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Short Note

The Distribution of the Maximum Flow of a Stochastic Network

SHIGERU YANAGI 1

A new method for deriving the distribution of the maximum flow from the source node to the
terminal node of a stochastic network is presented. The stochastic network considered here consists
of nodes and edges which can fail and have integer-valued capacity constraints. The new method is
useful when one needs to estimate a stochastic network whose required flow from source to terminal

is regarded as a random variable.

1. Introduction

A stochastic network considered here is the
network whose edges and nodes can fail and
have integer-valued capacity constraints. As the
measure of performance of the network, reliabil-
ity at level x, R (x), which is the probability that
the maximum flow from the source node to the
terminal node is larger than or equal to x is
defined in Ref. 1), 2). In Ref. 1), 2), algorithms
for obtaining R(x) are presented, where x is
assumed to be a constant. When x is regarded
as a random variable, it is useful to know the
distribution of the maximum flow. The distribu-
tion function can be obtained by the algorithms
in Ref. 1), 2) applying for all possible x. In this
paper, we present a new algorithm which direct-
ly obtains the distribution of the maximum flow
of a stochastic network. The basic idea and
notations for the new algorithm are same to the
ones in Ref. 2).

2. Assumptions and Notation

Assumptions

1) The components of the stochastic network
are nodes and edges. The source node and
the terminal node are failure-free and have
infinite capacity. The other components can
fail and have integer capacity constraints.

2) Each component that can fail is either oper-
ating or has failed.

3) Failures of the components are mutually
statistically independent.

4) The network can contain directed as well as
undirected edges.

5) The network has a monotone(coherent)
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structure.®

Notation and nomenclature

n: Number of the components in the network
that can fail

s, t: Denote source node and terminal node

a;: Component that can fail (i=1,2,---, n)

¢;: Flow capacity of a;; If a; is operating, a;
can transmit ¢; units of flow, where ¢; is an
integer

Di, P:: Reliability and unreliability of a;

subnetwork at level x: Subnetwork which
ensures that the s-¢ flow is larger than or
equal to x

f (x): Probability density of maximum flow
from s to ¢

F (x): Distribution function of maximum
flow from s to ¢

E =, jp, ky, -+, kg>: search condition
that a;,, -*-, a;, are operating and ay,, ***, Gz,
are failed, and the others are operating or
failed

2, ¢: Universal set and empty set

Sg : Collection of search conditions

3. Algorithm

The basic idea of the algorithm
The basic procedure of the algorithm is an
implicit enumeration method. Since the network
has n unreliable components, there exist 2"
different states of the network. Let us term these
states elementary states. There exists the follow-
ing correspondence between the search condi-
tions and the sets of elementary states.
E={(¢>=L2 (universal set which consists
of all the elementary states)
E={1>&{a, is operating, a,(i=2,3, -+, n)
are operating or failed}
E={1>&{a, is failed, a,(i=2, 3, ---, n) are
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operating or failed}
E=(1,2>&{a is operating, a; is failed, a;
(i=3,4, -, n) are operating or failed}

E =(1,2, -, n>o{all the elements are
operating}
The number of the elementary states which
satisfy E=Ciy, »+, ip, J1, =+, jqp is 277779,

The new algorithm examines the maximum
flows of elementary states which satisfy a given
search condition. Let the maximum value of s-
t flow be x under a given search condition.
Then there exists at least one subnetwork at level
x which satisfies the given condition. All the
elementary states which satisfy both the given
search condition and the condition that all the
components in this subnetwork are operating
attain the maximum flow x. All these elemen-
tary states are implicitly enumerated as their
maximum flows being x. And sum of the
probabilities of these elementary states are added
to probability density at x. Once the maximum
flow is calculated, the search condition is re-
newed as follows.

Renewals of a search condition

Let Eo=<ii, &, -+, ip, J1» Jor =*» Jq> and {@a,,
Qy,, -, Qx,} be a search condition and the sub-
network which attains the maximum flow under
the condition E;.

Let {an,, Qny, -+, Gny}

={a,-tie (ky, Kz, =+, kr), T€E (i, by, =+, ip)}
={ar., G, *+, Qi) — {0, @, -, a5}

Then all the elementary states which satisfy
both condition E’'=<hy, hy, -+, h,> and E, are
implicitly enumerated as their maximum flows
being same to that of the subnetwork. The rest
of the elementary states which satisfy E, satisfy
both E; and E’, where E’ is negation of E’. The
condition Ey & E” is partitioned into the follow-
ing mutually disjoint conditions.

