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On Sorting Points along a Real Algebraic Curve

JIANGQIAN YING* and NOBORU SUGIE*

In this paper we use the Cylindrical Algebraic Decomposition (CAD) method to develop algorithms for sor-
ting points along a real algebraic curve. Our approach has less computational complexity than the convex
decomposition approach propose by Johnstone and Bajaj {1]. To sort m points along a real algebraic curve of
degree n, the convex decomposition approach costs O(mn’B[n]+m log m) time, where B[n] is the cost of
finding the real roots of an algebraic equation of order . In contrast, our approach costs O(mn*+ma(n)+m
log m) time, where a[n] is the cost of computing the number of real roots of an order n algebraic equation on a
certain interval, which is obviously no more expensive than g [n].

We also explore the cyclic structure of real algebraic curves: we show how a curve can be naturally decompos-
ed into a finite number of closed cycles and open chains, and claim that this number is no larger than the genus

plus the degree of the curve.

1. Introduction

Before proceeding, we will briefly explain our ter-
minology. In this paper, by an ‘‘algebraic curve’’ we
mean an algebraic curve defined over the real number
field, that is, a real algebraic curve. However, since in
mathematics an ‘‘algebraic curve’’ conventionally
means an algebraic curve defined over the complex
number field, we sometimes use the term ‘‘real algebraic
curve’’ to emphasize the distinction.

Sorting points along an algebraic curve [1} is a very in-
teresting problem. A typical version of this problem is
defined as follows: Given an algebraic curve segment
with end points 4 and B, and a finite set of points, all in
a plane, how do we find the subset of points lying on the
segment and sort these points in the order in which they
would be encountered in traveling from A to B along
the curve? (Fig. 1).

In {1] this problem is solved by decomposing the
whole curve into convex segments (a segment is convex
if it lies entirely on the boundary of its convex hull). Let
Py, ---, P, be points on a convex segment, and let A be
the convex hull of A, B, P\, -, P,; then the order
(from A to B) of Py, ---, P, is simply the order of the
vertices on the boundary of H. [1, Theorem 4.1.] After
the curve has been decomposed into convex segments,
the sorting of points along a curve segment is then
reduced to first identifying convex segments composing
the segment, next sorting points on each convex seg-
ment, and finally concatenating the sorted lists.

To sort m points along (some segment of) an alge-
braic curve of degree n, the algorithm presented in Ref.
1 costs O(mn*f[n]+mlog m) time, where O(B[n)) is
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the cost of finding the real roots of an algebraic equa-
tion of order n. The O(mn*B[n]) term covers the cost
of locating the points on convex segments.

In this paper we use the well-known Cylindrical
Algebraic Decomposition (CAD) [2, 3] of plane curves
to solve the sorting problem. Cad decomposes an
algebraic curve into monotone segments such that
distinct points on such a segment correspond to distinct
abscissae, and can thus be sorted by their abscissae.
Such a monotone segment will be called an edge for
reasons that will become clear later. In our approach,
locating a point on an edge costs only O(n*+a[n])
time, where a[n] is the cost of computing the number of
real roots of an order n algebraic equation within a cer-
tain interval. The total time complexity for sorting m
points turns out to be O(mn*+ ma[n]+m log m). We
will also see that both constructing the Cad and con-
structing the convex decomposition have basically the
same complexity, and will thus establish that the Cad
method of sorting is superior to the convex decomposi-
tion method.

Another objective of this paper is to clarify some
facts concerning the geometric structure of real

Fig. 1 Sorting points along curve segment AB.
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Fig. 2 Tracing along curve 2x*—3x%y+y*—2y>+y*=0.

algebraic curves. Recall that the order of points on a
curve segment has been defined as the order in which
the points would be encountered in traveling from one
end point to the other along the segment. This defini-
tion depends essentially on a tangential direction con-
tinuously defined on the curve. However, at some
singular points, tangential direction is not sufficient to
define a unique tracing path. This problem has been
settled many times in the literature {4, 1, 5], always by
the use of quadratic transformations [6] to resolve the
singular point. Here we would like to point out explicit-
ly that any such transformation would determine the
same tracing path. '

A natural question is whether we could define a total
order on the whole curve. To answer this question, sup-
pose that we start tracing a curve from a smooth point,
in a tangential direction, and continue tracing until the
stage at which we are about to retrace some segment of
the curve. This tracing will result in either a closed cycle
(possibly with self crossing), as shown in Fig. 2, or a
chain unbounded on one side (called a half chain in the
sequel), as shown in Fig. 3. In the latter case, if we trace
in the opposite direction from the starting point of the
half chain, we obtain another half chain, which adds up
with the original one to a chain unbounded on both
sides (later referred to simply as a ‘‘chain’’). In general,
an algebraic curve may have several such cycles and/or
chains, which uniquely determine a global order on the
curve (We avoid saying ‘‘total order’’ for obvious
reasons.).

