Translation from Transactions of IPSJ

A Method for Analyzing
the Mutual Exclusion Overhead of
Tightly Coupled Multiprocessors

MasaAKI Iwasaki*, Yosairumi TAKAMOTO* and SeticHI YosHizumr**

This article reports an analytical model for the mutual exclusion overhead in a tightly coupled multiprocessor
(TCMP) system. In mainframe TCMPs used as on-line transaction database systems, it is important to reduce
mutual exclusion overheads caused by simultaneous access requests to shared system resources.

The analytical model expresses the relationship of the shared resource utilization, the number of processors,
and the increase in the number of dynamic-steps. The equations representing the relationship can be solved by
the iterative method. Therefore, the method presented here can compute the increase in the number of the dy-

namic-steps associated with mutual exclusion.

1. Introduction

The rapid growth of today’s on-line transaction proc-
essing (OLTP) requires greater processing power than a
single high-end processor can provide. The tightly cou-
pled multiprocessor (TCMP) is one means of satisfying
this requirement, and is presently being used in the
OLTP field. In a TCMP system, many processors shar-
ing the main storage operate concurrently under the con-
trol of a single operating system, and each processor
can execute the operating system code simultaneously.

Though the performance of a TCMP system should
be proportional to the number of processors in the sys-
tem, lock contention and other factors degrade the ac-
tual system performance [1-6].

On the other hand, queuing theory is widely applied
to the performance evaluation of OLTP systems. Some
extensions of the queuing model have been proposed
for the purpose of analyzing the behavior of multiproc-
essor systems [7-9]. However, these analyses assume
that the mutual exclusion costs are negligible, so the
number of executed instructions (dynamic steps') re-
quired in order to achieve a transaction is considered to
be constant.

However, to design and implement a mutual exclu-
sion mechanism for an operating system or OLTP sys-
tem, numerical evaluation of the increase in the number
of dynamic steps caused by the mutual exclusion con-
trol is required. If the symmetric TCMP system has

This is a translation of the paper that appeared originally in
Japanese in Transactions of IPSJ, Vol. 31, No. 11 (1990), pp. 1627-
1635.

*Hitachi Central Research Laboratory.

**Hitachi Systems Development Laboratory.

Journal of Information Processing, Vol. 15, No. 3, 1992

four or more processors, this dynamic-step increase
becomes especially influential in determining system per-
formance [10-12].

This article presents a numerical analysis method for
calculating the mutual exclusion overhead of symmetric
TCMP systems.

2. Mechanism of the Overhead Increase

In actual TCMP systems, many problems not found
in uniprocessor systems restrict the system perfor-
mance. These problems can be classified into three cate-
gories. The first is the increase in the waiting time for
each task to acquire the shared-resource lower proces-
sor utilization (7, 8]. The second is the increase in the
number of mean instruction execution cycles (MIECs)
of each processor. The hardware cache mechanism
maintaining consistency among the local caches of proc-
essors increases the MIECs of each processor in a
shared-memory multiprocessor system [4-6]. The third
is the increase in the number of dynamic steps per trans-
action caused by the mutual exclusion control among
tasks trying to obtain shared resources.

This article focuses on the problem of the increase in
the number of dynamic steps caused by the mutual ex-
clusion control among concurrent tasks. The following
sections describe the basic mutual exclusion scheme and
the mechanism of dynamic-step increase, and details
the two mutual exclusion schemes appearing in the next
chapter.

‘.In this article, ‘dynamic steps’ are the executed instructions re-
quired in order to complete a procedure.

486

2.1 Basic Mutual Exclusion Scheme

Many mainframe TCMP systems employ a wait/ post
scheme for mutual exclusion of shared resources. This
setup consists of the wait procedure and the post proce-
dure. It mutually excludes the shared resource between
tasks as follows. If the shared resource is exclusively
used by a task (task,), the wait procedure suspends the
execution of another task (task;) that tries but fails to ac-
quire the shared resource. When task, releases the
shared resource, it invokes the next procedure (‘‘post
procedure’’), which resumes the execution of task,.!

