introduced implication and 4 into
Algebraic Specification as a starting point to establish a
methodology to specify the users’ requirement by
Algebraic Specification. Thanks to the introduction of
implication, we can write a conditional equation di-
rectly in the specification from a case-oriented analysis.

K. YOsHIDA, A. OHSUGA, M. NAGATA and S. HONIDEN

Moreover, 4 enables us to specify that operations are
partial or temporarily undefined. These contribute to
producing bugless specifications in large-scale and com-
plex system developments.

The results in this paper are briefly summarized as
follows.

At first, the A-extension of the partial Z-algebra was
defined. It has been shown that a A-extended Z-term
algebra is a free algebra in the class of all 4-extensions.
This guarantees that there is only one extended assign-
ment for any assignment.

Next, a set of tautological implications and deriva-
tion rules were newly defined. The strictness of A-exten-
sion was considered in this definition. In the end, it has
been proved that the calculus is sound and complete,
which is the main result of this research.

From the above results, it can be seen that there is no
theoretical problem in using 4 in the calculus of implica-
tion.

As a final topic, the prospects for further research are
considered.

Currently, research is being conducted on the verifica-
tion of correctness in the stepwise refinement of the
specification with implication and 4, using the new
calculus in this paper. Several useful propositions have
been proved, which are presented in [10].

Formal error checking of specification units pro-
duced in stepwise refinement can be considered. For ex-
ample, when the transformation of operations are
specified, it is possible to check formally whether the
partitioning of input values according to the require-
ment is exclusive or not, and moreover, exhaustive or
not [7]. The authors are planning to implement these
algorithms and carry out experiments in specifying real
systems.

We can further consider the transformation
algorithm from a direct execution system of this extend-
ed calculus into logic programs. If this algorithm is im-
plemented, executable codes can be automatically
generated from Algebraic Specification with implica-
tions and A. In this research, we can refer to the
transformation algorithm from a regular term rewriting
system into a parallel logic program which the authors
have proposed in another paper [11].

Acknowledgements

The authors would like to thank TOSHIBA Systems
and Software Engineering Laboratory Director Mr.
Nishijima, and Senior Manager Mr. Ohfude for pro-
viding them with the opportunity to carry out this
research. The authors also express their thanks to
anonymous referees for valuable comments. In addi-
tion, the authors wish to thank Mr. Umibe for review-
ing and giving valuable comments to the original
English manuscript.

A-extension of Algebraic Specification

Reference
1. Broy, M. and WIRSING, M. Partial abstract types. Acta Infor-
matica, 18 (1982), 47-64.
2. EHRiG, H. and MAHR, B. Fundamentals of Algebraic Specifica-
tion 1, Equations and Initial Semantics. Springer-Verlag, Berlin,
Heidelberg, New York, Tokyo (1985).
3. GOGUEN, J. A. and WINKLER, T. Introducing OBJ3. Technical
report, SRI International (1989).
4. HorsT, R. Initial Computability, Algebraic Specifications, and
Partial Algebras, Clarendon Press Oxford (1987).
5. INAGAKI, Y. and SAKABE, T. Abstract Data Types, IPS Japan, 25
(5) (1984), 491-501.
6. MaiBauMm, T. S. E., VELOsO, P. A. S. and SADLER, M. R. A
Theory of Abstract Data Types for Program Development, In Int.
Joint Conf. on Theory and Practice of Software Development (1985),
214-230.
7. NAGATA, M. An Approach to Construction of Functional Pro-
grams, J. Inf. Process. 5(4) (1982), 231-238.
8. SAKABE, T., INAGAKI, Y. and HONDA, N. Specification of abstract
data type with partially defined operations, In 6th Int. Conf. on
Softw. Eng. (1982), 218-224.
9. Turski, W. M. and MaiBauM, T. S. E. The Specification of Com-
puter Programs, ADDISON-WESLEY PUBLISHING COMPANY
(1987).
10. YosHIDA, K. OHsUGA, A. and NAGATA, M. Stepwise Refinement
and its Correctness in 4-extension (in preparation).
11. YosHIDA, K., OHsuUGA, A., YAMAMOTO, J. and HONIDEN, S. A
Program Transformation from Term Rewriting System into Parallel
Logic Program (in preparation).

(Received February 4, 1991; revised September 5, 1991)

A Appendix

Another description of the set IMP(/) will be given
here. The rule of derivation D2 is applicable only if
there are any &/ -derivable elementary implications satis-
fying (a) and (b). On the other hand, one can derive
elementary implications without any prerequisites by
means of D1. Therefore, we denote by

IMP,(s7)

the set of all those elementary implications that are &/-
derivable only by means of D1. This means

IMPy()={(v; GDt=t")I(v; t=t)e G}.

Since D2 is the rule of derivation that can be applied
iteratively, we set

IMP;, \()=IMP;() joined with the set of all elemen-
tary implications that are .«/-derivable by
D2 and IMP().

Thus, IMP;(&/) is the set of all elementary implica-
tions which are &/-derivable by i-fold application of the
rule D2. This leads to

IMP(st) =2, IMP,().