It is clear that chains are nothing but open affine parts
of cycles in the projective plane. for this reason, we will
refer to the decomposition of a curve into cycles and
chains as the cyclic structure of the curve. Proof has
been given for a theorem [7] that for a projective curve
of genus g, there are at most g+ 1 cycles. From this we
can deduce that for an affine plane curve of degree n
and genus g, the total number of cycles and chains is at
most g+n. The genus of a plane curve of degree n
satisfies: g=<1/2(n—1)(n—2)~1/2Z rp(rp—1), where
rp is the multiplicity of point P, and P runs over all the
singular points [6]. The equality holds if all the singular
points (if any) are ordinary.

[Examples] The quartic

2x*=3x2y+y2—2y3+y*=0
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Fig. 3 Tracing along curve (1 ~x)y*—x*1+x)=0.

shown in Fig. 2 with two double poins has genus <1 (in
fact, 0), and the cubic

(1—x)y*—x}=x?=0

shown in Fig. 3 with an ordinary double point has
genus 0.

The next section first briefly reviews the Cad decom-
position of plane algebraic curves and then shows how
to locate points on edges (monotone segments) ob-
tained in the Cad.

In Section 3, we show how to connect edges into
cycles and chains. We also discuss the main difficulties
in constructing the Cad and the cyclic structure of a
curve, comparing them with the difficulties of convex
decomposition.

In Section 4, we discuss efficient computational
strategies for locating points with approximate coor-
dinate data.

2. Cad and the Structure Graph of an Aigebraic
Curve

2.1 Cad and the Structure Graph of an Algebraic
Curve

We will first briefly explain some necessary facts
about the Cad of plane algebraic curves, and then show
how to apply a graph naturally associated with the Cad,
called the structure graph, to the point sorting problem.

Assume that we are given a curve defined by an
algebraic equation F(x, y)=0, where the polynomial

F(x, y)=fol(x)y"+fi(x)y" '+ - - +1u(x)

has no factor that is a polynomial in variable x only,
and no multiple factor. Let R (x) be the discriminant [6]
of F(x,y) with respect to variable y; then R(x) has
degree =n(n—1), and the zeros of R(x) correspond to
the abscissae of the singular points and points at which
the tangents to the curve are vertical. Further, if the
curve has vertical asymptotes, their abscissae must be
the zeros of fy(x) and hence zeros of R(x), since fo(x)
divides R(X). Thus the vertical lines drawn at the zeros
of R(x) will divide the plane into strips, each of which
contains several smooth segments of the curve, so that
every such segment is monotone with respect to the x-
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axis; that is, distinct points on the segment correspond
to distinct abscissae.
As an example, we consider the curve

F(x, y)=(1=x)y*=x¥(1+x)=0.
whose discriminant R(x) is given by
R(x)=resultant(F,(x, y), F(x, »))

—x¥(1+x) O 1—-x
= 0 21-x) 0
0 0 2(1—x)

=—ax’(1+x)(1 - x)-

It has three zeros —1, 0 and 1, corresponding to a ver-
tical tangent line, a singular point, and an asymptote, re-
spectively, as shown in Fig. 4.

Suppose that R(x) has r distinct zeros; the plane is
then divided into r+ 1 strips (including the left and right
half planes) by r vertical lines. We index the strips from
left to right as Sy, - - -, S,+1, and the lines as /,, - - -, /.
Since degree R(x)=n(n—1), r=0(n?. In Fig. 4, the
plane is divided into four strips by three vertical lines.

If the curve has p; points on the line /;, we define them
as vertices V!, -- -, V¥, sorted from below. If the curve

has g; segments in the strip S;, we define them as edges
El, ---, E?, sorted from below. These vertices and
edges naturally form a graph. This graph may slightly
differ from the usual graph in that it may have an edge
with only one end point (vertex) or without an end
point (In this case we may consider that the edge has
void endpoints.).