Each task invokes the wait procedure if it fails to lock
the resource. The wait procedure invokes the dispatcher
after it has suspended the execution of the task. The dis-
patcher allocates another ready state task to the proces-
sor on which the suspended task had been running.

The task releasing the shared resource checks the exis-
tence of waiting tasks. If a waiting task exists, the post
procedure is invoked in the context of the posting task.
It then changes the state of the waiting task to ready. Af-
ter this state transition, the posted task is dispatched to
a processor. The posted task becomes the running state
once again, and locks the shared resource.

In this article, a ‘posting task’ means a task that in-
vokes a post procedure, and a ‘posted task’ means a
waiting task that is awakened by a posting task.

2.2 Problem of Mutual Exclusion

The dynamic-step increase associated with the wait/
post procedure is a two-stage process. In the first stage,
the contention among tasks trying to exclusively acquire
the shared resource used by the application program or
database management system increases the frequency
of wait/ post procedure invocation. In the second stage,
this frequent invocation results in frequent context
switching. Thus, each dispatcher running on a different
processor competes with all the others to lock a schedul-
ing queue.

In a TCMP environment, many tasks may simultane-
ously try to acquire the shared resource. Thus, shared
resource utilization effectively rises in proportion to the
number of processors in a system. If we define the
shared resource utilization per transaction « as follows,

_ dynamic-steps with locking shared resource
average dynamic-steps per transaction

the shared resource utilization £ in a uniprocessor en-
vironment is almost equivalent to «. However, in a
TCMP system, the shared resource utilization f is close
to the product of o and the number of processors P.?

'Precisely speaking, task, is not always posted by task,. Generally,
if many tasks are waiting for the release of a shared resource, they
may be queued and posted sequentially.

2Generally, the denominator of the above expression must include
the term representing the time spent waiting to acquire the shared
resource. We assume that the waiting time becomes negligible, as ex-
plained in Section 3.1.

M. Iwasakl, Y. TakaMoTo and S. YOSHIZUMI

Therefore, the influence of mutual exclusion over-
head becomes significant in a TCMP system with many
processors. The dispatcher must lock the scheduling
queue that is shared among all processors in a system
when context switching has taken place. The frequent in-
vocation of wait/post procedures and dispatcher lock
contention among instances of the dispatcher running
simultaneously on the different processors lead to a dy-
namic-step increase.

2.3 Tuning Technique

To reduce the mutual exclusion overhead, it is neces-
sary to use shared resources less and to minimize the
costs of wait/post procedures. In addition, the follow-
ing three issues must be considered for the TCMP sys-
tem:

1. Frequency of context switching

2. Risein shared resource utilization when lock con-

tention occurs

3. Frequency of attempts to lock shared resource

First, let us consider item 1. Two alternative control
schemes are available after completion of the post proce-
dure, depending on whether context switching occurs or
not. After the wait procedure is complete, the operating
system usually dispatches another task to prevent the
processor from becoming idle. After the post proce-
dure, two different schemes are available. One scheme
does not invoke the dispatcher, and continues execution
of the posting task. The other scheme invokes the dis-
patcher and preempts execution of the posting task,
then switches to another task (for example, to the post-
ed task).

In the multiprocessor system, even though the post-
ing task is not interrupted and continues execution, the
dispatcher on another processor can dispatch the post-
ed task. Many processors share a single scheduling
queue in the TCMP system, so if the number of proces-
sors increases, the dispatcher lock contention will result
in a performance bottleneck. Thus, it is preferable that
no context switching should take place after completion
of the post procedure.

Next, let us consider items 2 and 3. In the uniproces-
sor environment, if the posted task is dispatched prior
to other tasks, it can definitely acquire the shared
resource; that is, if the dispatcher immediately switches
the context to the posted task after completion of the
post procedure, other tasks cannot acquire the shared
resource before this posted task.'

On the other hand, in the multiprocessor environ-
ment, even if the dispatcher immediately switches the
context to the posted task after completion of the post
procedure, there is no guarantee that the posted task
can use the shared resource before other tasks. This is
because the tasks running on the other processors (for

'Actually, if the external interrupt occurs before the posted task has
locked the shared resource, the dispatcher may allocate the processor
to other tasks. We ignore this case in the following discussion.

i\

A Method for Analyzing the Mutual Exclusion Overhead of Tightly Coupled Multiprocessors 487

0 T 2

3 “ 15 Time

Fig. 1 Mutual Exclusion by First-In/First-Out Scheme.

example, task X) may acquire the same shared resource
before the posted task is actually dispatched and begins
to run.

