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Simple extended tuple relational calculus is proposed for non-first-normal-form (NF2) relational databases,
as a way of facilitating the understanding of query representation. In order to allow NF2 queries over first-nor-
mal-form (INF) relational databases, a query transformation algorithm is also proposed. This transforms a
query for a nested relation into one for an unnested relation. Additionally, the equivalence of transformed que-
ries is proved in the sense that SELECT and UNNEST are commutable. The proposed extended tuple relational
calculus and query transformation algorithm can serve as a basis for the safe implementation of NF2 relations

over INF relations.

1. Introduction

Much attention has been paid to non-first-normal-
form (NF2) relational databases in recent years. Some
researchers have studied NEST/UNNEST operations
[5-7, 14], NF2 dependencies [2, 6, 10], NF2 relational
algebra and query languages [3-5, 11-13], and NF2 rela-
tional calculus [8]. From a practical viewpoint, NF2 re-
lations are important for such applications as office
form management [16-19], information retrieval [14],
and artificial intelligence, where repeating groups are
usually the basic units of concern.

Several approaches to the processing of NF2 relations
can be considered. Research is being done on how to
use NF2 relations for an internal (physical) model [13],
as well as for external and conceptual models. From my
point of view, however, the use of first-normal-form
(INF) relations for the internal model is currently
preferable (The difference between INF and 3NF-5NF
is not important here.). The reasons are as follows:

1. Information sharing among several applications is
easier for 1NF relations, since many applications prefer
very simple data structures.

2. Several different views can be derived from INF re-
lations more easily than from NF2 relations.

3. Techniques for NF2 file implementation are still im-
mature. For example, the relational storage technique
cannot efficiently handle cases in which different types
of tuples are stored on the same page, and variable-
length updates occur.

For these reasons, the NF2 conceptual / external model,
based on the 1NF internal model, is an important contri-
bution to the current technology.
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As a means of implementing NF2-type queries over
INF relations, query transformation from NF2 format
into INF format should be considered, since only INF
queries are executable for internal 1NF relations. Addi-
tionally, a query transformation must be consistent in
the sense that it preserves the meaning of the original
query. Recent work on queries for NF2 relations,
however, has not been very closely concerned with this
transformation or its properties. Actually, nested que-
ries based on nested relational algebra have been
proposed [1, 11-14]. The nested structure of the query
commands, however, seems rather procedural and not
very easy to understand. Query transformation based
on nested tuple relational calculus is considered in
Kiyama and Nakano [8]. However, a model that di-
rectly represents the nested relations structure has not
been proposed.

First, I specify the NF2 data model by using a LISP-
like notation, which accurately captures the NF2 rela-
tion structure. It can be a good tool for fully computa-
ble NF2 relation processing. Next, a simple extension to
tuple relational calculus (TRC) is proposed in order to
specify extended-tuple relational calculus (ETRC).
Query expression, based on ETRC, that has a flat (not
nested) syntax is also specified. My ETRC is different
from other NF2 algebras [3-5, 11-13], since the ETRC
has a flat query syntax, and can handle both NF2 sche-
mas and NF2 instances uniformly by using a formalized
list structure. Queries based on ETRC are easy to under-
stand, and help users to comprehend the query seman-
tics properly. Next, I propose an algorithm that trans-
forms an ETRC query into a TRC query that works for
unnested (1NF) relations. At the same time, the equiva-
lence between ETRC and the transformed TRC is
proved, thus ensuring the validity of the equation
UNNEST (SELECTN(R))=SELECTU (UNNEST(R)).
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Here, R is a nested relation, SELECTN is a select opera-
tor for the nested relation, and SELECTU is another
select operator for an unnested relation. This equation
ensures that, instead of executing an NF2 query di-
rectly, we can obtain the same result by issuing an
equivalent INF query for internal INF relations. That
is, the equation ensures the safe implementation of NF2
relations over INF relations.

2. Basic Ideas

This section roughly sketches the basic concepts of
the proposed ideas without using exact notation.

NF2 relational algebra (union, intersection, selection,
projection, etc.) and its properties have been quite wide-
ly studied [3, 5, 6, 13]. It is said that the equation

UNNEST (SELECT(R))=SELECT (UNNEST(R)) (*)

does not hold for ‘‘select’’ if the selection condition in-
cludes unnested attributes, since the same selection con-
dition is not applied to the nested and unnested rela-
tions [5].

