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In this paper we describe a multi-camera traffic monitoring system relying
on the concept of probability fusion maps (PFM) to detect vehicles in a traffic
scene. In the PFM, traffic images from multiple cameras are inverse perspective-
mapped and registered onto a common reference frame, combining the multiple
camera information to reduce the impact of occlusions. Although the uncon-
strained perspective projection is non-invertible, imposing the condition that
the image points be co-planar allows the relaxation of this constraint. In images
of road scenes, the road surface is locally planar, and as such can be inversely
mapped. We show that computing the perspective undistortion by finding
4 matching points between a camera image and an ideal non-perspectively dis-
torted image, a system of linear equations can be solved that corresponds to
applying the rotation, translation, and re-projection onto the common reference
plane without needing calibrated cameras. We show that this method yields
good results in the detection of vehicles for subsequent tracking and monitoring.

1. Introduction

Traffic monitoring is becoming a significant tool in efforts to address traffic
problems arising from the increased traffic volumes in the world. These problems
include long term issues such as environmental degradation and economic ineffi-
ciency. In this role, traffic monitoring can assist in the development of the reliable
traffic models needed to optimize the transportation networks by acquiring the
empirical data for the modeling. However, there are also immediate concerns
such as the handling of emergency situations that perturb the normal behavior
of traffic. Events such as accidents, major fires, and terrorism often require real-
time traffic monitoring, in order to provide the timely information needed for
appropriate traffic management.

†1 Graduate School of Science and Technology, Kumamoto University

Approaches to traffic monitoring can be classified into two broad categories:
spot monitoring, such as the ground (magnetic) loop, and area monitoring, such
as video cameras.

Ground (magnetic) loop detectors are accurate but are expensive and difficult
to implement and maintain, requiring significant work, such as the excavation
of road surfaces, while providing limited information, since their data is only for
a point in space.

Video monitoring systems, however, are easy to install and maintain, making
them significantly more flexible, since changes can easily be implemented. They
also have the potential to provide more information than can be obtained from
point detectors as they capture information over a wide area. Information that
requires area monitoring includes lane changing frequency and vehicle trajecto-
ries. Moreover, other data that can better be evaluated using an area monitoring
system include vehicle type classification. However, video camera performance
is more susceptible to environmental conditions, although there is work on tech-
niques to reduce their impact, such as through the use of infra-red lighting.
Moreover, due to the limitations of camera position and orientation, they are
also subject to occlusions in the presence of multiple opaque features that over-
lap within the camera field of view. These occlusions lead to the miscount of
traffic and the loss of the target during the tracking process.

In this paper we present an approach to address the problem of occlusion that
uses multiple cameras to acquire several data sets to offset the effects of the
missing information where occlusions occur. The rest of this paper is organized
as follows: Section 2 briefly discusses previous work; the proposed algorithm is
presented in Section 3; Section 4 describes the experimental results a brief con-
clusion is presented in Section 5.

2. Previous Work

Early video surveillance work generally used a single camera with tripwires
set to act as visual “ground loops” 1). Thus, images were captured when an off-
road sensor was triggered and processing was performed on a static 2-D image
of a given region of space.

A common approach to the vehicle detection task in these systems was to break
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2 Vehicle Detection Using Probability Fusion Maps Generated by Multi-camera Systems

Fig. 1 The problem of occlusion with a single camera.

down the problem into several steps 2):
a. Segment the scene to identify individual vehicles; track these targets within

the tracking zone.
b. Compute traffic parameters from vehicle tracking results.
c. Transmit traffic data to a traffic management centre.

There are a number of different approaches to each of these steps, as discussed
briefly in Ref. 2). Some of the approaches to tracking include 3-D model track-
ing 3), region based tracking using an adaptive Kalman-filter background model 4),
active contour-based tracking 5),6), and feature-based tracking.

In Ref. 2), the focus is on the feature-based tracking using groupings of features
having similar motions to segment the vehicles.