Two alternatives are available for requesting the
shared resource from task X:

1. Allow task X to use the shared resource before

the posted task.

2. Suspend execution of task X until the shared

resource is released.

In the first scheme, the posted task must again try to
lock the shared resource. If it fails, the posted task is
suspended again. Such a failure increases the number of
further attempts.

In the second scheme, on the other hand, the posted
task can definitely lock the shared resource at the first at-
tempt. However, task X cannot use the shared resource
from the beginning of the post procedure to the end of
the dispatch procedure. (The posted task does not use
the shared resource during this period, because it is not
yet running) This means that when the post procedure is
invoked (in other words, when lock contention occurs),
the busy ratio of the shared resource effectively in-
creases. To avoid this problem, it is necessary to short-
en the time interval in which task X cannot use the
shared resource. For example, if a processor on which
the posting task has run switches the context to the post-
ed task immediately after the post procedure, conclu-
sion of the exclusive use of the shared resource by the
posted task should take place as soon as possible.

2.4 FIFO Scheme and Quick Release Scheme

Before proceeding to the numerical analysis of FIFO
and the Quick Release schemes, this section explains the
relation between these schemes and the three issues de-
scribed in the previous section.

FIFO mutual exclusion corresponds to the second
scheme described in the previous section. This scheme
avoids an increase in the rumber of further tries. The
dispatcher switches the context to the posted task imme-
diately after completion of the post procedure.' An ex-
ample trace of mutual exclusion with FIFO is shown in
Fig. 1. The task running on processor P, locks the
shared resource during the period from 7, to 7,. The
task on processor P; fails to lock the shared resource at
time 7;. The posting task on processor P, begins posting
to the waiting task at 7., and the posted task resumes ex-

ecution after completion of the dispatch procedure at
Ts.

The advantage of FIFO? is that the posted task is al-
ways able to acquire the shared resource at the second
attempt. The drawback is that this scheme raises the
utilization of the shared resource, as shown in Fig. 1.
Other tasks cannot lock the shared resource during the
period from 7, to 75 even though the posted task is not
yet actually using the shared resource. The task running
on processor P; fails to lock the shared resource at 7;. In
addition to this problem, the spin overhead is increased
because of the contention for the dispatcher lock, since
the dispatcher is executed on processor P; during the
period from 74 to 7.

The Quick Release mutual exclusion scheme cor-
responds to the first scheme described in the previous
section. This scheme avoids increasing the context
switching and raising the shared resource utilization
while the post procedure is executed. Figure 2 shows an
example trace of mutual exclusion with the Quick
Release scheme. The task running on processor P, locks
the shared resource during the period from 7, to 7.. The
task on processor P; fails to lock the shared resource at
7;. The posting task on processor P, releases the shared
resource at t,, and continues execution after the comple-
tion of posting to the waiting task. The task on proces-
sor P; can outstrip the posted task and lock the shared
resource at 7;.

The advantage of the Quick Release scheme is that no
context switching takes place after completion of the
post procedure, and tasks other than the posted task
can acquire the shared resource before the posted task
actually uses it. The drawback is that the resumed post-
ed task may fail to lock the shared resource again, as
shown in Fig. 2. If the task running on processor P;
releases the shared resource before 7,, the posted task
can acquire the resource at the second attempt.

'This context switch decreases the cache hit ratio of the processor.
However, discussion of this problem is beyond the scope of this
paper.

FIFO means that the posted task is never outstripped, and that all
tasks requiring the shared resource can be served on a first-in/ first-
out basis.

488

M. Iwasaki, Y. TAkaMoTO and S. YosHIZuMI

3 w 5 Time

Processor Po N\\\\

Processor P1 Dispatch i
Processor P2 : o ‘

Processor P3 x o s

Fig. 2 Mutual Exclusion by Quick Release Scheme.

