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At the present stage of processor hardware design, design support technology for lower levels, such as layout
design, has reached a practical state. We have studied and developed an upper level CAD system.

We express those specifications in basic terms with object(or entity) descriptions for processes and data, and
relation descriptions for the correlation between these entities.

An expert system for computer architecture design has been implemented. With it, the designer is able to use a
specification description language in much the same way as a natural language. The system employs 293 rules to
analyze the consistency and completeness of the specification. Finally, and RTL behavioral description can be
synthesized from the original specification description through a process that employs 113 rules.

We used the above expert system to perform the functional design of a simple pipeline processor which has
127 specification language lines. In this case, 212 SFL statements were generated by the system. In the simple
processor, specification analyzing time is about 30 seconds, and synthesizing time is about 2 minutes.

1. Introduction

This paper describes an Architecture of a specifica-
tion design expert system which translates specifications
into a hierarchical behavioral description language,
called SFL (Structured Function description Language).
We have already developed SFL, its behavioral
simulator, and its architecture & logic synthesizer. We
have now integrated them into a high level CAD
system, called PARTHENON, for practical use [1-5].
Though PARTHENON can be counted among the
most advanced tools for raising human interface, it
takes a hardware expert to use it effectively. We,
therefore, re-directed our work toward developing a
technology that would allow design specifications to be
described in natural language and behavioral logic to be
synthesized automatically. Since, in order to realize this
automatic synthesizer, knowledge-processing tech-
nology must be introduced to enable the accumulation
of design know how in a knowledge base, we have pro-
totyped the system as an expert system [6].

The total system overview and our current stage of
development are shown in Fig. 1.
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2. PARTHENON System

We will begin by describing the features of the SFL
language, which is at the core of the PARTHENON
system. SFL was developed to aid in the design of the
hardware functions and behaviors of ASICs composed
solely of clock—synchronized circuits. The main
features of SFL are as follows: (1) It is not mixed with
connection description, but employs only behavioral
description, and it provides hierarchical expression of
behavioral description. (2) It permits the description of
parallel processing operations by adopting a new hard-
ware task concept. And, (3) it is linked with the
behavioral simulator, logic synthesizer, and other com-
ponents of the processing system.

We designed a 32 bit RISC-type processor using
PARTHENON in only four days. This processor has 47
instructions which are a subset of DLX (DLX is very
similar to MIPS architecture). The size of the circuit syn-
thesized from SFL description (about 1,200 lines) was
about 14,000 gates. This processor chip was received
from the manufacturer last October, and it functions
correctly.

3. Model & Input

PARTHENON is able to perform completely
automatic synthesis of logic circuits from SFL behavior
description. We, therefore, developed a technique for
supporting synthesis from a higher specification descrip-
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Fig. 1

tion to SFL. Specifications have in the past been de-
scribed in natural language; This specification expert
system can, however, analyze processor structure which
is described in natural language. Next, we will explain
the basic model of this system.

3.1 Basic Model

We wish to express processor specifications in basic
terms using object (or entity) descriptions for processes
and data, and relation descriptions for correlation be-
tween these entities.

Our reason for choosing this simple model is to allow
the expression of specifications with as little ambiguity
as possible. This is achieved by expressing processor

System Overview.

elements using a limited number of entities and by cor-
relating entities with only those relation descriptions
used in the hardware design.

Based on this objective, we conducted an analysis of
hardware specifications. As the entities, we use DATA
entities to express information manipulated in the
hardware, and PROCESS entities to express individual
hardware processes. As the relations, we employ
STRUCTURE, DATA FLOW, and LOWER CON-
TROL FLOW (not having time order or condition) to
express the inter-relationships between entities. We also
provide an upper-relationship to correlate inter-relation-
ships. In expressing the behavior specification level, it is
necessary to provide the conditional relationship that
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controls the process execution sequence. More specifical-
ly, a conditional relationship expressed in terms of
“EVENT (if),” ‘“CONDITION (when),”” and ‘“TIM-
ING (before/after/concurrent),”” does not correlate
the entities themselves, but rather the relationship be-
tween them. This is why we have introduced an upper-
relationship.

We have confirmed that these entities and their inter-
and upper-relationships can be used to express almost
all hardware specifications.

3.2 Specification Description Language

Our specification language is structured on the above
model, and it adopts natural language as its description
form. However, because the sole object is hardware
specification and because we wanted to make the
language structure easier to analyze, we have applied
the following restrictions:

(a) The use of particles and auxiliary verbs has been
limited,

(b) Only one sentence format is provided per verb to
avoid ambiguity in sentence analysis.