However, single camera based approaches have two limitations: the inability
to use depth information to assist in the vehicle detection and tracking and the
possibility of occlusion of features of interest. This problem is illustrated in
Fig. 1.

In efforts to address this issue, recent work has explored the use of multi-
camera systems for traffic monitoring 3),7),11),12). In Ref. 3) 3-D models are used
to generate a series of sparse 2-D templates that can be used to identify vehicles
and their respective classes in the presence of occlusions. These 2-D models
are assumed to operate on small regions of the image under the assumption
of locally orthographic projections. In Ref. 7), cameras are calibrated using
a method that relies on the geometric constraints of the road. It makes use of

projective geometry to allow the calculation of the objects’ heights. In Refs. 11)
and 12), a single plane Probability Fusion Map (PFM) based on the inverse-map
of a multi-camera image data was proposed. The single plane PFM successfully
addressed the problem of occlusion. However, since the co-planarity of image
points is not strictly true, the single plane PFM is subject to distortions, which
leads to less accurate measurement of target positions and dimensions.

Much work has been done in terms of 3-D model matching for tracking and
vehicle classification 8)–10). However, in these approaches it is important that
there be no occlusion in the first few frames for correct matches to be established.
Otherwise, any subsequent tracking is suspect.

Stereo approaches have also been considered recently, but the correspondence
problem and the computational intensity of searching over a large range of depths
makes this approach difficult for real-time applications.

3. The Probability Fusion Map (PFM)

Much of the work using multiple cameras relies on the extraction of 3D models
or scenes for analysis, which is a time consuming process. In the PFM, the
problem has been cast as a data fusion issue. The goal is to combine all the
available vehicle information to compensate the missing information in one or
more views, which is available in the remaining views. To achieve this, the
images from the multiple cameras are registered onto a common framework and
are combined to assign probabilities for each pixel in the regions representing
a vehicle. This process is described below.

3.1 Background Subtraction
Although the goal of PFM is to make the vehicle detection more robust by

increasing the amount of available information, the suppression of clearly iden-
tifiable non-vehicle regions reduces the probability of errors in vehicle detection.
Thus, removing background features by subtraction from the image is used in
our approach. However, with this approach, it is important to have an accurate
representation of the background, as artefacts may be detected as vehicles if this
condition is not met.

Over short periods of time, it is possible to approximate a reasonably accurate
background from single images with no foreground features present. This was
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3 Vehicle Detection Using Probability Fusion Maps Generated by Multi-camera Systems

shown in our initial tests, as discussed below. However, over longer periods of
time, where illumination may be changing, a robust model that evolves over time
is more appropriate.

In the well-known median filter background model, a sequence of images is
maintained in a buffer queue. It is assumed that a pixel stays in the background
for more than half the time, so that the foreground object pixel values are outliers
that are rejected by median filtering. As this is memory intensive, a different
approach, the Adaptive Median Filter, AMF, was developed for this work.

In the AMF, an initial estimate is generated, based on a single frame. For each
subsequent frame, for each pixel, the new background is computed as:

B(x, y, t) =

{
B(x, y, t − 1) + δ if I(x, y, t) > B(x, y, t − 1)
B(x, y, t − 1) − δ if I(x, y, t) < B(x, y, t − 1)

(1)

where B(x, y, t) is the background pixel at point (x, y) and at time t and I(x, y, t)
is the pixel value at (x, y) at time t.

This approach only requires two buffers, storing the current pixel value and
the previous estimate, and is thus much more efficient in terms of memory usage.
Moreover, by using a learning factor, δ, it imposes a limited correction, especially
for large deviations from the estimated background value, thus acting as a limit on
outliers (as a median filter does). The selection of δ determines the rate at which
the background model adapts to changes in environmental conditions and must
be adjusted for the conditions. If δ is too big, the background model changes
can be too large, leading to fluctuating errors in the background subtraction.
Alternatively, if it is too small, the background model changes too gradually
leading to a decrease in the performance of the background subtraction.