3. Modeling

In this section, we derive the equations representing
the mutual exclusion overhead, then explain their solu-
tion.

3.1 Assumptions

In order to derive the equations, we make the follow-
ing assumptions:

1. The system is a symmetric shared-memory tightly
coupled multiprocessor. There is only one scheduling
queue in the whole system and it is shared by all proces-
sors. The spin lock (busy wait) mechanism [1, 4] is used
for the mutual exclusion of this scheduling queue. All
kernel codes, including the dispatcher, can run on any
processor. No interruptions are allowed during the exe-
cution of a kernel code.

2. The system operates stably with a sufficient num-
ber of ready state tasks, maintaining the utilization of
all processors at 1.0. Each task may travel over many
processors during its life, and thus the load is balanced
and each processor requests an equivalent number of
locks for the shared resource.

3. The variation in the length of the mean instruc-
tion execution cycle (MIEC) is negligible. The increase
in the length of the MIEC in a multiprocessor environ-
ment due to serialization or cache coherency control is
not significant.

4. The task that locks the shared resource is dis-
patched to a processor before other tasks. The task is
rarely suspended when it has locked the shared
resource.

S. The execution of the task locking the shared
resource is rarely interrupted.

These assumptions are not always true in an actual
system. In particular, the second assumption makes
utilization of the shared resource higher than it is in ac-
tual systems. In actual systems, if the utilization of the
shared resource approaches 1.0, many tasks are sus-
pended and wait for the release of the shared resource.
This increases the processor’s idle time. In this case, the
dynamic-step increase is less important than the waiting
time increase.

Our aim is to understand the relationship between the
dynamic-step increase and other factors such as the

number of processors, shared resource utilization, and
mutual exclusion costs. Thus, in the following discus-
sion, we assume that the TCMP system is tuned up so
that the processors are never idle, even if the shared
resource utilization becomes high.

3.2 Derivation of Equations

First, we define the ratio of uniprocessor to multiproc-
essor dynamic-steps, Ep, as

EP=_3 (1)

where T; is the average number of dynamic-steps per
transaction in a uniprocessor environment, and Tp is
the average number of dynamic steps per transaction in
a multiprocessor environment. Subscript P represents
the number of processors. Since we denote the retry
overhead (the increase in the number of dynamic steps
due to the retry procedure) per transaction as d.x, and
the dispatch overhead (the increase in the number of dy-
namic steps due to the dispatch procedure) per transac-
tion as dos, T is represented as follows:

Tp= Tl + 61_K+ (sos. (2)

Denoting the cost (the number of dynamic steps per
execution of a procedure) of the post procedure as
€post, and the cost of the wait procedure as &y.4/r, the re-
try overhead per transaction, J.x, is represented as

drx=A(epost+ Ewarr), 3)

where 4 is the mean number of lock acquisition failures
per transaction. The value of 4 depends on the mutual
exclusion scheme. The values of A for the FIFO scheme
and the Quick Release scheme are not the same.

When using the FIFO scheme, as shown in Fig. 1, the
task resumed by the posting task can always acquire the
shared resource. Thus, the number of lock acquisition
failures per transaction 4 can be expressed as

A=Pix Nk, (4a)

where 8.« denotes the probability that the task fails to
lock the shared resource, and N« denotes the number
of lock acquisitions necessary to complete a transac-
tion.

When the Quick Release scheme is used, all tasks ex-

A Method for Analyzing the Mutual Exclusion Overhead of Tightly Coupled Multiprocessors 489

cept the posted task can lock the resource in the period
from 7, to 74, as shown in Fig. 2. Thus, the posted task
cannot always acquire the resource. Therefore, the
mean failure count of the first lock acquisition tries is
Brx Nig, and the mean success count of the first lock ac-
quisition tries is (1 —B.x) N.g. Each failed try will cause
a retry, where the mean failure count is f1x N.x. The
same is true of the third and subsequent tries. Hence,
the accumulated lock failure count per tansaction is
represented by the following geometrical series:

Bk Nix+Bix Nox+Bixk Nux+ - -

> B
=Nik Z Bix= el
k=1

=Bk

This accumulated count corresponds to the mean re-
try count per transaction 4.