Eo & <> =L, b,y oy Jus Jou 0, Jan 1)
Eo & My, by o B ~
:<ils i2, ) ip, jla ij R jQy h]v h2>

EO & <h1, hz, e hu—lw Eu)
=<_l'1, i, ***, ip, j'_l. j—z, T
qu hl, hz, Y hU‘l! hu>
Algorithm
S0: Se={<¢>}. Set f(x)=0 (x=0,1,--, m),
where m is a sufficiently large integer.
SI: If S¢ is empty, go to S3. Otherwise, take

a search condition E; from S:.

S2: Let Eo=<ji, **+, jp. k1, *++, kg>. Obtain the
maximum flow x under the condition E, using
the labeling method.? If x=0, £ (0) =f (0) + p;,
***Dia* Pr,"** Dre and go to S1. Otherwise, Let L,
={ap,, -**, am,} be the subnetwork at level x.
Set E=Eo & <my, my, -+, mp>={fi, -, fe, ka, -+,
ky).

f(x) :f(x) TP Pre Pyt Pre Let E—Ey
={hy, -+, hg>. Add the following search condi-
tions into Sg.

Eleo& <Il_1>=<j|‘ "',jp, k_l, ey k-q, h_1>,
E= E& <hl, h_z>
=y oy Jos Ky e, kg, ),

E,=E & <h1, T hd—l, h—d>
=i, s Joy Ky o0y k_q» hy, -, ha, h—a>
Go to Sl.
S3: F(x)=2f(y). Stop.
ysx

4. Numerical Examples

Example 1: Network of type A

Figure 1 shows one of the examples presented
in Ref. 1), 2). This network consists of 17
components which can fail and have capacity
constraints. The capacity constraints of the
components are given in Fig. 1. Using this
network, we generate 10 sample networks of type
A by replacing the capacity constraints of all the
edges, ¢, ¢, -*+, €17, With integer parts of random
numbers distributed uniformly in (1, 16).

c,=10
c.=10
6 c, =6
0=6 14
c,=12
2 C,=6
S c,=10 €,,=10 T[c,=12 t—
Co=6 2=6 fcyg=7 =7
cg=10 7=
Ca=6
c3=10 cs=10

Fig. 1 A network of type A.

£

Fig.2 A network of type B.
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Example 2: Network of type B

Figure 2 shows the network of type B. The
capacity constraints of all the nodes in this
network are 30. Using this network, we generate
10 sample networks of type B by assigning inte-
ger parts of random numbers distributed uni-
formly in (1, 21) for the capacity constraints of
all the edges.

R-Y method

The distribution function of the maximum
flow can be obtained applying the method in
Ref.2). Let R(x) be the probability that the
maximum flow from s to ¢ is larger than or
equal to x. Then the procedure is as follows:

First, set F(0) =0 and x=1. Then obtain
R (x) using the method in Ref. 2).

Repeat “x=x+1 and obtain R(x), then set
F(x—1)=1—R(x)” until R(x)=0.

Let us refer to this procedure as R-Y method.

Computational results

Let us compare the new method and R-Y
method using two quantities, maximum feasible
max-flow and number of max-flow calculations,
where the maximum feasible max-flow is the
maximum flow when all the components are
operating and the number of max-flow calcula-
tions is the number of the calls of the labeling
method.

Figures 3 and 4 show the relations of these
two quantities in Example | and Example 2,
respectively. The number of the max-flow calcu-
lations by R-Y method has tendency to increase
linearly as the maximum feasible max-flow
increases. On the other hand, the number of
max-flow calculations by the new method is
nearly constant. Therefore, we may say that the
new method is more effective than R-Y method
unless the maximum feasible max-flow is small.
The relations of the maximum feasible max-flow
and the computation times are nearly same to
the results shown in Figures 3 and 4. Finally,
note that the reliabilities of the components are
irrelevant to the computation times.
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Fig.3 The maximum feasible max-flow vs. the number
of max-flow calculations in Example 1.
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Fig.4 The maximum feasible max-flow vs. the number
of max-flow calculations in Example 2.
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