This paper proposes ETRC and an algorithm that
transforms a selection condition for an NF2 relation
into one for an unnested relation. The two resulting con-
ditions are equivalent in the sense that they satisfy the
above equation (*). Figure 1 shows an example.
SELECTN is a query in the form of ETRC, where con-

Employee
E# [ Ename | Children UNNEST
Cname | Cage | (Children)
001 | John Susan 7| ——~—- -
Smith | Bill 2
002 | David | Jean 12
Grant | Mary 8
003 | Tom Bob 7
Brown [ Howard 5
Nick 1
| SELECTN
)
Employee
E# | Ename [ Children UNNEST
Cname | Cage | (Children)
001 | John Susan 7| ———— —
Smith [ Bill 2
003 | Tom Bob 7
Brown [ Howard 5
Nick 1
Employee
E# | Ename | Children
Cname | Cage
>5
<3
SELECTN :

387

ditions called ‘‘descendant-ancestor relationship’’ be-
tween tuples (for example T22<T11) are used. Such a
condition means that there is a subcomponent-compo-
nent relationship between two tuples. That is, a subtu-
ple (such as T22) is a component of a componentof . .. a
supertuple (such as T11). ETRC SELECTN can be
transformed into TRC SELECTU, which is used for
the unnested (1NF) relation. The two selects satisfy the
equation

UNNEST (SELECTN(Employee))
=SELECTU(UNNEST(Employee)).

3. NF2 Relations and Operations

3.1 NF2 Relations

The following are brief definitions and notations for
NF2 relations. The descriptions below are based on
LISP notation. Each object is expressed as a list, and
some LISP functions such as ‘‘append’’ and ‘‘cons’’
are used. At first, an (extended) relation is defined.
relation:: =(schema instance)
schema:: =attributeset | (append attributeset schemaset)
attributeset:: = (attribute) | (cons attribute attributeset)
schemaset:: =(schema)|(cons schema schemaset)

Instance is defined below. An attribute, which has a
simple value, is the usual object defined for relational

Employee

E# | Ename

001 | John Smith

001 | John Smith

002 | David Grant
002 | David Grant
003 | Tom Brown

003 | Tom Brown

003 | Tom Brown

Cname | Cage
Susan 7
Bill 2
Jean 1
Mary
Bob
Howard

Nick

=1 o) =3 oof 8!

| SELECTU
1

Employee

E# | Ename

001 | John Smith
001 | John Smith
003 | Tom Brown
003 [ Tom Brown
003 | Tom Brown

Cname
Susan 7
Bill 2
Bob 7
5
1

Howard
Nick

QUERY : "Select employees who have a child aged
over 5, and another child aged under 3.”

{T11 | (T11€Employee) and (3T21€Children) and (3T22€Children);

(T21<T11) and (T22<T11) and (T21(Cage)>5) and (T22(Cage)<3)}

SELECTU

: {U11 | (Ull1€Employee) and (FU12€Employee) and (IU13€Employee);

(U12(E#)=U11(E#)) and (U13(E#)=U11(E#)) and (U12(Cage)>5) and (U13(Cage)<3)}

Fig. |

Extended Tuple Relational Calculus and Query Transfor mation.
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databases (not defined here). An important point is that
we require a schema to have at least one attribute (this
comes from the primary key requirement specified later).

Next, the value and an (extended) tuple are defined.

instance:: =tupleset

tupleset:: = (tuple) | (cons tuple tupleset)

tuple:: =valueset | (append valueset instanceset)
valueset:: = (value) | (cons value valueset)
instanceset:: = (instance) | (cons instance instanceset)

A value corresponds to an attribute value for the
usual relational database term (not defined here). Note
that an instance includes multiple instances for a ‘‘low-
er-level’’ schema. (Actually, an instance should be a
“‘set’’ rather than a *‘list’’ as defined here. For our pur-
pose, however, the difference is not important.) Figure
2 shows an example for the objects defined above. The
middle part of Fig. 2 shows the list notation for a nested
relation structure. The lower part of Fig. 2 shows the
nested structure as a tree.

Some functions are also defined for convenience.
Uppercase characters are used to show variables, while
lower-case characters show keywords.