B
= LK

1 “ﬂu(

The lock acquisition failure ratio fr.x equals the
probability that another task running on another proces-
sor has already locked the resource when the initial task
issues a lock acquisition request. Assuming that the
processor utilization is 1.0, B,k is represented as

Bx=(P— ok, ©)

where P is the number of processors, and «a;x is the
shared resource utilization per transaction. We will exa-
mine « . at the end of this section.

Since we denote the number of context switches per
transaction in a uniprocessor environment as Nps, the
increases in context switching due to lock contention as
I, the dispatcher lock acquisition failure ratio as Bos,
and the cost of the dispatch procedure as Aos, the dis-
patch overhead dos is represented as follows:

Bos

- os

Nik.)

4

(4b)

doxk=T Aos+ (I'+ Nos)Asein. 0]
The first term on the right is the product of the in-
crease in the context switching count and the cost of a
dispatch procedure. The second term is the spin over-
head due to the dispatcher lock contention.
Aseiv is the number of dynamic steps for single loop
execution of the SpinLoopl shown below.

SpinLoopl Load R5, #Locked
SpinLoop2 Load R4, Lockword
Compare R4, #Free
BranchNotEqual SpinLoop2
Load R4, #Free
CompareAndSwap R4, R5, Lockword
BranchNotZero SpinLoopl

The inner loop SpinLoop2 of this nested loop waits
for the release of the shared resource. The outer loop
SpinLoopl tries to lock the shared resource. Each O
mark in Fig. 3 represents an execution of SpinLoop2,
and each X mark represents a lock acquisition failure at
the CompareAndSwap instruction in SpinLoopl. Asew is
the number of dynamic steps between two X marks.
The number of dynamic steps of SpinLoop?2 is equal to
Aos, not counting the first execution of this loop.
Though the number of dynamic steps of this first execu-
tion actually depends on the dispatcher lock failure ra-
tio Bos, in the following discussion we assume that Aspy
and Ags are equal. Using this approximation, the dis-
patch overhead dos is expressed as follows:

Pos Aos(I'+ Bos Nos)
I't+Nos)hos=——————.
1—Bos (0s)Aos 1= os

5os=rlos+

M

A context switch takes place after the completion of
each wait or post procedure in the FIFO scheme. The in-
creased count of context switching I is represented as
follows, using 4 from Equation (4a):

r=24 :2ﬂu(Nu(. (Sa)
On the other hand, a context switch does not take
place after completion of the post procedure in the

Quick Release scheme. Thus, I is represented as foi-
lows, using A from Equation (4b):

I'=A4 =_—NLK- (8b)

The probability of the dispatcher lock acquisition
failure Bos appearing in Equation (7) is represented as
follows:

Bos=(P—1)aos.)

0 Tl T2
Pocesor P QN>
Processor P1
Processor P2
Processor P3

fa SR ASPIN----=-

Fig. 3 Spin Overheads.

490

Finally, we derive the equations representing the
shared resource utilization for each transaction, oyx,
and the dispatcher lock utilization for each transaction,
aos. Assuming that the processor utilization remains at
1.0, we can define the utilization for each transaction «
as follows:

_ dynamic-steps with locking shared resource
average dynamic-steps per transaction

Thus, the shared resource utilization for each transac-
tion, a x, becomes

B
Lk Nix+ B NLK(epost+Aost L= Aos

- 1—Bos)
Tp
that is,
Aos
Lix Nix+Bix NLK(Epostt+ - ﬂos)
(277 &t . (103)

Tr

The denominator 7 on the right is the average num-
ber of dynamic steps for each transaction appearing in
Equation (2). The first term L;x Ny« of the numerator is
the number of dynamic steps while the shared resource
is being used by the task. The second term of the numer-
ator indicates that no task can lock the shared resource
during the period from 7, to 75, as shown in Fig. 1.