Shadowing was another issue of concern in the background subtraction. There
were two sources of shadows and each required different handling. First, there are
fixed structures that cast shadows on the road surface. Although these shadows
change over time, they are subject to the same illumination as the road sur-
face, with the result that the road model updates incorporate changes to these
shadows. However, moving feature shadows are more variable, depending on the
positions of the vehicles, the relative positions between the vehicles, the camera,
and the illumination source.

Fig. 2 Background subtraction process.

For these moving shadows, an initial shadow model was developed by segment-
ing the shadows in a number of sample images to estimate the shadow pixel
values. The shadow model pixel values were estimated row-by-row. Shadow pix-
els from matching rows were grouped to estimate the shadow model pixel values
for the given row. These row estimates of the shadow pixel values were then
combined for the initial shadow model.

This model was then updated, using an AMF filter, to account for illumination
changes.

First, a background subtraction of the most recent frame was carried out. The
current shadow model was then subtracted from the result to extract the vehicles.
The shadow pixel values were extracted from the difference between the vehicle
only images and the vehicle + shadow images. However, only the shadows of
the high-contrast vehicles were used to calculate the estimated new shadow pixel
values. These new values for the shadow model were then combined with the
existing shadow model values using the AMF model.

Figure 2 illustrates the subtraction process. For every newly captured im-
age, the background is subtracted. The shadow mask is then applied to remove
shadows from the result of the background subtraction process. However, after
removing the foreground from each new frame, the resultant background is used
to update the background model using the AMF. Likewise, the segmentation of
the background result extracts the new shadow pixel values which are used to
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update the shadow model.
3.2 Image Fusion
The PFM relies on the inverse mapping of the different viewpoint images onto

a common framework. Since each image is a perspective projection of a set of
world points by a camera having a specific rotation and translation, R, and T ,
it is necessary to adjust for the individual camera R and T prior to fusing the
images. This is achieved through the inverse perspective projection described
below.
(1) Inverse Projection

A camera having a focal length, f , a principal point, (ox, oy), being rotated by
an amount, R, and translated by a distance, T , with respect to a world coordi-
nate system, will project a set of physical points, denoted in the homogeneous
world coordinate system as XW = (XW , Y W , ZW , 1), into a set of image points
denoted, in a homogeneous image coordinate system, by xI = (xI , yI , wI), as
follows:

xI
i = A[RT ]XW

i (2)
where i is the camera identifier; i = 1, 2, 3, . . . , N with N being the number of
cameras in the system. R is the 3 × 3 rotation matrix denoting the orientation
of the camera. T is the 3 × 1 translation vector between the world and camera
coordinate systems. A is the intrinsic parameters matrix given by the focal length
and the principal point. Thus, the above equation can be expanded as:

⎡
⎢⎣ xI

yI

wI

⎤
⎥⎦ =

⎡
⎢⎣ fx 0 ox

0 fy oy

0 0 1

⎤
⎥⎦

⎡
⎢⎣ r11 r12 r13 tx

r21 r22 r23 ty
r31 r32 r33 tz

⎤
⎥⎦

⎡
⎢⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎥⎦ (3)

This equation shows the homogeneous image coordinates, that is, the image
coordinates scaled by the factor, w. The non-homogeneous image coordinates,
x′ and y′ are simply obtained as shown here:

x′ = x/w

y′ = y/w (4)
Equation (2) can be broken down into two parts:

λxI = AXC

Fig. 3 Perspective projection.