(owner M)=0, if M is a member of O (if there is an ex-
pression of the form (O ...M. . .)); or (owner M)

N1
RELATION-N1

Al [ A2 | N2

A3 | A4

all { a2l | a3l | a4l

a32 | ad2

al2 [ a22 | a33 | a43

a34 | ad4

INSTANCE-N21

RELATION-N1=(SCHEMA-N1 INSTANCE-N1)
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=null, if M has no owner.
(val TUPLE ASSET)=VALINSSET

where ASSET is a sublist of a schema, and VALIN-
SSET is a sublist of TUPLE corresponding to ASSET.
The schema should have an instance of which TUPLE
is a member.
(ancestor D)=(Al A2...Ai...), if there is a se-
quence of the form Ai=(owner ... (owner (owner
D)).. .);or
(ancestor D)=null otherwise.
Here, Ai is called an ‘‘ancestor’’ of D, and D is called a
““descendant’’ of Ai(i=1,2,...).
(compid C)=null, if (owner C)=null; or
(compid C)=(member-sequence-number), if (owner
(owner C))=null; or
(compid C)=(Ck Ck-1...C2Cl), if (compid (owner
C))=(Ck-1 Ck-2 ... C2Cl), and Ck is the member-se-
quence-number of C within its owner.
Compid means the component-id of an object, which
uniquely identifies the component within a relation.
(schema INSTANCE)=SCHEMA
where INSTANCE is an instance of SCHEMA. This me-
ans that we can uniquely identify the schema of an in-
stance.

For example, in Fig. 2,

a2l
TUPLE-NI1 H.m
TUPLE-N21

SCHEMA-N1=(ATTRIBUTE-A1 ATTRIBUTE-A2 SCHEMA-N2)
SCHEMA-N2=(ATTRIBUTE-A3 ATTRIBUTE-A4)

INSTANCE-N1=(TUPLE-N11 TUPLE-N12)

TUPLE-N11=(VALUE-A11 VALUE-A21 INSTANCE-N21)
INSTANCE-N21=(TUPLE-N21 TUPLE-N22)
TUPLE-N21=(VALUE-A31 VALUE-A41)
TUPLE-N22=(VALUE-A32 VALUE-A42)
TUPLE-N12=(VALUE-A12 VALUE-A22 INSTANCE-N22)
INSTANCE-N22=(TUPLE-N23 TUPLE-N24)
TUPLE-N23=(VALUE-A33 VALUE-A43)
TUPLE-N24=(VALUE-A34 VALUE-A44)

RELATION-N1
SCHEMA-N1
O~
TUPLE-N11
VALUE-A11 VALUE-A21 INSTANCE-N21

TUPLE-N21 TUPLEN22

INSTANCE-N1

TUPLE-N12

VALUE-A12 VALUE-A22 INSTANCE-N22

TUPLE-N23 TUPLE-N24

VALUE-A31 VALUE-A41 VALUE-A32 VALUE-A42 VALUE-A33 VALUE-A43 VALUE-A34 VALUE-A44

Fig. 2 An NF2 Relation.
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(owner TUPLE-N22)=INSTANCE-N21,

(val TUPLE-N12 (ATTRIBUTE-A1 SCHEMA-N2))
=(VALUE-A12 INSTANCE-N22),

(ancestor TUPLE-N23)=(INSTANCE-N22 TUPLE-
N12 INSTANCE-N1 RELATION-N1),

(compid TUPLE-N23)=(1 3 2 2), (see the tree in Fig. 2),
(schema INSTANCE-N22)=SCHEMA-N2.

Here, relationships are shown implicitly by suffixes
(for example, if RELATION-R, SCHEMA-R and IN-
STANCE-R are used, there is an implicit relationship
that RELATION-R=(SCHEMA-R INSTANCE-R).

Since a tuple is an extended row for an instance, a pri-
mary key is needed. A primary key for a schema is de-
fined as two functions:

(keyattributes SCHEMA-R)=(primary-key-attributes-
of-SCHEMA-R)
(keyvalues TUPLE)=(values-of-keyattributes)

Keyvalues must be unique within an instance of which
TUPLE is a member. Note that keyvalues consist of sim-
ple values only. For example, in Fig. 2, it may be that

(keyvalues TUPLE-N11)=(VALUE-A21)
and (keyvalues TUPLE-N22)=(VALUE-A32 VALUE-
A42).