This language expresses the inter-relationship be-
tween entities using the Japanese syntax: SUBJECT +
OBJECT + VERB. The upper-relationship between in-
ter-relationships is expressed using the Japanese syntax:
SUBJECT+BASIC SENTENCE +CONJUNCTION
+OBJECT + VERB.

Basic sentence:

{(NAME) i1 [HA], {(NAME>#* [WOIXVERB)
<% [SURU].

Complex sentence:

{NAME) i1 [HA], <BASICSENTENCE)
(CONJUNCTION), {NAME) % [WOJXVERB)
7 % [SURUJ.

In these sentences, a NAME with the particle
““[HA]J”’ signifies the subject, a NAME with the particle
“[WO]”’ signifies the object, and a VERB with the
suffix ¢‘[SURU]”’ denotes the predicate. By extension, a
BASIC SENTENCE with a conjunction comprises a
complex sentence. Reserved words are shown in Table
1.

Inter-relations are expressed in basic sentences, and
Upper-relations in complex sentences.

4. Knowledge-Based Analysis

The specification analyzer is a subsystem of the ex-
pert system (Fig. 2). It analyzes the consistency and com-
pleteness of specifications described using the language
characteristics just mentioned. Concretely, if a specifica-
tion is described in a basic sentence, entities expressing
the subject and object are correlated in hardware using
the verb as the key. If, on the other hand, a specifica-

_ tion is described in a complex sentence, the inter-rela-
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Table ! Corresponding to Relations.

Relation .
Class Relation Verb
Structure Structure Consist
Use Use
Attribute Is
Part of Part
Data flow Refer Refer
Produce Produce
Maintain Maintain
Modify Modify, Change, Add, etc.
Transfer Send, Receive, Transfer
Lower Start Start
control flow Generate Generate
Terminate Terminate
Upper Order Before, After
control flow Condition If
Time When
Table 2 Relationship.
Relation . .
class Relation Function
Structure  Structure  Shows hierarchical structure

Defines data set
Utilize Shows utilization relation
Attribute  Determines data value

Data flow Refer Refers to data

Produce Produces data
Maintain Maintains data value
Modify Changes data value (Equal to changing
condition value when the data value is re-
garded as the condition)
Transfer Transfers Data to othe r process
Lower Start Starts other process, terminates itself
cﬂomrol Generate  Starts other process, continues working
ow

Terminate Terminates other process

Upper Order Detemrines time-order in relations
%0""01 Condition  Related to condition
ow Time Related to time

tionship between the basic component sentences is
established using the conjunction as the key. For this
analysis, inconsistent and incomplete sentence patterns
are chosen in advance and stored in the rule-base.
Therefore, sentences can be dynamically checked after
they are input by the designer. The check items are
STRUCTURE, DATA FLOW, and LOWER CON-
TROL FLOW in the inter-relationship, and UPPER
CONTROL FLOW (having time order and condition)
in the upper-relationship (Table 2). Finally, we created
a relationship database for specification information
which consists of entities and the inter- and upper-rela-
tionships between them. We incorporated a reporter
which not only reports errors found by the analysis
checker, but also immediately provides information
(STRUCTURE, DATA FLOW, and CONTROL
FLOW) required by the designer in the form of a tree.
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Fig. 2 Specification Analyzer.

4.1 Sentence Meaning Analysis

We adapted KBMS (Knowledge-Base Management
System) [7] in the sentence meaning analyzer and
analysis checker where processing is based on pattern
matching. This system was developed by NTT, and it
describes processes using production rules, improving
process flow readability and facilitating rules
maintenance.

In the analysis checker, check rules are organized into
a system to assure that no check is missed. When proc-
esses are executed, the rules are applied to frames in the
KBMS, and relationship database, which are the final
output, are expressed in the frames.

Next, we explain the rule for making structural rela-
tionships (see Fig. 3(a)). If there is a frame containing
‘“‘[KOUSEISURU]” or ““‘[KOUSEISARE]” as the verb,
“[HA]’ as the particle to indicate the subject, and
“[KARA]J”’ to indicate the object, the rule will create an
instance frame for a structural relationship which
places ‘“?u’’ (bonded to the subject) into the upper slot,
and “‘?1”” (bonded to the object) into the lower slot.

4.2 Analysis Checker

The check items are STRUCTURE, DATA FLOW,
and LOWER CONTROL FLOW in the inter-relation-
ship, and UPPER CONTROL FLOW in the upper-rela-
tionship. Table 3 shows examples of the approximately
180 rules used to check all of the relationship frames.

We will now use an example to explain a rule for
checking structure. Let’s say there is a relationship

(Defrule (Make_relation make_part1 (:PRIORITY 0)
(Frame (Sentence ?s
(Verb ?vi(Member ?v ‘(KOUSEISARE KOUSEISARERU)))

(HA ?u)
Condition part (KARA ?1) ))
e
(Create-instance ‘Structure nil
‘Upper ?u
Action part ‘Lower ?1))

Fig. 3(a) A Rule for making relation instance frames.