XC = [RT ]XW (5)
where XC represents the world points expressed in the camera coordinate system,
λ is the scaling factor, and xI is the image point in homogeneous coordinates,
(x, y, 1). The image points are inverse mapped into the camera coordinate system
as shown in Eq. (6):⎡

⎢⎣ XC

Y C

ZC

⎤
⎥⎦ = λA−1

⎡
⎢⎣ xI

yI

1

⎤
⎥⎦ (6)

Equation (5) shows that λ is the depth in the scene (in camera coordinates), ZC .
Along with Eq. (6), we can see that the inverse mapping only exists if the scaling
factor, λ, is constrained, as is the case when all the world points are assumed to
lie on a common plane.

From this stage, the mapping into a common reference system is easily imple-
mented by applying rotations and translations, as shown in Eq. (7).

XW = R−1(XC − T ) (7)
In our approach, we have mapped into a reference system corresponding to

a bird’s eye view of the scene. However, while the road surface points are on
a common plane, the points corresponding to vehicles are not, as our method
assumed. This introduces distortions as illustrated in Fig. 3 and Fig. 4.

Figure 3 shows that the point P′, at a height, h, above the horizontal plane,
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Fig. 4 Inverse perspective mappings showing distortions due to off-plane image points.

and P′′, which is on the horizontal plane, both project onto the image point p′.
Therefore, under the inverse mapping, the world point P′ would in fact appear
at P′′ on the horizontal plane. This horizontal shift of P′ from its horizontal
position P′′′ to P′′ is the error in the inverse mapping resulting from the off-plane
distance h of P′. These errors lead to distortions in the rotated and translated
images used in estimating the vehicles on a road surface as shown in Fig. 4.

In the method presented in this paper, the inverse mapping and rotation trans-
lation is not implemented explicitly. Instead, the approach is to use perspective
un-distortion, in which four features which are distorted by perspective are re-
mapped to the corresponding features that are not subject to perspective distor-
tion. This yields a set of equations of the form:⎛

⎜⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠

⎛
⎜⎝ x

y

1

⎞
⎟⎠ = λ

⎛
⎜⎝ x′

y′

1

⎞
⎟⎠ (8)

where (x, y, 1)T are the perspective distorted, homogeneous image coordinates,
(x′, y′, w′)T are the undistorted, homogeneous image coordinates, and λ is a scale
factor, given by a31x + a32y + a33.

This approach can be understood in terms of a composition of homographies.
In Ref. 7), the projection of a road surface is described as a homography, of the
form:

λA(rc
1 rc

2 T ) = (hc
1 hc

2 hc
3) (9)

where rc
i is the ith column of the rotation matrix, T is the translation vector, and

hc
i is the ith column of the homography. Denoting the homographies between

the road plane and cameras 1 and 2, as H1 and H2 respectively, the projections
of points on the road onto the individual images are given by H1X = x1 and
H2X = x2 where X are the world points and x1 and x2 are the image points
of cameras 1 and 2 respectively. Therefore, any mapping of the form Mx1 = x2

must also satisfy M = H2H
−1
1 . Because of the decomposition of the homography

into the rotation, translation, and projection components shown in Eq. (9), the
transformation M can be written as:

M = λ′A2(r2c
1 r2c

2 T 2)(r1c
1 r1c

2 T 1)−1A−1
1 (10)

We can also write:

(r1 r2 t) =

⎛
⎜⎝ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎞
⎟⎠

⎛
⎜⎝ 1 0

0 1 R−1t

0 0

⎞
⎟⎠ (11)

Therefore, Eq. (11) can be written as:

M = λ′A2R2

⎛
⎜⎝ 1 0

0 1 R−1
2 T 2

0 0

⎞
⎟⎠

⎛
⎜⎝ 1 0

0 1 R−1
1 T 1

0 0

⎞
⎟⎠

−1

R−1
1 A−1

1 (12)

The translation component of Eq. (11) is, within a multiplicative factor, a 2-D
affine transformation, which in Eq. (11) and Eq. (12) represents a scaling and
a translation (in the x, y direction). Thus, M can be decomposed into an inverse
projection, rotation, translation, and re-projection. However, in our approach,
the intrinsic and extrinsic parameters are not explicitly specified, eliminating the
need for camera calibration.