(Assume that Al functionally depends on A2.)

Note that the schema and instance information (the
list objects in the middle of Fig. 2) are specified as a
model, not as an implementation structure. However,
we may store the list objects directly in the database.

For example, each object (list) can be a variable-length
record that is stored or retrieved by hashing its iden-
tifier.

3.2 NEST and UNNEST Operations

NEST and UNNEST operators are widely accepted
for transformation between 1NF relations and NF2 rela-
tions (or between NF2 relations).[5-7, 14]. They are de-
fined here as functions. First, UNNEST is defined as fol-
lows:

(unnest RELATION-N SCHEMA-Na)
=RELATION-U

Here, SCHEMA-Na is the schema to be unnested, and
SCHEMA-N (corresponding to RELATION-N) is an
ancestor of SCHEMA-Na. SCHEMA-Na is replaced by
its members in SCHEMA-U. INSTANCE-U has tuples
that are defined by the function ‘‘unnesttup’’ described
below.

Assume that SCHEMA-Ni, SCHEMA-Ui (i=1,
2, ...) are schemas in SCHEMA-N and SCHEMA-U,
respectively (including SCHEMA-N and SCHEMA-U),
and that SCHEMA-ND is the owner of SCHEMA-Na.
Assume also that TNij and TUik are the tuples for
SCHEMA-Ni and SCHEMA-Ui (j, k=1, 2, ..)),
where (compid TNaj)=(ChCh-1...C2Cl) (Cl,
C2, ..., Ch-4 may be null if SCHEMA-Nb=SCHE-
MA-N). ASSET denotes a sublist of SCHEMA-Ub, cor-
responding to SCHEMA-Na. ASSETX denotes an at-
tributeset, or an attributeset and a schemaset, that
satisfies (append ASSETX ASSET)=SCHEMA-Ub

N
Nb UNNEST(Na) U
ASSTETX[Na | | ———— — Ub
AS | SET ——————— ASSTETX | AS | SET
NEST(ASSET)
TNr TUr
—————— —
TNbq
= o
TNaj TUbk
—————— —

TNaj < TNbq < TNr
TNbq = ( * * INSTANCE-Nap )
INSTANCE-Nap = ( TNaj TNaj+1)

Fig. 3 UNNEST/NEST Operation.
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(see Fig. 3). Then,

(unnesttup TNij)=TUij, if i>a and i=b, where (com-
pid TUij)=(compid TNij) and TNij and TUij have the
same component set:

(unnesttup TNaj)=TUbk, where (compid TUDbKk)
=(Cm Ch-3...C2Cl), Cm is the member-sequence-
number of TUbk within its owner, (val TUbk ASS-
ETX)=(val (owner (owner TNaj)) ASSETX), and (val
TUbk ASSET)=(val TNaj ASSET);

(unnesttup TNbj)=null.

Notice that unnesttup is a one-to-one and onto map-
ping from INSTANCE-Ni to INSTANCE-Ui (i=1,
2,...;i#a, i#b), and from INSTANCE-Na to IN-
STANCE-Ub. Additionally, the keyattributes for
SCHEMA-Ub are the concatenation of the keyattrib-
utes for SCHEMA-Nb and SCHEMA-Na.

Next, NEST is defined by the function

(nest RELATION-U ASSET NAME)=RELATION-
N.
Here, ASSET is a sublist of a SCHEMA-Ub, which
should include at least one attribute. The components
of ASSET are replaced by a schema NAME in SCHE-
MA-Nb. TNij is constructed by the reverse mapping of
unnesttup described above.

4. Extended Tuple Relational Calculus

This section describes simple extended tuple relation-
al calculus (ETRC), which will be the basis for the fol-
lowing discussions. It is motivated by the fact that the
nested queries proposed so far are not very easy to un-
derstand, nor can they be easily implemented. The
ETRC proposed here does not have any nested syntax,
which makes querying simple.

4.1 Definitions
The ETRC is defined as the following select function:

(select RELATION-N VARDEF VARDSC COOND)
=RELATION-S;

VARDEF=((QUANTIFIER TNij SCHEMA-Ni) . . .),
i=1,2,...,mj=1,2,..., mi

VARDSC=((dsc TNij TNkl)...), 1<=i, k<=n;
I<=j<=mi; 1< =Il< =mk.