Such a graph was called a Structure graph (S-graph)
for the curve in [8]. We will at times adopt this ter-
minology in this papere.

The data of incidence of edges with vertices of this
graph can be computed be using an existing algorithm
[2 (II), section 3). An alternative method, which com-
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Fig. 4 Cad of curve (1—x)y2—x%1+x)=0.
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putes this data, as well as some other essential data, will
be outlined in Section 3. But for the moment, we do not
need this data in order to locate points on edges.

2.2 Locating Points on the Structure Graph

Let P be a point of the curve, with coordinates (a, b).
We first determine the strip (or possibly some vertical
line) in which P lies by comparing the abscissae of P
with the vertical lines. Since the number of vertical lines
r=0(n%, we need O(log(n?))=0(log n) comparisons.
Next, if P lies on some /;, comparing the ordinates iden-
tifies P with a vertex. On the other hand, if P lies in strip
Si, then the number of roots in the interval (— o0, b}, of
equation F(a, y)=0, is the second index j of the edge
Eion which P lies. This number can be calculated by us-
ing Sturm’s theorem. Here we state a version of the
theorem, the proof of which can be obtained by slightly
modifying that of the conventional version of the
theorem [e.g. 9, p. 244].

Sturm’s theorem: Let f(x) be a polynomial with real
coefficients, without multiple zeros. Let fo, - -, fy be a
sequence of polynomials constructed as follows:

Jo=f, h=f",
Ji-1=figi—fin1
with deg fi«1<degg;, for i=1, ---, k—1, where f; is a

nonzero number. For a real number b, let v(b) be the
number of changes of the signs in the sequence

So(b), fi(b), - - -, fx(b) (neglecting zeros).

The number of zeros of fin the interval (b, + ) is then
equal to v(b).

In our application, we compute the number » of zeros
of F(a, y) in the interval (— o0, b), and obtain the in-
dex j=v+1.

The sequence fo, - - -, f« can be constructed by using
Euclid’s algorithm, which costs O(n?) time.

Since fi(x) in the above sequence has degree =n—i,
evaluating f;(b) takes O(n—i) time. Therefore, for com-
puting the index j, the Sturm’s theorem provides an
algorithm that costs O(n)+O(n—1)+---0O(1)=0(n?
time. Of course, we may use any other efficient method
to compute the number of real roots. Throughout this
paper, we simply assume that this computation need
O(a[n]) time.

It is not difficult to see that calculating the coefficients
of F(a, y) takes O(n?) time. Hence we conclude that
locating a point takes Of(log n)+O(n?)+O(aln])
=0(n*+«[n]) time.

3. Cycles and Chains on an Algebraic Curve, and Sort-
ing Points along an Algebraic Curve

3.1 Connecting Edges into Cycles and Chains

In the Inbroduction we explored the cyclic structure
of an algebrain curve. Here we will see how each cycle
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and chain is constructed from the edges of the S-graph
of the curve.

It is clear that every edge of the S-graph must be en-
tirely contained in a single cycle or chain, and converse-
ly, that each cycle and chain must be composed of
several edges (or possibly just one edge). Therefore we
can represent it by a list of edges sorted in cyclic or
linear order, and represent the whole curve by a set of
such lists. Note that in this representation, the cycles are
special kinds of graph theoretic cycles of the structure
graph.

[Examples] As shown in Fig. 5(a), the curve

(1-x)y*—x’—x*=0

has one chain, represented by the list of edges [E3, Ej,
Ej, Ej).
In Fig. 5(b), the curve

EZ H

Ez E}

Fig. S@) Curve (1—x)y>—x(1+x)=0 has a chain [E}, E}, E},
E}l.

E: E.

Fig. 5(b) Curve y2—x*+x=0 has a cycle [E}, E3] and a chain [E},
El].

Fig. 5(c) Curve 2x*—3x? y+y —2y +y*=0 has a chain [E}, E,
E}, Ei, E}, E3, E}, Ei, E}, Ej, Ei, E}}.
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y2=x3+x=0

has a cycle [E}, E}] and a chain [E}, E}].
In Fig. 5(c), the curve

2x*=3xy+y?—2y3+y*=0

has one cycle [E!, Ei, E}, E}, E3, E}, Ei, E3, E3, E}, Ei,
E3].

With the notations r, p;, &, V4, Si, Si+1 as in the
previous section, the following flowchart (Fig. 6) shows
the steps for connecting edges into cycles and chains.