The key aspect of this work is that four features lying within a common field of
view of the multiple-camera system were selected and were re-projected onto four
corresponding perspectively undistorted points representing the top-down view
from a virtual camera. By solving for the system of equations relating these two
sets of points, a warping, M , was computed, that can be shown to correspond to
a composition of two homographies. The composition of the homographies can
be represented as a sequence of inverse perspective mapping, inverse rotation,
translation and rotation, and re-projection, although the calibration parameters
are not known explicitly. Thus, each warping allowed for the projection of the
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6 Vehicle Detection Using Probability Fusion Maps Generated by Multi-camera Systems

individual image information into a common reference frame without calibra-
tion between cameras. Because the virtual camera was user-defined, and all
images were re-projected onto this single virtual camera, the registration error
was reduced to the interpolation error arising from the rotation, translation, and
re-projection of the original images.

The subsequent contribution of this work was to show that with the computed
warping matrices, fusion of the camera images could compensate for the infor-
mation missing due to factors such as occlusions.

The mechanism for the data fusion is described below.
(2) Probability Maps

The backgrounds are subtracted from the camera images to identify vehicle
candidate regions. However, as image points representing vehicles are not on the
common plane, i.e., the road surface, they will be incorrectly mapped, as shown
in Fig. 3. Those points closest to the surface will be the least distorted, as can
be seen with the bottom of the box, highlighted by dashed outline in Fig. 4.

However, in the absence of these markings, the inverse perspective-mapped
vehicle candidate region includes pixels representing both the actual vehicle image
points and distorted vehicle image points. Thus, the delineation of the vehicle
is not clear. The degree of distortion depends on the camera orientation, the
aperture angle, and the off-plane distance of the world point (discussed below).

Image pixels that lie outside the distorted vehicle candidate region have zero
probability of representing a vehicle. The pixels within the distorted vehicle
candidate region are assumed to have a fixed equal probability of representing
a vehicle as of being the result of distortion. Denoting the probability of a pixel
representing a point on the vehicle as P (x, y) and the inverse mapped image as
I(x, y), the probability map is generated as follows:

Pi(x, y) =

{
0 if I ′(x, y) = 0
k if I ′(x, y) = 255

(13)

where the subscript i indicates that the probability map is generated for camera i.
However, given N cameras of a scene, combining the individual probability

maps, Pi(x, y) will yield the probability fusion map, denoted as:

Fig. 5 Each camera in the system generates its own probability map. Each color in the image
on the right is a region having a non-zero probability of representing the vehicle.

PF (x, y) =
∑

i

Pi(x, y) (14)

A further weighted average filter was discussed in Refs. 10) and 12) to be
adaptive to different camera resolutions and distances to the common detection
area. However, because this filter relied on a ‘judgment factor’, it introduced
uncertainties. Therefore we considered it simpler, and more consistent, to simply
assume a constant probability in the vehicle candidate region. Moreover, as
distortions are dependent on the geometry between the target and the camera,
they are not consistent between cameras, leading to smaller probabilities in the
regions of the PFM containing contributions from distortions.

Because multiple views must be consistent in the common field of view, the
vehicles will be located in the region where the value of PF (x, y) will be greatest.

The maximum value of PF (x, y) is given by:
PF (x, y)max = Nk (15)

where N is the number of cameras in the system). Figure 5 gives the PFM of
a real scene.

Vehicle detection was implemented by a computing the threshold of the result-
ing PFM, PF (x, y). Because of the limited number of cameras (3), we chose to
use the contribution of all cameras for the segmentation of the PFM. Thus, the
threshold was set at T = Nk − 1.
(3) Distortions

Although the common features in the views must be consistent, the distortions
in the images are dependent on the off-plane distance and the position of the
feature in the field of view and the orientation of the camera (see Figs. 3 and 5 and
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Fig. 6 The two cameras showing the orientation of their axes and the components of the
distortion.