(Defrule (Semantic_check C_PART1 (:PRIORITY 0))
(Frame (Part ?p1 (Upper ?u) (Lower ?1)))
(Frame (Part ?p2 (Upper ?I) (Lower ?u)))
-—>
(Call (Err_pos))
(Call (Format T *"%Error recursive"))
(Call (Err_disp (LIST ?u ‘part 21 )))
(Call (Err_disp (LIST ?I 'part ?u )))
(Call (Recovery 1)) )

Fig. 3(b) A Rule for checking relation frames.

frame created from the description ““A consists of B’’
with ““A’’ as its upper structure and ‘“B”’ as its lower
structure. If there is also a relationship frame created
from the description ‘‘B consists of A’’ with “B’’ as its
upper structure and ‘‘A”’ as its lower structure, a con-
tradiction will be generated in the structural relation-
ship. A rule such as shown in Fig. 3(b) is used to detect
this kind of contradiction.

4.3 Reporter

As explained above, the reporter both reports error in-
formation generated by the checker and displays infor-
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Table 3 Items of checking rule.

Structure 31rules

Recursive N Structure relation makes loop.

Conflict More then two processes share one process.
Date flow 72rules

Existence Data not made by process exists. -

Maintain & Modify Data maintained by a process aren’t modified,
or Data modified by a process aren’t maintain-
ed.

Data aren’t modified by process.

Data modified by a process are used by another
process Process receiving data doesn’t send it,
or process not receiving data sends data.
Data transferred from one process to another
has unique name.

Relate to process

Modif
Input/Output

Name uniqueness

Lower control flow 33rules

Process triggers another process which triggers

Recursive «
it in return.
No trigger Process not triggered is terminated.

Process is neither triggered nor terminated.

Process isolation

Upper control flow 44rules

Non condition Structure described in condition clause.
clause

Clause recursive A loop exists in time order.

mation (structure, data flow, and control flow) re-
quested by the designer in a tree structure (Fig. 4). The
designer uses this report to search for unintended
specifications. If he finds such to exist, he may change
the description and re-conduct the analysis. By
repeating this process, the designer can set intended
specifications.

5. Knowledge-Based Synthesis

Due to improved specifications, more detailed design
data is required in the next step. Expressions for this
data are adopted at the functional/behavioral level,
because it represents the next step in conventional
design methods. SFL, a register transfer level (RTL)
design language, is employed for the output description
of the synthesizer (Fig. 5). Synthesis of RTL logic is car-
ried out in four steps using rules from a relationship
database generated by the analyzer.

(1) The synthesizer classifies entities in the specifica-
tion into SFL elements using the relationship patterns.
The correlation of relations (between entities in the
specification description language) and elements (in
SFL) are shown in Table 4.

(2) The synthesizer creates instances from classes
prepared for each SFL element in advance and fills the
value described in the specification into the slots of the
instance frames.

(3) The synthesizer fills values not described in a
specification into the slots using a knowledge function.

(4) Using the information in the instance frames,
the synthesizer outputs an SFL description.
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Fig. 4 Example of report executing.

Table 4 SFL Elements.

Relation Elements Concept
Structure  Module Its hardware part consists of some
modules and combinational circuit.
Functional Its hardware part expresses operation dur-
circuit ing clock pulses.

Stage Expresses an individual operation executed
within several clock pulses.

Data flow Storage Consists of memories and registers.

Terminal Interface between hardware parts.

Bus Bi-directional paths.
Control Control Teminal for controlling stages or modules.
flow terminal

Signaling Control path activated during clock

line pulses.

Output Controls other combinational circuits,

terminal of registers, and modules.
decoders

5.1 Entities Classification

The rules that correlate entities with SFL elements are
based on STRUCTURE, DATA FLOW, and CON-
TROL FLOW. Processes are classified according to the
combination of rules applied. These rules incorporate
the characteristics of each hardware element, ¢.g., how
it controls other processes, and the kinds of processes it
has on or under the structure level. We will now use an
example of a functional circuit to demonstrate the
classification concept. This functional circuit has four
characteristics:

(1) It maintains data,

(2) it modifies data,

(3) it is used by other processes, and

(4) it does not control other processes.

That is, if a process has the first three relationships
but does not control other processes (the fourth relation-
ship), it is identified as a functional circuit. In the
specification description example shown in Fig. 6, the
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DUXAVRL, HBLI9CHERAG.

(i) Japanese specification of a pipeline processor

Fig. 6 Example of a Specification.

