Translation from Transactions of IPSJ

Experimental Evaluation of Team Performance
in Program Development Based on a Model
—Extension of a Programmer Performance Model—

KEN-icHI MaTsumoTo*, SHini1 KusuMoTo*, ToHRU Kikuno* and Koi Torur**

This paper proposes and compares three models (ST7, S72, and ST3) for evaluating team performance in
software development. These three models are defined by extending the programmer performance model (SI),
which is defined according to a concept of error life span and has a high correlation with the ‘‘aptitude’’ of a stu-
dent programmer. The definitions are as follows: (1) ST1= 3SI;, where SI; is the performance of programmer j
in the team, (2) ST2—% 3.SI;, where n is the number of programmers in the team, and (3) ST3=SI, where SI is
the programmer performance when the team is considered as an individual programmer.

The results of experimental evaluations show that ST3 is the most appropriate model for evaluating team per-
formance in software development. They also show that it is possible to devise an optimal team organization
strategy based on the model, in which ST3 reaches a maximum when programmer j develops program com-
ponents with a total size of Nx :s",l, where N is the total size of the program developed by the team.

1. Introduction

Generally, large software systems are developed by
teams that consist of many analysts, designers, program-
mers, and so forth. In such team development, software
quality and productivity depend on not only the in-
dividual performances of the programmers but also the
method of team organization, the load distribution in
the team, and so on [14]. Several ideas for organizing
software development teams have already been pro-
posed [11]. The chief programmer team concept,
originated by Mills, is one of the best-known ideas for
organizing software development teams [1].

However, since there are few model-based ap-
proaches for evaluating programmers and team ac-
tivities in software development, it has been believed
that team and programmer activities could not be
measured absolutely. Thus, very simple but insufficient
measures have been widely used in practical applica-
tions. For example, the number of years that a team has
been using a programming language, the number of
years that a programmer has been with the organiza-
tion, the number of years that a programmer has been

This is a translation of the paper that appeared originally in
Japanese in Transactions of IPSJ, Vol. 31, No. 12 (1990), pp. 1812~
1821.

*Department of Information and Computer Sciences, Faculty of
Engineering Science, Osaka University, 1-1 Machikaneyama,
Toyonaka, Osaka 560, Japan.

TPresently, with Advanced Institute of Science and Technology,
Nara.

Journal of Information Processing, Vol. 15, No. 3, 1992

associated with a programming team, the number of
years that a programmer has had experience construct-
ing similar software, and managers’ intuitive evalua-
tions have all been used.

Previously, we have proposed a model, called the
‘‘programmer performance model,”’ for evaluating pro-
grammers’ activities in software development [7, 8].
The programmer performance model S/ is based on a
novel concept of error life span.' The life span of an
error is defined as the duration from the time at which
an error manifests itself in the software as a fault or
faults to the time at which this fault or these faults are
removed from the software. Results of experimental
evaluations show the validity of the model as a measure
of the programmer performance [7, 8].

This paper proposes three new models (S7/, S72,
and S73) for evaluating the activities of teams in soft-
ware development. The models are defined by extending
the programmer performance model SI. ST simply
summarizes the value of S/ for all programmers in the
team. S72 takes an average of the value of SI for pro-
grammers in the team. S73 evaluates the sum of the
error life-spans in the project, on the assumption that

'In the IEEE standard [16], an error is defined as a human action
that results in software containing a fault. Examples include omission
or misinterpretation of user requirements in a software specification
and incorrect translation or omission of a requirement in a design
specification. A fault is defined as a manifestation of an error in soft-
ware. A fault, if encountered, may cause a failure (a fault is
synonymous with a bug).




Experimental Evaluation of Team Performance in Program Development Based on a Model

the team is regarded as a single virtual programmer. In
order to compare the validity of these three models, this
paper gives some results of experimental evaluation in
an industrial environment. In addition, it discusses a
strategy for organizing reliable teams (to maximize the
team performance) based on the team performance
model S73.