RELATION-N (source) and RELATION-S (target)
have the same schema. VARDEF contains expressions
for tuple variable definitions, where QUANTIFIER is
here restricted to either the existential quantifier 3 or
null. TNij is a tuple variable for the SCHEMA-Ni.
SCHEMA-Ni is a schema contained in SCHEMA-N or
SCHEMA-N itselt. VARDSC contains expressions for
‘‘descendant-ancestor relationships’’ between tuple vari-
ables, which is the extension to TRC for INF relations.
The expression above means that tuple TNij is a descen-
dant of tuple TNKI (see Fig. 3). COND contains charac-
ters for conditional expressions. It includes logical and
comparative operators, constants, and expressions of
the form ‘‘(val TNij ATTRIBUTESET)”’. Tuple varia-
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bles TNij are used only in this form in COND expres-
sions. That is, the condition expressions are the same as
the ones for normal TRC. This makes the extension as
small as possible, and makes the syntax simple.

Notice that the targets to be selected by the condition
are tuples of the highest-level instance (of RELATION-
N), so that the TUPLE-N structure does not change.
This restriction makes the meaning of a query easy to
understand (in some studies, the targets may be tuples
of multiple different instances, which makes the query
syntax complicated). Notice also that the select function
defined above does not have any nested syntax, which
makes the expression easier to understand.

4.2 Characteristics

When NF2 queries are implemented on INF rela-
tions, it is necessary to interpret the query and trans-
form it into a INF query. At first, two NF2 relations,
RELATION-N and RELATION-U, are considered
where the latter is obtained by unnesting the former.
That is, (unnest RELATION-N SCHEMA-Na)=RE-
LATION-U. Additionally, assume that (owner SCHE-
MA-Na)=SCHEMA-ND. The first goal is to transform
a select for RELATION-N into a select for RELAT-
ION-U. The procedure is as follows:
Transform-Query
Source: (SELEXPR-N SCHEMA-Na)
SELEXPR-N=(select RELATION-N VARDEF-N
VARDSC-N COND-N), where SCHEMA-Na is the
schema to be unnested, and notations, defined in 4.1,
are used.

Target: SELEXPR-U

SELEXPR-U=(select RELATION-U VARDEF-U
VARDSC-U COND-U), which is in a sense equivalent
to Source.

Procedure:

1. Replace schema names SCHEMA-Ni with SCHE-
MA-Ui (i=1, 2, ..., n), except i=a.

2. Replace schema name SCHEMA-Na with SCHE-
MA-Ub.

3. Replace tuple variables TNij with TUij (i=1,

2,...,nj=1,2,..., mi)), except i=a.
4. Replace tuple variable TNaj with TUb,mb+j
(Jj=1,2,..., ma).

5. Delete the expression (dsc TUb,mb+,; TUbI]) in
VARDSC-U (resulting from the procedures 3. and 4.
above), and add a new expression (val TUb,mb+j
KEYATR-B)=(val TUbl KEYATR-B) to COND-U
(1< =j< =ma, 1 < =l< =mb) with the logical operator
‘‘and.”” KEYATR-B is the keyattributes for SCHEMA-
Nb.

As a result, SELEXPR-U becomes like the one
specified below.
VARDEF-U=((QUANTIFIER TUij SCHEMA-Ui)
LoD i=14L2, ..., n; i#a; j=1,2,..., mi for i#b;
Jj=12,..., mb+ma for i=b;
VARDSC-U=((dsc TUij TUK]) . . ) 1< =i, k<=n;i,
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k#a; 1<=j<=mifor i#b; 1<=l<=mk for k#b;
1<=j, 1< =mb+na for i, k=b;
COND-U=((conditions for TUij) and ((val TUb,
mb+j KEYATR-B)=(val TUbl KEYATR-B))...)
I<=j<=ma; 1<=l<=mb;

The above procedure has the following properties:
Proposition 1.