Proposition A.1 Let & be any set of elementary im-
plications of 2 and »:X—S§ be an S-sorted system of
variables. Then, for every se S and every re T(Z, X);,

A =(v; GDOr=r).
(Proof) Two cases will be considered.
(1) reT(Z, X),—{4;}
If we take (v; ¢ Dx=x)e TAUT(Z) and t:{x}>T(Z,

185
X) with t(x)=r, then, the condition (b) of D2 is
satisfied with respect to (v; G), so we obtain
A =(; GOt*(x)=t*(x)) or A+(v;GDr=r).
2) r=4;

If we take (v; DA,=A,)e TAUT(X), then for every
te T(Z, X)., the condition (b) of D2 is satisfied with
respect to (v; G), so we obtain

A = (v; GOtN(4,)=1(4A;))
or
o —(v; GD A= A,). o

Definition A.2 Let 2=(S, a:Q2—S* X S) be any signa-
ture, and & any set of elementary implications of X,
(v; G) any set of equations of L (X, X) on v:X—S.
Then, F(«, G, v)e ALG’(Z) is defined as follows.

1. For every se S, we set
FXd, G, v),={(te G)Ite T(Z, X)}.
The next step is the construction of an S-equivalence
==(=,lse8)

in the S-set F*(«, G, v) by, for any (¢, G), (t', G)
e F¥«, G, v),,

(1, G)=4(", G)

The above binary relation =; in F*(«, G, v) is a con-
gruence relation for every se S. (Reflexivity is proved
by Proposition A.l. Symmetry, transitivity and con-
gruence are clear from Definition 8 and Definition 9.)

2. We define
F(«, G, v),=F*(«,G,v)/ =; forevery se$§

iff o - @W;GDt=1).

and the elements of F(«, G, v), i.e., the equivalence
classes, is denoted by the following.
(1) For every se S and any (¢, G)e FX(«, G, v);,

[t, Gl=1{(r, G®I(t, G)=(r, G)}.
(2) Forany (t,, G)e F¥(«, G, v)nwitht,=(4, . . .
s In),

[tw, G]=(4, G], . .
(3) For every se S,
A 4= 4,, G].

- [ty GD).

3. For every oe Q(0:4—0),
af# 69=|[g, G].
4. For every oe Q(o:w—s),
o™ 41, G =[o(1.), G1.
According to this,
F(#, G, v)=(F(#, G, v)lse S). a
Proposition A.3 Let (r; H) be any non-empty set of

186
equations of L(Z,Y) on r:Y—S. An assignment
fe F(, G, v), with v:X— S, given by

f(»=[(y), Gl, te T(Z, X),

for every ye Y, is a solution of (r; H) in F(&, G, v) if
and only if

o~ (v; GDO*(H)).
t(H)={(; (o' N=t*(p") | (np=p")e (r; H)})

(Proof)
(sufficiency)
Let fe F(#, G, V)riH)- Then

(p)y=1(p")

holds for every (r; p=p’)e (r; H).
Because T(Z, Y) is a free algebra,

t*(p), G1=[t"(p’), G1.
Therefore,
& = (v; GO (p)=t(p")).
This is identical with
A+ (v; GOt¥(H)).

(necessity)
We assume

A+ (v; GO*(H))
or
A+ (0; GO(p)=t*(p’))
for every (r; p=p’)e (r; H). Then,
[t*(p), G1=1t*(p"), G].
Here, two cases will be considered.
(1) p=A4d;orp'=4;
It is trivial that
[t, G]: Y=F(«, G, v)
is a solution of (r; p=p’).
(2) p#4,and p’'#4;
Then

t*(p)#4; and t*(p’)#A4,.

K. YOsSHIDA, A. OHSUGA, M. NAGATA and S. HONIDEN

So
[t*(p), G]#4; and [t*(p’), G]#A;.
Moreover, since [t*(p), G]1=[t*(p"), G],

[t, G]: Y-F(«, G, v)
is a solution of (r; p=p").

From (1) and (2) above,
[t, Gle F(#, G, V)¢p=p)-
Since the above can hold for every (r; p=p’)e (r; H),
f=[t, Gle F(¥, G, V).]

Proposition A.4 F(&, G, v) with v:X—S is an &-
algebra.
(Proof) Two cases will be considered.

(1) Let (r;#Dp=p’) with r:Y—S be any elemen-
tary implication of & which premise is an empty set.
For any te 7(Z, X)., we can obtain

&+ (v; GO(p)=1"(p"))
by D2. Therefore,
(t"(p), G1=[t"(p"), G]
and
[t, Gle F(#, G, V)irip~p)-

From this, we can conclude, for any fe F(«#, G, v),,
fe F(o, G, ¥)¢pp)

because f is represented using ¢, i.e. f=[t, G].

(2) Let (r; HDOp=p’) with r:Y—S be any elemen-
tary implication of &/ whose premise is a non-empty set
and fe F(#, G, v).1). According to Proposition A.3,
this means

A +(v; GO H))

where te T(Z, X), with f=[t, G]. By D2, we can ob-
tain

A +(v; GOt (p)=t*(p')).
A further application of Proposition A.3 leads to
f=I[t, Gle F(&, G, V)¢p~p)-

From (1) and (2) above, F(&#, G, v) has been shown to
satisfy any elementary implication of «. O