Section 2 introduces the concept of error life-span
and presents a programmer performance model S/ for
each individual programmer along with experimental
data showing the validity of the model. Section 3
describes three models STI, ST2, and ST3 for
evaluating team performance. Section 4 gives ex-
perimental data from a project in which eight teams (of
three to five programmers) solved a typical business ap-
plication problem by using COBOL. Section 5 analyzes
the experimental data in order to compare the three
models. Section 6 discusses an optimal team organiza-
tion based on S73. Section 7 presents a summary of the
ideas discussed in this paper, draws some conclusions,
and discusses future research work.

2. Programmer Performance Model

2.1 Error Life-Span 7,

An error life-span T, for an error e has been defined
as the duration from the time at which the error e
manifests itself in the software as a fault or faults to the
time at which the fault or faults caused by the error e
are removed from the software [9, 17]. Figure 1 shows
examples of error life-span 7. In this figure, X and O
represent the times at which errors manifest themselves
and faults are removed, respectively.

Concepts similar to the error life-span can be seen in
earlier papers [10, 15]. Mills introduced the concept of
“‘error days’’ for estimating the quality of an acceptable
system [10]. For each fault removed, the number of
“‘error days”’ is defined as the sum of the days from its
creation to its detection. He mentioned that this
measure is an indication of probable future errors and
of the effectiveness of the design and testing processes.
Weiss and Basili have used ‘‘changes’’ as a way of

Software Development Process

Designing | Coding | Debugging|_¢
T
& —_— 1Ty
Te
0, 2,
Ty
o )LT:"
8y = - B——

x Emor e; manifests itselt

o Faults caused by
error €; are removed
Te, Life Span of error ¢,

Fig. 1 Error life span.

467

evaluating software development processes [15]. They
mentioned that ““the length of time each fault remained
in the system’’ would be useful information for
evaluating the software development processes.
However, no collection or analysis of such data was car-
ried out.

2.2 Programmer Performance

There have been many studies of programmer perfor-
mance [3, 4, 13]. Sackman et al. showed that, for most
performance variables, there are very large individual
differences in programming performance [13]. In the
COCOMO model, programmer capability is one of the
driver attributes, and has a range of 2.03 for produc-
tivity [3]. There are, however, no model-based ap-
proaches for evaluating programmer performance.

We believe that the error life-span indicates not only
the product quality, as suggested by Mills [10], but also
some aspects of programmer performance. The error
life-span closely is related to the performance of the pro-
grammer in the following two respects:

1. The number of errors made in the software develop-
ment processes
2. The rate of detection and removal of faults caused
by these errors.

For example, we consider a case in which an error
causes some faults in a program text. If the life-span of
the error is long, that is, if the faults have remained for
a long period of time in the program text, then the pro-
grammer will have a hard time removing them. One
cause of this difficulty is that the programmer will
forget the details of the old code relating to the faults.
The erroneous code will also affect other code appended
to the program text later. Hence, we naturally think
that an error with a long life-span has a strong
(negative) effect on the project’s progress and the relia-
bility of the program.

2.3 Definition of S/

Now, the value of SI is defined to indicate some
aspects of programmer performance. The ST for each in-
dividual programmer is formally defined by formula (1).

Sum of error life-spans) ™!
= 1)

B f(p)

where f: Normalizing function
p: Complexity of given problem

This definition of SI is derived from the fact that a
programmer who makes fewer errors and removes
faults caused by these errors in a shorter time achieves a
better performance. In this definition of S7, the follow-
ing two assumptions are made:
1. Specification (of a problem) is not modified during
software development.
2. Design, coding, and debugging are done by the
same programmer.



468

2.4 Experiments to Determine Programmer Perfor-
mance

In order to show the validity of the error life-span 7,
and SI, we conducted several experiments in academic
environments [7-9]. In these experiments, the square of
the final program size, namely L?, was used as a nor-
malizing function f(p). The reason we chose L may be
explained as follows. 27, is rewritten as

S T.=avgxN (0))

where avg: Average error life-span

N: Total number of errors
Since avg and N are considered to depend on the com-
plexity p of the problem, both avg and N should be nor-
malized by p in such a way that

oy, N 3)
p p
where p: Complexity of problem
In these experiments, there were only small
differences among the specifications. We therefore
thought that the complexity p of the problem could be
estimated from the final program size L (the number of
the lines in the final program text). As a result, we used
L? as the normalizing function. The S/ for each in-
dividual programmer is rewritten according to the for-
mula (4).