In contrast, when the Quick Release scheme is used,
the shared resource is actually released before the post
procedure invocation. Thus, a;x becomes as follows:

L;x Nix
T,
Similarly, the dispatcher lock utilization for each

transction in a multiprocessor environment, «os,
becomes

(10b)

[277 Sl

Aos(I'+Nos)
Tp)

where Nos denotes the number of dispatcher lock acqui-

sitions for each transaction in a uniprocessor environ-

ment, and I" denotes the increased count of dispatcher
lock acquisitions in a multiprocessor environment.

an

Qos=

3.3 Solutions

This section gives the solutions of the equations der-
ived above. To calculate the mutual exclusion overhead
requires the values of the following eight parameters ap-
pearing in Equations (2) to (11). We use the measured
or design value of these parameters to calculate the over-
head.

P: number of processors
T;: number of dynamic steps for each transac-
tion in a uniprocessor environment
Nyx: number of shared resource locks for each
transaction in a uniprocessor environment
Lk length of a shared resource lock

M. Iwasaki, Y. TAKAMOTO and S. YOSHIZUMI

Erost: cost of a post procedure
ewarr: cost of a wait procedure
Nos: number of dispatcher locks for each transac-
tion in a uniprocessor environment
Aos: length of a dispatcher lock
The aim of our analysis is to calculate the values of
the following nine variables in a multiprocessor environ-
ment:
Tr: number of dynamic steps for each transac-
tion
drx: retry overhead for each transaction
dos: increase in the dispatch overhead for each
transaction
A: number of wait/post procedure invocations
Brx: probability of shared resource acquisition
failure
arx: shared resource utilization for each transac-
tion
I': increase in the number of context switches
Bos: probability of dispatcher lock acquisition
failure
aps: dispatcher lock utilization for each transac-
tion
For the Quick Release scheme, the biquadratic equa-
tion of Tp is derived from Equations (2) to (11) by eras-
ing the other variables, using a computer-assisted for-
mula manipulator such as Mathematica [13]. Fortunate-
ly, the usual iterative method can calculate the value of
Tp for both schemes. We derive the equation Tr(aos,
arx)=0 by erasing the other variables, and solve this equ-
ation by the iterative method, with the initial values of
aos and azx, which satisfy 0<P aogs<1 and O<P
arx<l.

4. Numerical Examples

This section gives two results of calculation using the
equations derived in the previous section. The result
given in Section 4.1 includes a comparison of calculated
values and measured values. The result shown in Sec-
tion 4.2 predicts the system performance of a symmetric
TCMP with more than ten processors.

4.1 Comparison of Measured Data and Calculated
Data

The graph in Fig. 4 shows the evaluation results of
the benchmark test, which simulates the on-line system
in the mainframe TCMP system. The horizontal axis
represents the number of processors, and the vertical
axis represents the product of Ep, and the number of
Processors.

Case 1 of the benchmark test employs the FIFO
scheme, and the lock utilization for each transaction,
azx, in a uniprocessor environment' is set to about 0.12.
The number of dynamic steps in this benchmark test in-
creases drastically. The calcualtion assumes a processor
utilization of 1.0, so the calculated value of Ep becomes

A Method for Analyzing the Mutual Exclusion Overhead of Tightly Coupled Multiprocessors 491

4 T
—0— (ase 1, Calculated
—=a— Case 2, Calculated

/

5 Case2 |
g 3 Measured /
U
o
=
2
g
Z 4 Case 1
* Measured
155} 4 / \ B
1 T T
1 2 3 4
Number of Processors

Fig. 4 Comparison of Calculated Values and Measured Values.

greater than the measured value in a 4-processor en-
vironment. In an actual system, the increase in the num-
ber of dynamic steps is saturated because of the increase
in the processors’ idle time.

Case 2 of the benchmark test employs the Quick
Release scheme, and the lock utilization for each trans-
action, ok, in a uniprocessor environment is set to
about 0.05. The difference between the calculated and
measured values of Ep for this benchmark is about
5.5%.

4.2 Large-Scale TCMP

Figures 5 and 6 show the results of calculation for a
large-scale symmetric TCMP system. These results indi-
cate that it is necessary to split a critical resource into
parts to prevent performance degradation occurring as
a result of the frequent contention for the resource in a
system with many processors.