The following will be computational strategies for im-
plementing steps @, @, @ and @ in the flowchart.
@ Computing the Asymptotic Edges.

For every vertical line /; in the Cad (cf. Section 2), we
first compute how many edges in its left strip and right
strip, respectively, are asymptotic to the lower half of /.
The reason for this will become clear in the sequel [2, II].

We choose a real number b smaller than the ordinate
of every vertex of the S-graph. Suppose that the line
y=> intersects the curve at points (a,, b), , (ax, b),
which are sorted so that a,< - - - <a,. (Note that k=n,
the degree of the curve) (Fig. 7). Let ax be the largest
root that is smaller than x;, the abscissa of /.. Choose a
real number ¢ such that x;-; <c<x; and a,; < c. Now the
number of intersections of the curve with the halfline
drawn downward from point (c, b) will be the number
of edges in S; that are asymptotic to the lower half of /..
Obviously, similar methods can be applied to the strip
Sie1.

Note that the data (a,, b), - -
the vertical lines.

Suppose that there are s edges in S; and ¢ edges in S;+;
asymptotic to the lower half of /;, computed as above.
We next show how to compute the data of connectivity
between edges (in S; and S;4,) that are incident to vertex
V!, the first vertex from below on /.

@ Computing the Data of Connectivity at a Smooth
Vertex.

If V!is a smooth point, then there will be three cases,
as shown in Fig. 8. These can be distinguished as
follows:

Let P be a point below V! on /;, and Q a point be-
tween V) and V7.

If the evaluations of F(x, y) at the two points have
different signs, that is, if F(P)F(Q)<0, then edge E$*!
is connected with E!}! at vertex V], as shown in Fig.
8(a).

If F(P)F(Q)>0, assume that F(P) (and hence also
F(Q)>0In this case, if the normal vector (F, F,)at V!
points to the right, that is, if F,>0, as shown in Fig.
8(b), then the two edges connected at V| are Ei*' and
E$*?%; otherwise, the two edges will be Ei1} and E!}3, as
shown in Fig. 8(c). A similar argument can be given for
F(P)<0. We conclude that condition F(P)F.(V})>0
completely specifies case (b) and that F(P)F.(V])<0
specifies case (c).

-, (ax, b) are fixed for all
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Fig. 6 Flowchart for connecting the edges into cycles and chains.
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Fig. 8(a) The case F(P)F(Q)<0.
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Vl ted
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Fig. 8(c) The case F(P)F(Q)>0 and F(P)F(V))<0.

® Computing Pairs of Edges Connected at a Singular
Vertex.

If V! is a singular point, we will use quadratic
transformations to identify and pair up edges incident
to V. Since this subject has been intensively discussed
in the literature [1, 4], many details will be omitted in
the following description.

Since an edge can be uniquely represented by a point
on it, the procedure for locating the point, as described
in section 2, would identify the edge; thus our goal will
be to obtain a set of pairs of points, such that every two
edges that should be paired up are represented by a pair
of points in the set.

Suppose that after a sequence of quadratic transfor-
mations, we obtain a smooth point P (in the real plane),
which is the transform of the original singular point. we
choose a suitable pair of points near P on the transform-
ed curve, and reverse the transformations. We are then
expected to obtain a pair of points on two edges inci-
dent to V!, which are to be paired. In this way, we can
obviously reach our goal.

[Example] As shown in Fig. 9, smooth point P is a
transform of V, and two points A” and B” near P are
transformed back into points A and B, which specify
two edges (E} and E} in Fig. 5(c)) to be connected at V.

Remark: An alternative computational strategy for
connecting segments at a singular point would be to
employ a formal power series expansion. A real place
[6] centered at the singular point corresponds to a pair
of edges to be connected.

One problem is that we do not know any criterion for
deciding from the first several terms of the expansion.
Whether a place should be real and whether one real
place can be distinguished from another.

So far, we have shown how to identify edges incient
to vertex V!, and how to pair the edges if V! is a
singular point. If we deploy a similar procedure suc-
cessively to vertices V?, ---, V¥ on line /;, we obtain
the data on the incidence of the edges to these vertices
and on the connectivity between edges.
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Fig. 9 Pairing up segments by desingularization.

@ Connecting Edges into Cycles and Chains.