Assume that a tuple TNf is in INSTANCE-N, and that
TUf=(unnesttup TNf) is in INSTANCE-U (if SCHE-
MA-Nb #SCHEMA-N), or {TUe}(e=1, 2, . . .) are tu-
ple sets in INSTANCE-U where TUe=(unnesttup
TNae) and (owner (owner TNae))=TNf (if SCHEMA-
Nb=SCHEMA-N). If and only if TNf satisfies SELEX-
PR-N, then TUTf satisfies SELEXPR-U (when SCHE-
MA-Nb#=SCHEMA-N), or vTUe in {TUe} satisfies
SELEXPR-U (when SCHEMA-Nb=SCHEMA-N).
Proof.

The notations given in Sections 3.2, 4.1, and 4.2 are
used. Additionally, suppose (select RELATION-N
VARDEF-N VARDSC-N COND-N)=RELATION-S,
(unnest RELATION-S SCHEMA-Sa)=RELATION-
SU, (unnest RELATION-N SCHEMA-Na)=RELA-
TION-U, (select RELATION-U VARDEF-U
VARDSC-U COND-U)=RELATION-US. Moreover,
suppose that the schemas included in RELATION-X
are named SCHEMA-Xi (i=1, 2, ..., n) and that they
contain SCHEMA-X.

Assume that TNf satisfies SELEXPR-N; then in IN-
STANCE-NI, there are typles TNij (i=1,2,..., n;
j=1,2, ..., mi, which are instantiations for the tuple
variables in SELEXPR-N. Note that INSTANCE-Ni
may be INSTANCE-N, and that {TNij} includes TNf.
Then, 3{TUij} is in the INSTANCE-Ui (including IN-
STANCE-U) (i=1, 2, ..., nji#a;j=1,2, ..., miif
i#b; j=1,2,...,mb, mb+1, ..., mb+maif i=b)
such that

TUij=(unnesttup TNij) if i=b;

TUbj=(unnesttup TNad) if 1<=j<=mb, where
(owner (owner TNad))=TNbj; or

TUbj=(unnesttup TNa, j—mb) if mb<j< =mb+ ma.

This mapping completely matches the tuple variable
replacement of ““Transform-Query,”’ and {TUij} can
be the instantiations for the tuple variables in SELEX-
PR-U, because

1. VARDEF-U holds, since there are the same num-
ber of corresponding tuples.

2. Assume that (dsc TNij TNkl) in VARDSC-N holds
within INSTANCE-N. This is transformed into

(dsc TUij TUK)) if i#a and k#a; or
(dsc TUb, mb+j TUKI) if i=a and k#b; or
(dsc TUij TUb, mb+1) if k=a.

(The case in which i=a and k=& will be handled in
Item 3.)

These expressions in VARDSC-U hold within IN-
STANCE-U, since the descendant-ancestor relationship

between tuples remains unchanged unless i=a and
k=b. Therefore, VARDSC-U holds for {TUij}.

3. The conditions for TUij in COND-U hold for
{TUij}, since a tuple’s attribute value for TNij is the
same as the one for TUKI if the former maps to the lat-
ter. In addition, (val TUb, mb+;j KEYATR-B)=(val
TUbl KEYATR-B) holds if (dsc TNaj TNbl) holds in
COND-N. Thus, COND-U holds for {TUij}.

From Items 1 to 3 above, {TUij} satisfies SELEXPR-
U. Since TNf is in {TNij}, TUf is in {TUij}, or any
TUe (in {TUe}) is in {TUij}. Therefore, TUf or vTUe
in {TUe} satisfies SELEXPR-U. The reverse condition
can be proved in almost the same way. (Note that the
proof depends on the fact that (dsc TNaj TNbI) is
equivalent to (val TUb, mb+j KEYATR-B)=(val TUbl
KEYATR-B). Therefore, the concept of keyattributes is
essential.) Q.E.D.

Proposition 2.

Given any SELEXPR-N and SELEXPR-U, which is
transformed from SELEXPR-N by ‘‘Transform-
Query,”” the equation UNNEST (SELECTN(N))
=SELECTU (UNNEST(N)), or more precisely, (un-
nest (select RELATION-N VARDEF-N VARDSC-N
COND-N) SCHEMA-Sa))=(select (unnest RELA-
TION-N SCHEMA-Na) VARDEF-U VARDSC-U
COND-U) holds. Note that SCHEMA-Sa is equivalent
to SCHEMA-Na.

Proof.