It is almost impossible to solve the equations for the
FIFO scheme by the iterative method when the number
of processors exceeds 10. The lock utilization B« of sys-
tems using the FIFO scheme reaches 0.7 when the num-
ber of processors is only nine. Thus, the processor utili-
zation of an actual system with more than 10 processors
will remain very low.

5. Conclusion

An analytical model for the mutual exclusion over-
head in a tightly coupled multiprocessor system has
been presented. Our analytical model can explain the
relationship among the shared resource utilization, the
number of processors, and the increase in the number
of dynamic steps. The equations derived from this
model can be solved by the iterative method.

'"The lock utilization for each transaction in a uniprocessor environ-
ment is defined as follows:

ax=N;xL1x/T

IOJ'— ‘:SEIFI'C;RCL” |
s A LN
/‘

EP * Number of Processors
o

Number of Processors
Fig. 5 Number of Processors-Performance Curve.

10 T T T T 1
| —o— Quick Release : Di her Lock o
—-0— Quick Releasc : Shared Resource Lock] //_ Lo
0.8 4~ —®— FIFO : Dispaicher Lock o
—&— FIFO : Shared Resource Lock ///

os , A/
A
o /v
/A
0.2 /
//

Lock Failure Ratio

Y
0.0 o

0 2 4

8 10 12 14 16 18 20

Number of Processors

Fig. 6 Number of Processors-Lock Failure Ratio Curve.

The developed estimation method allows fast and
easy evaluation of the mutual exclusion overhead. The
derived equations show the mechanism for increasing
the number of dynamic steps in a tightly coupled
multiprocessor system. This mechanism is useful for
designing and implementing the mutual exclusion
scheme of an operating system or an OLTP system.

References

1. Hwang, K. and Brices, F. A. Computer Architecture and
Parallel Processing, McGraw-Hill, 1985.

2. HoLLEy, L. H., PARMELEE, R. P., SALISBURY, C. A. and SAuL,
D. N. VM/370 Asymmetric Multiprocessing, IBM Syst. J, 18, 1
(1979), 47-70.

3. TerzLAFF, W. H. and Buco, W. M. YM/370 Attached Processor
and Multiprocessor Performance Study, IBM Syst. J, 23, 4(1984),
375-385.

4. Beck, B., Kasten, B. and THAKKAR, S. VLSI Assist for a
Multiprocessor, Proc. 2nd ASPLOS (1987), 10-20.

5. GooODMAN, J. R. Coherency for Multiprocessor Virtual Address
Caches, Proc. 2nd ASPLOS (1987), 72-81.

6. RasHID, R., TEVANIAN, A., YOUNG, M., GoLus, D., Baron, R.,
BLAck, D., BoLosky, W. and CHEw, J. Machine-Independent Virtual
Memory Management for Paged Uniprocessor and Multiprocessor,

492

Proc. 2nd ASPLOS (1987), 31-39.

7. NELSoN, R., TowsLEY, D. and Tantawl, A. N. Performance
Analysis of Parallel Processing Systems, IEEE Trans. Soft. Eng., 14,
4 (1988), 532-540.

8. BaLBO, G and BRUELL, S. C. Combining Queuing Networks and
Generalized Stochastic Petri Nets for the Solution of Complex
Models of System Behavior, IEEE Trans. Comput., 37, 10 (1988),
1251-1268.

9. HEIDELBERGER, P. and LAksuMI, M. S. A Performance Compari-
son of Multimicro and Mainframe Database Architectures, /IEEE

M. Iwasakl, Y. TaAkaMoTO and S. YOSHIZUMI

Trans. Soft. Eng., 14, 4 (1988), 522-540.

10. ANDERSON, T. E. Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors, IEEE Trans. Para. & Dist. Sys-
tems, 1, 1 (Jan. 1990), 6-16.

11. DINNING, A. A Survey of Synchronization Method for Parallel
Computers, IEEE Computer (Jul. 1989), 66-77.

12. GRAUNKE, G. and THAKKAR, S. Synchronization Algorithms for
Shared-Memory Multiprocessors, IEEE Computer (June 1989), 60-
69.

13. WoLFRAM, S. Mathematica, Addison-Wesley, 1988.