With these data, it will be easy to connect edges into
cycles and chains. In Section 1, we described how to
trace a curve to obtain cycles and chains provided the
segments are well paired up at singularities. The
graphical version of this tracing obtains cycles, which
are represented as lists of edges according to the connec-
tivity data computed as above. We may also define the
direction of an edge so that the first traced vertex is the
head and the next traced vertex the tail of the edge; this
definition will make it easy to identify an arbitrary seg-
ment with edges, as we will describe later.

We would first like to say a few words about what a
‘‘curve segment’’ or simply a ‘‘segment’’ means. Corre-
sponding to the cyclic structure of an algebraic curve we
constructed, it seems improper that a segment should
run through several distinct cycles and chains.
Therefore we consider it a good convention to require
that a segment be contained in a single cycle or chain, as
is probably assumed implicitly in all the literature.

Since we have put a direction on every edge in a
general cycle or chain, this gives the cycle a global orien-
tation. Therefore, an ordered pair of points uniquely
defines a segment as the edges and/or subedges (parts
of edges) of a cycle or chain traced in that orientation
from the first point to the second point.

3.2 Algorithms for Sorting Points along an Algebraic
Curve

It is now trivial to give an algorithm for sorting
points along a curve segment. Suppose we are given m
points. We first locate them on the edges or subedges of
the segment. Next, we sort points on each edge accord-
ing to the direction of the edge (for example, if the head
of an edge has a smaller abscissa than the tail, then the
points on it should be sorted in ascending order of their
abscissae). Finally, concatenating the sorted lists of
points, we obtain the whole list of points sorted in the
order in which they are encountered in traveling along
the segment.

If we want to sort points along the entire curve, we
can obtain several sorted lists of points, each of which
represents the points sorted on some cycle or chain.

As we described in Section 2, locating m points takes

O(mn*+ma[n]) time, where «[n] is the cost of
calculating the number of points of a half line with a
curve of degree n.

Let m; be the number of points on some edge that are
to be sorted according to their abscissae. With any op-
timal sorting algorithm, this sorting costs O(m; log m;)
time. The sum of the time over all the individual edges
is then O(Z(m;log m;))=O0(Zm)log(Xm;))=0(m
log m). Concatenating the sorted lists costs O(m) time,
so the total time for sorting and concatenating is O(m
log m)+O(m)=0(m log m). )

Therefore, the total time complexity for sorting m
points along the curve is O(mn®+«[n] +m log m).

To compare this complexity with the complexity
O(mm’B[n}+mlog m) of the convex decomposition
approach of Jonhstone and Bajaj, we need to compare
a[n] with B[n], the complexity of computing all the real
roots of the order n equation. For implementation, if
one uses the Sturm’s method both to compute the
number of real roots and to compute the real roots
themselves, then obviously a[n]}=<f[n]. Even if the
roots are computed by practically efficient methods
such as the Durand-Kerner method, one may count the
number of roots in an interval in linear time, and we
still have O(a[n])=0(fS[n]). Therefore we conclude
that for sorting points along an algebraic curve the Cad
method is much more efficient than the convex decom-
position method.

3.3 Comparison of Complexities for Constructing the
Cad and the Convex Decomposition

We will not try to formulate a bound for the time
complexity of constructing the Cad and cyclic structure
of an algebraic curve, but will content ourselves with
giving some evidence to argue that the Cad approach
could not be more complicated than the convex decom-
position approach.

First, we note that the pairing up of segments at
singular points has the same complexity for both the
Cad approach and the convex approach, as long as
quadratic transformations are adopted in both.

Secondly, while the Cad decomposition of a degree n
curve solves an order n(n—1) polynomial equation (the
discriminant) to get the vertical lines that divide the
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/P\:ﬂ

P Ey!

Fig. 10 Is P approximately on E} or E{*'?.

plane into strips, the convex decomposition must solve
systems of polynomial equations to find the flexes and
singularities of the curve [1, Section 5.5]. (In the Cad ap-
proach, singularities are vertices of the S-graph, and
can be distinguished from smooth points simply by
checking whether f,=£,=0.)

Thirdly, while the Cad computes the intersections of
the curve with O(n?) vertical lines, the convex decom-
position computes the intersections of the curve with
O(n?) tangent lines of flexes and singularities.

It is clear that the computations addressed above are
the main difficulties in the two approaches. We
therefore conclude that the construction of the Cad and
cyclic structure of an algebraic curve will not be more ex-
pensive than convex decomposition.