The same notation as in Proposition 1 is assumed.
First, SCHEMA-SU is equal to SCHEMA-US. This is
trivial, since ‘‘select’’ does not affect schemas.

Next, it is shown that INSTANCE-SU is equal to IN-
STANCE-US. The relation instance equality is shown,
if there is a one-to-one and onto mapping between each
object on each level. For the present purpose, one-to-
one and onto tuple mapping (for each instance) is
sufficient.

Assume that vTSUij is in INSTANCE-SUi (note that
INSTANCE-SUi may be INSTANCE-SU), and that 3
TSUKk, which is an ancestor of TSUij (or itself), is in IN-
STANCE-SU, where i #a, since SCHEMA-Sa is unnest-
ed. Then 3TSgh is in the INSTANCE-Sg such that

(unnesttup TSgh)=TSUij (*) (g=iif i%b; g=a if
i=b),

and 3TSf, which is an ancestor of TSgh (or itself), is in
INSTANCE-S. TSf is in INSTANCE-N, and TSgh is in
INSTANCE-Ng, their relationship being unchanged,
since “‘select’’ extracts tuples in the highest level with all
their descendants. Here, TSf satisfies SELEXPR-N. 3
TUde is in the INSTANCE-Ud such that

(unnesttup TSgh)=TUde (**)
since g #b (d=g if g#a; d=b if g=a).

From (*) and (*¥),

TSUij=TUde ***)
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since unnesttup is a one-to-one and onto mapping from
INSTANCE-Sg (=INSTANCE-Ng). In addition, 3TUc
is an ancestor of TUde (or itself) in INSTANCE-U.
Here, either TUc=(unnesttup TSf), or TUcis in {TUp}
(=1, 2,...), where TUp=(unnesttup TNap) and
(owner (owner TNap))="TSf (if SCHEMA-Nb=SCHE-
MA-N). Then, from Proposition 1, TUc satisfies
SELEXPR-U. Therefore, TUde is in USd, since TUc is
in US. Note that i=d, since i=g=d if i# b (since i#a),
or i=b=d otherwise. Therefore, from (***), TSUij is
in USi, which shows that INSTANCE-SUi is a subset of
INSTANCE-USi (i=1, 2,...). The fact that IN-
STANCE-USi is a subset of INSTANCE-SUi is proved
in almost the same way, which results in INSTANCE-
SU being equal to INSTANCE-US. Q.E.D.

The discussions for ‘‘Transform-Query’’ and
‘‘Proposition 2’ can be extended to allow considera-
tion of the “UNNEST*”’ (unnest all) [5] operation. The
next procedure transforms a select for an NF2 relation
into a select for a 1NF relation:

Transform-Query*

Source: SELEXPR-N

SELEXPR-N=(select RELATION-N VARDEF-N
VARDSC-N COND-N) where source relation RELA-
TION-N is in NF2.

Target: SELEXPR-U*

SELEXPR-U*=(select RELATION-U* VARDEF-U*
COND-U*), which is a (normal) TRC, where RELA-
TION-U* is in INF.

Procedure:

1. Replace schema names SCHEMA-Ni with SCHE-
MA-U* (i=1, 2, ..., n).

2. Replace tuple variables TNij with TUp (i=1, 2, ...,
n; j=1,2,..., mi), where p=ml+m2+ ... +mi-
1+j.

3. Delete the expression (dsc TUp TUq) in VARDSC-
N (resulting from (dsc TNij TNKI) by step 2), and add a
new expression (val TUp KEYATR-K)=(val TUq
KEYATR-K) to COND-U* with the logical operator
‘“and”’. KEYATR-K is the set of keyattributes of SCHE-
MA-Nk.

As a result, SELEXPR-U* becomes like the one
specified below.

SELEXPR-U*=(select RELATION-U* VARDEF-U*
COND-U*),

VARDEF-U*=(QUANTIFIER TUp SCHEMA-U*)
.. p=L2, 000, u u=ml+m2+ ... +mn;
COND-U* =((conditions for TUp) and ((val TUq
KEYATR-K)=(val TUr KEYATR-K)) . . .).