C))

where T,: Life span of error e
L: Final program size

In previous publications [7-9], we show the following
three major results of these experiments with respect to
the validity of the SI defined by formula (4).

1. XT.has a high correlation with the total terminal ac-
cess time.

We found that the total terminal access time, which
seems to directly correspond to programmer perfor-
mance, has a higher correlation with the sum of the
error life-spans than with the total number of errors.
The coefficient of correlation between the total terminal
access time and the sum of the error life-spans was 0.82.
On the other hand, the coefficient of correlation be-
tween the total terminal access time and the total
number of errors was 0.45.

2. The SI has a high correlation with the grade point
average.

Moher and Schneider have found that ‘‘experience’’
(as measured by the number of computer science pro-
gramming courses taken) and ‘‘aptitude’’ (as measured
by the grade point averages in computer science
courses) are the major predictors of performance for
student programmers [12]. We found that there was a
high correlation between the S/ and the grade point
average in computer science courses for each program-

K. MaTsumoro, S. Kusumoto, T. KikuNo and K. Tor1l

mer in the experiment. The coefficient of correlation be-
tween them was 0.75.
3. The SI was stable in two different projects.

The SI ranking of the programmers was almost the
same in two different projects. The coefficient of correla-
tion between the SIs in two projects is 0.63. Thus, the
value of ST is relatively stable for the same programmer
in different projects.

We conclude from these three observations that S/
can be used as a metric for programmer performance in
software development projects.

3. Team Performance Models

In this section, we extend the programmer perfor-
mance model S/ to three team performance models
(ST1, S2, and ST3) that evaluate the activities of pro-
grammers in a team. These three models make different
assumptions about the relationship between program-
mer performance and team performance. Let us con-
sider a case in which software is developed by a team
consisting of n programmers. In the following, let SI;
denote the S7 of programmer j(1 <j<n). For the sake
of simplicity, the following notation

E)\™!
SIi= (p) &)

where E;=XT,,
is used instead of the notation in formula (4).
1. Team performance model ST/

If we could disregard both the advantages and disad-
vantages of team development, then team performance
could be considered as the sum of the performance of
the programmers in the team. ST/ is defined as follows:

n
STi=3, SI,. 6)
Jj=1
2. Team performance model ST2

If it is assumed that the performance of a program-
mer has a strong effect on the other programmers’
performance in a team development, then team perfor-
mance could be considered as the average of the perfor-
mance of programmers in the team. S72 is defined as
follows:

sT2="1 3151, Q)
n =

3. Team performance model ST3

If it is assumed that a team functions as a virtual pro-
grammer aggregately developing software, then team
performance could be evaluated by using formula (4).
ST3 is defined as follows:

T3=((Z‘S"’LE/")2)_I.

®




Experimental Evaluation of Team Performance in Program Development Based on a Model

4. Experimental Evaluation of Team Performance
Models

4.1 Outline of Experiment

In this section, we describe an experiment conducted
at a training course, from April to August 1988, for
new employees of a certain computer company. This ex-
periment compared the validity and usefulness of the
three team performance models proposed in Section 3.
The main characteristics of the experiment may be sum-
marized as follows:

1. Eight teams of programmers developed the same
system (a file-processing program in a business applica-
tion), using COBOL.

2. The system consisted of 18 program modules. (This
number of program modules was specified for each
team; however, the distribution of modules to members
of a team was freely determined by the leader of that
team.) The final program sizes were all about 2000 lines.
3. Each team consisted of three to five programmers.
The teams were organized by the instructor so that the
differences among their performances, in an intuitive
sense, would be low.

4. Each team was assigned two terminals. Thus, the
ability to access terminals was relatively limited in com-
parison with the experiments mentioned in subsection
2.4 [8].

4.2 Automatic Estimation of Error Life-Span

In the experiments mentioned in subsection 2.4, ob-
taining the error life-spans was very expensive. We
traced and analyzed all the files used in the experiments
by hand and kept a large amount of data concerning the
processes. However, the cost of obtaining the error life-
span information in a software project involving many
programmers is prohibitive in practice.