4. Some Numerical Considerations Regarding
Implementation

In this section, on the assumptions that polynomial
F(x, y) has rational coefficients, and that the Cad and
cyclic structure of the curve F(x, y)=0 are correctly
constructed (with symbolic computation), we discuss
techniques for sorting points with approximate coor-
dinate data.

For a general algebraic curve, we can expect only a
finite number of rational points (points with rational
coordinates) on it (Mordell’s conjecture {10, p. 266]).
This implies that if we are given a set of points with ra-
tional coordinates, it is better to assume that the points
are only approximately on the curve. Approximate data
can raise serious violations during locating the points
on the structure graph.

4.1 On the Use of Sturm’s Theorem

The most disturbing problem arises in the use of
Sturm’s theorem. For locating a point P=(a, b),
Sturm’s theorem computes the number v of roots of
F(a, y)=0 in the open interval (— o, b). Suppose P
lies on edge E4. Here j is taken to be equal to v+1.
Since it is assumed that F(x, y) has rational coefficients
and that P=(a, b) is rational, it is easy to calculate the
correct v. If P is precisely on the curve, that is, if F(a,
b)=0, then we have j=1+v. On the other hand, if
F(a, b)#0, should we assume that j=14+v or j=0v?
Both cases seem equally likely to happen (Fig. 10).

Fig. 11(a) The case F(P)>0.

’ ° ’ - ‘

a; X a3, a, x.

Fig. 11(b) The case F(P)<0.

X4

Fig. 12 g;is a rational number in the interval (x;_,, x;), for i=2,
S

An observation that may settle this problem is as
follows: as shown in Fig. 11(a), if F(a, b)>0, then we
must have F,>0 near E} and F,<0 near E{*'. Other-
wise if F(a, b)<0, as shown in Fig. 11(b), we have
F,<0 near E} and F,>0 near E*'. This observation
leads us to conclude the following simple criterion:

Jj=v, if F(a, b)F,(a, b)>0;
j=v+1, if F(a, b)F,(a, b)=<0. 1)

4.2 A Technique for Comparison of Abscissae

Another problem that we will discuss arises in the
comparison of the abscissa of P with the abscissae of
vertical lines when determining the strip S; in which P
lies.

Because of the construction of the Cad of the curve,
the abscissae of the vertical lines are not rational in
general. If we want to calculate the index i correctly,we
certainly cannot approximate these abscissae with ra-
tional numbers. 4 scheme that involves only rational
numbers and still computes the correct index is as
follows:

As in Section 2, let the abscissae of the vertical lines,
that is, the real roots of the discriminant R(x) of F(x,
y), be x;< -+ - <x,. In the construction of the Cad, we
may want to obtain a sequence of rational numbers a,,
-+, a, such that x;<a,<x;< - - -a,<x, (Fig. 12).

Since F'(x, y)is assumed to have rational coefficients,
R(x) also has rational coefficients, namely R(x) Q[x].
Suppose R (x)=(A(x))*'- - - (4,(x))", where each 4,(x)
Qlx], i=1, -+, r, is irreducible in Q[x]. Let R\(x)
=A(x) - -A,(x). Ry(x) then has no multiple factor in
QI[x], and hence no multiple factor in R[x] (see
Chapter I, Theorem 9.5, [6]). Therefore x,, - - -, x, are
simple roots of R;(x), and R,(x) takes the values of op-
posite signs on any two adjacent intervals, such as
R\(a2) R\(as)<O0.



408

Under these conditions, the strip S; that contains P is
determined as follows: We compare a with ¢,= — 0,
@, ', @G =+ 0, Suppose gy <a<ay+ (1sk=r).
Then we decide i as:

i=k, if Ri(@)R\(ax)>0;
i=k+1, if Ri(a)R:(a:)<O0. )

5. Conclusions

We have developed algorithms for the problem of sor-
ting points along an algebraic curve using the Cad of
the curve. Our approach has less computational com-
plexity than the convex deomposition approach of
Johnstone and Bajaj, which was asserted to be superior
to many conventional methods of sorting [1]. We have
also explored the cyclic structure of real algebraic
curves.

To our knowledge, the problem of sorting points
along an algebraic curve was stated clearly and treated
systematically for the first time in [1] in which many in-
teresting related problems were also discussed. We
think that these kinds of problem are most significant in
that they motivate the study of the geometric structure
of general algebraic objects, which ae important in
developing advanced geometric modeling techniques.
In this paper the structure of real algebraic curves has
been made rather clear. Naturally, our next ambition is
to do similar work on surfaces.
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