Mark is a pipeline processor.
Mark has ALU, memory, program counter, accumulator, an opecode register, an
operand register, an index register, .. , and a control register. Mark's instruction
executing cycle consists of instruction fetch unit, and instruction execute unit.

ALU is used through an instruction set (3), it is sent The later executes JMP, LDN,..and CMP instructions.

memory data (1), it modifies operation results (2), and If the content of an accumulator is negative, CMP instruction increases the
does not control other processes ( 4). There fore, it is re- content of control register, and writes the new content into control register.
garded as a functional circuit. Because the ALU is
classified as a functional circuit, an instance corre- Fig. 7(a) Example of pipeline processor specification.
sponding to the SFL functional circuit class is created.

(i) English translation

5.2 Filling in Slot Values Using Knowledge (1) ‘““ANDW sends the contents of the accumulator
When processes fill in slot value, some necessary in- and memory data to ALU”,

formation of SFL are not written in specification (2) ‘“ANDW sends the result of ALU operation to

descriptions. So, we solve the problem by using accumulator”’,

knowledge. In the example of Fig. 6, DATA FLOWS (3) ‘“‘memory data of 16 bits in length is sent to

related to the ALU are ALU”’, and
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nodule MARK {
circuit_class INCREMENTER! {

input INK13>

output  OUT<13>, CARRYOUT, OVERFLOW ;

instrin INCREMENT ;
instruct_arg INCREMENT (IN) ;

instruct INCREMENT OUT = IN + Ob1 ;

}

instruct START

generate Fetch. TASK1() ;

stage Fetch {
state_name STATE1 ;
first_state STATE! ;

state STATE1
alt { TERMINATE! : finish ;

else : par {

«IF Then
«— else

i_decider. deocde(Memory IF.1 read(CR).op code<15:13>).CMP

generate stage2.CMP ;

: t action
— stage stage? {

| — state_name Inst ;

| | first_state Inst ;

S| b— state Inst par {

t} | any {

al | s :

gl |t

el | a CR := incrementer2. INCREMENT(CR).OUT ;
| |t stage2_CR_access = 0x0001 ;
| le }
|1 :
b finish ;
| —}
L

}

t condition

r 1
| par = parallel |
| alt = alternative |
= any |

]

| any
L

istageZ.CMP & ACC_decoder. decode(ACC). NEGATIVE) : par {

4 Object.Task(Parameter).Output

Fig. 7(b) Example of synthesized SFL.

(4) “‘the operation result is 16 bits in length’’.

(1) is data input to ALU, (2) is data output, (3) and
(4) show bit length. Using this information, the ter-
minal frame slot (bitlength, flow), and the term slot and
input slot in the circuit_component frame are filled.

6. Prototype

The prototype system, shown in Fig. 1, has already
been implemented. It was coded using LISP on an HP
Apollo Domain system and contains the following rules
and frames:

(a) 293 rules for analyzing the consistency and com-
pleteness of specifications,

(b) 113 rules in the rule base (system based on
KBMS) for categorizing entities and obtaining informa-
tion from specifications, and

(c) 16 classes of frames corresponding to the SFL
elements.

An example of specification description in a simple

pipeline processor is shown in Fig. 7(a), and the SFL
behavioral description generated by the specification
synthesizer is shown in Fig. 7(b).

7. Experimental Results

In this case study, we used the above expert system to
perform the functional design of another simple
pipeline processor (an advanced controlled microproces-
sor) composed of 2,000 gates. The simple pipeline proc-
essor has 127 specification language lines, and 24 fun-
damental instructions. It consists of instruction fetch
and execution units. The instruction fetch unit, which is
initialized first, fetches one instruction from the
memory and activates the execution unit. The execution
unit then executes the instruction. Before completing
the execution, though, it re-activates the instruction
fetch unit, placing the two units in parallel operation.
In this case, 212 SFL statements were generated by the
system. Whereas, 192 were produced through design by
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a human. The main reason for the greater number of
SFL steps in the system was an insufficient knowledge-
base on parallel control structure. In the simple proces-
sor, specification analyzing time is about 30 seconds,
and synthesing time is about 2 minutes.

8. Conclusion

An expert system for supporting computer architec-
ture design has been implemented. With it, the designer
who is not a hardware expert is able to use a specifica-
tion description language in much the same way as
natural language without SFL knowledge. The system
employs 293 rules to analyze the consistency and com-
pleteness of the specification. Finally, an RTL
behavioral description, expressed in SFL, can be syn-
thesized from the original specification description
through a process that employs 113 rules and 16 frames.
Rules for complex architectures are presently being im-
plemented in the system.

At present, we only have one synthesized strategy.
Therefore, we are now adding strategies to increase proc-
essor speed and reduce the number of resources, and
to modify synthesizing rules so description can be done
as efficiently as by hand.
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