To decrease the effort required to obtain error life-
spans, we devised a method for automatically obtaining
the estimated values of error life-spans. This method is
based on the demonstration by Dunsmore and Gannon
that program changes (that is, textual changes between
successive versions of a program) are correlated with
the total number of errors in the program [S]. Thus,
each line modified during each editing session cor-
responds to one error to be counted. If the number of
times each line has been created and deleted is known,
the estimated error life-spans can be found easily.

On the basis of the results of experiments by
Dunsmore and Gannon [5] and the experiments men-
tioned in subsection 2.4 {7, 8], the following two
assumptions are made:

1. The purpose of modifying a program text during
each editing session is to remove faults.

2. Asset of lines created during one editing session and
modified during another session corresponds to one
error.

469

Creating Creating  Modifying
Ps P2 h,..,Is
Po Po Po Po
- | |
P P1 I;
I
la
P2
Is
to t t2 t3

Fig. 2 Estimation of error life span.

100000 7 Actual value(A)
(min.)

80000

60000
40000
20000
x
6 Estimated value(E)
0 T T . )
) 200000 400000 600000 800000
(min.)

Fig. 3 Actual values vs. estimated values of 27..

Figure 2 shows an example of estimation of an error
life-span. In Figure 2, £,(0 </<3) represents the time at
which the i-th editing session terminated. P; represents
the program text created during the i-th editing session.
l;(1=j=<5) represents a line modified during the third
editing session. According to the first assumption, the
purpose of modifying the program text during the third
editing session is to remove faults. From the second
assumption, the modified lines /; can be divided into two
subsets: {/,, I, I3} and {/,, Is}. Consequently, we can esti-
mate that faults caused by two errors are removed dur-
ing the third editing session, and that the life span of
one error corresponding to {/,, I, I;} is #;-t,, and the life
span of another error corresponding to {/y, Is} is f-t,.

The estimated value of the sum of error life-spans is
computed in this manner, using data from these ex-
periments. Figure 3 compares the sum of the estimated
error life-span with the sum of the actual error life-
spans. The coefficient of correlation between them is
0.90. Thus, we can conclude that the estimated value is
sufficiently equivalent to the sum of actual error life-
spans.

In this experiment, the number of successive times
each programmer accessed a terminal was counted and
used as the time unit for evaluating 7,. In addition,
each programmer had to fill out a form declaring the in-



470

ty tz ts t4 ts tL t

effort time at desks

tz tg tg tyg 1ty

J

t fs_tas ti hytp ts te

» ! effort time on terminals

efforttime (T)

Fig. 4 Explanation of effort time.

dividual effort time spent on designing, coding and unit
debugging. Further, each team leader also had to fill out
a form declaring the team effort time spent (primarily)
on integration testing.

The effort time on terminals is the period during
which a programmer or team works on terminals.
Similarly, the effort time at desks is the period during
which a programmer or team works at desks (not on ter-
minals). The effort time at desks is reported by filling in
forms. We can not rely on individual effort times, since
programmers may forget to fill out forms. Thus, it ap-
pears better to use a new effort time formed by combin-
ing individual and team effort times , as shown in Fig. 4.

4.3 Experimental Data

Out of 18 modules, only 9 modules that satisfy the
following two qualification conditions are selected for
evaluation.

1. The average of the module size is more than 100
lines. (Modules that are too small are excluded from
evaluation.)

2. The average ratio of the data division size to the
module size is less than 0.5. (Programs that consists
mainly of data definitions are also excluded.)

The resultant evaluation data are summarized in
Table 1. The values of the sum of error life-spans are
calculated in the manner described in subsection 4.2.
Table 1 shows the program size (which is the number of
lines in the final program text), the sum of the error life-
spans, the total effort time (estimated, as shown in Fig.
4, from the effort time reported by the programmer and
the terminal access time traced automatically), and S/.
We used effort time as the time unit for the error life-
span.