Next, a definition is given for the function unnest*,
which transforms an NF2 relation into a INF relation:

(unnest* RELATION-N)=RELATION-U*.
This is defined by an unnest sequence:

(unnest®* RELATION-N):: =
(unnest . . . (unnest (unnest RELATION-N SCHEMA-
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N1) SCHEMA-N2) . ..SCHEMA-Nn) where SCHE-
MA-Ni (i=1, 2, ..., n) are schemas in RELATION-N
other than SCHEMA-N.

The procedure ‘“Transform-Query*’’ has the follow-
ing property:

Proposition 3.

Given any SELEXPR-N and SELEXPR-U*, which is
transformed from SELEXPR-N by ‘Transform-
Query*,”” the equation UNNEST* (SELECTN(N))
=SELECTU* (UNNEST*(N)), or more precisely, (un-
nest* (select RELATION-N VARDEF-N VARDSC-N
COND-N)) = (select (unnest* RELATION-N)
VARDEF-U* COND-U*) holds.

Proof.

Proposition 3 is proved by successive applications of
Proposition 2. The details are omitted here.

Proposition 3 ensures that, instead of executing an
NF2 query, we can execute an equivalent 1NF query for
a totally unnested (INF) relation. In an actual system,
the query processing proceeds as follows:

1. A user issues a nested query for a nested external/
conceptual relation.

2. The system transforms the query into an unnested
query, applies it to a INF relation, and gets the result as
a INF relation.

3. The system transforms the resulting relation into a
nested relation (conforming to the external/conceptual
schema) by successive nest operations.

4. The user gets the result as a nested relation.

The procedure above shows that ‘‘Transform-
Query*”’ provides a safe basis for implementing an
NF?2 relation over INF relations.

The next problem is to determine whether there is a
‘“‘reverse-transform-query’’ procedure that satisfies the
equation NEST (SELECTU(U))=SELECTN
(NEST(U)). The answer here is negative.

Proposition 4.

For a general TRC query (SELECTU), there is no cor-
responding ETRC query (SELECTN) that satisfies the
equation
(nest (select RELATION-U VARDEF-U VARDSC-U
COND-U) ASSET NAME) =(select (nest RELATION-
U ASSET NAME) VARDEF-N VARDSC-N COND-
N).

Counter-Example.

Assume that RELATION-U is the unnested Em-
ployee in Fig. 1. Let SELEXPR-U include only expres-
sions such as ““TUi; TUi(Cage)=2’ (only the second tu-
ple is extracted). It cannot be transformed into a corre-
sponding ETRC expression, since it is only possible to
extract the highest-level tuple from the nested Employee
(similar discussions are found in Fischer and Thomas
[5D.

Proposition 4 depends on the fact that, though it is
possible to transform a tuple-group condition for an un-
nested relation into one for a nested relation, it is not
possible to transform every tuple condition. A tuple-




On Query Transformation for Non-First-Normal-Form Relational Databases 393

group denotes tuples in an unnested relation that will
make a higher-level tuple in a nested relation.

5. Conclusion

This paper gives the following results for NF2 rela-
tion processing:
1. A simple extended tuple relational calculus is
proposed, which is easy to understand because of its flat
(rather than nested) syntax.
2. An algorithm is proposed that transforms a query
for a nested relation into one for an unnested relation.
3. The equivalence of queries transformed by the
proposed algorithm is proved. The equivalence means
that UNNEST (SELECTN(N))=SELECTU (UN-
NEST(N)) is satisfied.
4. A LISP-like notation is proposed for NF2 relation
modeling, which can be a basis for fully computable for-
mal NF2 relation processing.

The following considerations show the significance

and effectiveness of the above results:

1. Using extended tuple relational calculus, we can
easily construct an NF2 query interface, which is more
friendly to database users than nested algebra because
of its flat syntax.

2. The query transformation algorithm with its equiva-
lence proof ensures the safe implementation of NF2 rela-
tions by INF relations. That is, we can easily implement
NF2 query processing by using current 1NF relational
databases. Current database users get the benefit of the
NF2 external view without their stored data being affect-
ed.

3. The nested list notation that has been proposed han-
dles nested schemas, nested instances, and nested tuples
uniformly. It captures the structural aspect of NF2 rela-
tions more accurately, and is more convenient for for-
mal NF2 processing, than current NF2 notations.

I have implemented an intelligent office form genera-
tion system called “FORMATION”’ {18], in which the
logical representation of an office form is based on NF2
relations.
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