5. Evaluation

5.1 Error Life-Span vs. Effort Time of a Programmer

Figure 5 shows the scatter plots of X7, in relation to
the total effort time of each programmer. (In subsection
2.4, we compared 2T, with the total terminal access
time.) The coefficient of correlation between them is
0.46. This is not very high in comparison with the result
in subsection 2.4, where we report a coefficient of cor-

K. MAtsuMorTo, S. KusuMoTo, T. KikuNo and K. Torn

Table 1 Experimental data.

Team | Member | Program [ Sum of error ‘I'(otal‘evxfon S!
size life spans )
m 289 1430 2009 56
m2 263 10608 5488 7
# m3 385 7192 2652 21
m4 137 6109 3633 3
m5 95 6679 3523 1
mi 365 7899 3999 17
m2 278 8510 2706 9
#2 m3 249 6877 2730
m4 155 1855 3766 12
m5 107 101 2646 13
m 221 13329 3730 4
3 m2 600 37620 3408 10
m3 362 27689 4809 5
mi 333 22972 4354 5
# m2 230 4896 3039 1"
m3 364 3970 4220 33
mé 319 21612 3214 5
mi 393 12035 3681 13
. m2 270 1569 4061 46
m3 342 11907 4173 10
m4 240 15147 3886 4
mt 569 22470 3429 14
#6 m2 375 11789 3243 12
m3 156 1818 2874 .13
m1 387 17634 3768 8
m2 328 14184 3407 8
#7 m3 264 4747 2704 15
m4 126 5092 3627 3
m5 172 208 2467 142
m1 583 14497 4426 23
Py m2 203 2268 3211 18
m3 233 14775 4699 4
m4 169 25621 5366 1

so00- Total effort time (T)
(min.)

5000

40004 @
Regression lineof Ton S

a L]
o
3000 4 o
age
g
Sum of error life-spans(S)

2000 +5- T T T J

0 10000 20000 30000 40000

(min.)

Fig. 5 Total effort time vs. sum of error life-spans.

relation between them of 0.82.

The reason for this is that various factors affect the
value of S7in the team development. For example, code
review, one of the most common activities in team
development, shortens the life-span of some errors. A




Experimental Evaluation of Team Performance in Program Development Based on a Model 471

further example involves module interfaces. Such por-
tions of code are error-prone and difficult to detect
faults in. If an error introduces faults into the interface
among modules that are not assigned to the same pro-
grammer, the life-span of the error may become very
long.

Cooperative work in team development also affects
the effort time of each programmer. If a novice pro-
grammer can be helped by a skilled programmer in the
same team, his effort time is shortened. Conversely, a
team leader, who is generally is a skilled programmer,
needs additional effort time to coordinate his team
members or to help them to communicate.

We can conclude that it is meaningless to evaluate
programmer performance in team development by us-
ing the programmer performance model S/ in the man-
ner described in subsection 2.4. We have to use pro-
grammer performance models and team performance
models properly.

5.2 Comparison of Team Performance Models

Table 2 shows the values of ST/, ST2, and ST3 and
the team debugging effort time of eight teams (#1, #2, . . .,
#8). The team debugging effort time is the total effort
time for debugging after unit testing for each module
has been completed. From Table 2, the following rela-
tion can be observed with respect to the values of three
models:

ST2<ST3<STI. ©9)

We have evaluated the correlations between STI,
S8T2, and ST3 (see Table 3). There are high correlations
between ST/, ST2, and ST3, and especially between
ST1 and ST2 (the coefficient of correlation is 0.99).

Table 3 also shows the coefficients of correlation be-
tween ST, ST2, and ST3 and the team debugging effort
time. ST3 has the highest correlation with the team
debugging effort time (the coefficient of correlation is
0.83). Thus, it may be said that S73 is the most ap-
propriate model for evaluating team performance in
software development.

Table 2 Team performance and team debugging effort time.

oo sr1 | sr2 | sts | Teamdebugaing
[al 88 18 43 490
#2 160 32 53 460
#3 19 6 18 2200
#4 54 14 29 2170
#5 73 18 38 9280
#6 39 13 33 650
#7 176 35 39 570
#8 46 12 25 1430

Table 3 Coefficients of correlation between team performance
and team debugging effort time.

ST1 ST2 ST3
ST12 0.99 - -
ST3 0.80 0.79 _—
Team debugging
affort ime -0.69 -0.66 -0.83

6. Team Organization Strategy Based on S73

6.1 Relation between Programmer Activities and
Team Performance

In this section, we discuss the strategy for team
organization that maximizes the team performance
based on the model S73. From the definition of ST3,
the following relation can be derived:

2 E

j=1 " (EN\7!
§ST3=|-——| < = - (10)
Bef) 7
L
Jj=1
If the relation
L._Lz_ _L,. a1
sn, s, SI

is satisfied, then the value of S73 reaches a maximum.
At that time, the relation

ST3=3 81, (12)
j=1

Table 4 Relations between programmer activities and team performance.
K Ky Kj Ky Ks K opt gK’ _Km'l _S_T_’:ﬂ.(%)
Team T Ko S11
#1 5.2 37.6 18.3 45.7 95.0 13.3 11.4 51
" 215 309 | 277 | 129 0.9 7.2 9.8 67
#3 56.3 60.0 724 —_ — 62.3 0.3 5
#4 66.6 20.9 11.0 63.8 —_ 231 4.2 46
#5 30.2 5.9 34.2 60.0 — 174 4.9 48
#6 40.6 31.3 11.9 — — 28.2 1.1 15
#7 48.4 410 | 176 | 420 1.2 73 173 78
#8 25.3 113 | 583 | 169.0 — | 258 7.4 46




472

holds. Thus, to maximize team performance in the new

project P, each programmer j(j=1, 2, . . ., n) should
develop program modules with a size L; proportional to
SI;.

Table 4 shows the relation between programmer ac-
tivities and team performance. K; is the ratio of the final
program size to SI;. K, is the optimal value of K in the
team. It is defined as follows:

2 b
Kﬂpl=J;

25
Jj=1

The result shows the maximum value of K, is 62.3,
and the minimum value of K, is 7.2. It is observed that
the value of K, tends to increase as the number of pro-
grammers becomes smaller.

To evaluate the difference between K; and K, we
calculate the value of the following formula:

Zl | K-Kopi|
Dszi—__

13)

KDpI (14)
In addition, to evaluate the difference between the max-
imum performance (ST1) and the actual performance
(ST3) of each team, we calcualte the value of the follow-
ing formula:
STI-ST3
Dsr=—gr—% 100(%) (15)
Naturally, there is a high correlation between Dk and
Dysr.

Consider teams #2 and #3, which give respectively the
highest and the lowest values of S73 in Table 2. Table 4
shows that for team #2 there are large differences
among K; for each programmer and K,,. As a result,
the value of Dg for team #2 is relatively large. On the
other hand, Table 4 shows that K for each programmer
in team #3 is almost equal to Ko, (The value of Dy for
team #3 is the lowest for any of the eight teams.)
Therefore, it is concluded that team #2 is superior to
team #3 with respect to total team performance. On the
other hand, with respect to the load distribution in a
team, team #3 is superior to team #2. This tendency is
clearly observed from the values of Dsrin Table 4: team
#2 is 67% below its optimal performance, whereas team
#3 is only 5% below its optimal (maximum) perfor-
mance.

6.2 Strategy for Maximizing the Value of ST3

As mentioned in subsection 6.1, S73 reaches a max-
imum when K; for each programmer in the team is
equal to K, defined by formula (13). Let us consider a
case in which the following three assumptions are
made:

1. For each programmer j(j=1,2, . . ., n), the value
of SI;is known (for example, from S/; in a past project

K. MaTsumorto, S. Kusumoto, T. KikuNo and K. Torn

P’ similar to project P).

2. The performance of a programmer may not be con-
stant in different projects. The value of S/ may also vary
over different projects, but the variation in S/ is propor-
tional to its value, and the rate of variation is constant
for all programmers in the team. That is, the relation
SI;=aSI; holds between the past project P’ and project
P.

3. For project P, there is a predictive (transformation)
function F relating the problem specification S to the
size of program derived from it.

In this case, we can maximize the value of S73 by
assigning the specification S;(j=1, 2, ..., m) to pro-
grammer j on condition that the following relation
holds:

F(S)_F(8)_ _F(S)
SIi  SI; N A

(16)

7. Conclusion

In this paper, we proposed three team performance
models (S71, ST2, and S73) based on the concept of
error life-span and the programmer performance
model. The results of experimental evaluation suggest
that models ST/ (the total performance of the program-
mers in a team) and S72 (the average performance of
programmers in a team) are not good indicators for
evaluating the performance of a team. Model ST3 (de-
fined by regarding a team as a virtual programmer) has
the highest correlation with the team debugging effort
time (that is, the time spent on the most important team
activity in software development). In addition, we show
that the team performance is maximized only if each
programmer on the team develops program modules
with a size that is proportional to his or her perfor-
mance. Thus, the team performance model S73 can be
used to evaluate not only the activities of the team but
also the way the team is organized before the project
starts.

We are currently investigating a system that
automatically collects and analyzes data from the ac-
tivities of programmers during software development,
and that shows these data to the programmers as feed-
back information [7], so that the programmers can
analyze and improve their activities in the manner
shown by Basili and Rombach [2]. We expect that the
overall productivity of development and the reliability
of the resulting products will be increased by using this
system. We consider that programmer and team perfor-
mance models are appropriate candidates for feedback
information.

References

1. BAKER, F. T. Chief programmer team management of produc-
tion programming, /BM Syst. J., 11, 1 (1972), 56-73.

2, Basiui, V. R. and RoMBACH, H. D. The TAME project: Towards
improvement-oriented software environments, /[EEE Trans. Softw.



Experimental Evaluation of Team Performance in Program Development Based on a Model 473

Eng., SE-14, 6 (1988), 758-773.

3. BoEHM, B. W. Software Engineering Economics, Prentice-Hall
(1981).

4. CHEN, E. T. Program complexity and programmer productivity,
IEEE Trans. Softw. Eng., SE-4, 3 (1978), 187-194.

5. DunsMoRrE, H. E. and GANNON, J. D. Analysis of the effects of
programming factors on programming effort, Journal of Systems and
Software, 1(1980), 141~153.

6. GUGERTY, L. and OLsoN, G. M. Debugging by skilled and novice
programmers, Proc. of Computer and Human Interaction 86 (1986),
171-174.

7. Martsumoto, K. A Programmer Performance Model and Its
Measurement Environment, Ph.D. dissertation, Faculty of the
Engineering Science, Osaka University, Japan (1990).

8. MartsuMoro, K., INOUE, K., KikuNo, T. and Tori, K. An ex-
perimental evaluation of programmer performance based on error
life-span—For program development in an academic environment,
Trans. IEICE, J71-D, 10 (1988) (in Japanese), 1959-1965.

9. MaATsuMoTO, K., INOUE, K., KuDo, H., Suciyama, Y. and TorIl,
K. Error life-span and programmer performance, Proc. 11th Interna-
tional Computer Software and Applications Conference (1987), 259-
265.

10. MiLts, H. Software development, IEEE Trans. Softw. Eng.,
SE-2, 4 (1976), 265-273.

11. MYyErs, G. J. Software Reliability—Principles and Practices,
John Wiley & Sons, Inc. (1976).

12. MOHER, T. and SCHNEIDER, G. M. Methods for improving con-
trolled experimentation in software engineering, Proc. 5th Interna-
tional Conference of Software Engineering (1981), 224-233.

13. SAckMAN, H., EriksoN, W. J. and GRANT, E. E. Exploratory ex-
perimental studies comparing online and offline programming perfor-
mance, Comm. ACM, 11, 1 (1968), 3-11.

14. Scort, R. F. and SiMMoNs, D. B. Predicting programming
group productivity—A communications model, JEEE Trans. Softw.
Eng., SE-1, 4 (1975), 411-414.

15. WEIiss, D. M. and BasiLi, V. R. Evaluating software develop-
ment by analysis of changes: some data from the Software Engineer-
ing Laboratory, IEEE Trans. Softw. Eng., SE-11, 2 (1985), 157-168.
16. 1EEE Standard Glossary of Software Engineering Terminology,
IEEE, Rep. IEEE-Std-729-1983 (1983).

17. IEEE Standard Dictionary of Measures to Produce Reliable
Software, IEEE, Rep-1EEE-Std-982.1-1988 (1988).