Section 3.3). Thus, when the probability maps are merged to generate the PFM,
the distortions, which are camera-dependent, will be suppressed to a certain
extent in the PFM (see Fig. 6).

Because the camera orientations have components in both x and y directions,
the distortion has components in both of these directions also. As Fig. 6 shows,
in the case where the camera axes are convergent, the distortions along the x-axis
tend to be in opposite directions, so that the regions containing distortions will
not lead to a region of high probability for the vehicle presence. However, the
distortions in the y-direction do not cancel out. Thus, the PFM is still subject
to some distortion in the y-direction as shown in Fig. 6.

The white region in the PFM (see Fig. 5) is the area of maximum probability
for the presence of a vehicle since it is the area where vehicle candidate regions
match. However, due to distortions, the region of maximum probability has
a tapered shape. However, it has been shown in Refs. 10) and 12) and the work
presented here, that the detection is sufficiently accurate to allow the tracking
needed for successful monitoring.

3.3 Synopsis of PFM Algorithm
Finally, before discussing the experimental results presented in this paper,

a short summary of the overall algorithm is presented here. It can be broken
down into the following steps:
( 1 ) Model generation
( 2 ) Background subtraction
( 3 ) Shadow removal

( 4 ) Image warping and threshold on each camera to create probability maps
( 5 ) Morphological processing to suppress artefacts due to image noise
( 6 ) Combine the probability maps

Although the first step is not an intrinsic part of the algorithm presented here,
it is obvious that accurately eliminating points that are clearly not part of the
vehicles improves the probability maps. Thus, having a good background model
will improve the result of the background subtraction, increasing the probability
of accurately detecting potential vehicles. Obviously, this will, in turn, increase
the overall accuracy of the system.

The third step, shadow removal, significantly eliminates image points that while
clearly not part of the vehicle, despite the background subtraction, are detected
as being part of the vehicle. Their elimination yields significantly improved prob-
ability maps especially after the warping stage, where distortions are introduced.
One of features of the approach using PFM that is very useful is that there are
a number of pixels corresponding to points of the vehicle sufficiently close to the
ground plane so as to be subject to limited distortion. These points are either
the front or the rear of the vehicle, depending on the direction of travel. In the
case of shadows, while the points are indeed on the ground plane, and are not
therefore distorted in the inverse mapping, the accurate positioning of the vehicle
boundary in the probability map is no longer clearly identifiable, so that there
are no anchor points to constrain the result of the probability map fusion.

4. Experiments and Results

4.1 Simulation Tests
For testing purposes, a test environment was initially set up in the lab to sim-

ulate road traffic, albeit under controlled conditions. The test environment is
shown in Fig. 7 with the resulting PFM shown in Fig. 8. The detected vehicles
are shown in Fig. 9. It consists of a scale model of a road with remote-control
operated model vehicles. Using this environment, various traffic density situa-
tions could easily be set up to test the effectiveness of the algorithm in detecting
and segmenting vehicles, even in the presence of occlusions.

The processing in the work presented here was implemented using a combina-
tion of commercial libraries (Matrox Imaging Library) and open source libraries
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Fig. 7 This is a simulation of traffic showing partial occlusion (bottom image, partial
overlap between white red vehicles) and almost an occlusion (in the left image).

Fig. 8 PFM of the vehicle arrangement in the test setup shown in Fig. 7.

(OpenCV). The results of the PFM obtained from this test setup are shown in
Figs. 8 and 9.

It should be noted that in Fig. 7, although there is an occlusion in the left
camera, and almost an occlusion in the right camera, the result of the PFM shows
the vehicles clearly separated. See Fig. 8. Greater occlusions were detected in
actual traffic scenes, as shown in Fig. 13.

Fig. 9 Detected vehicles projected onto the 3 views.

Fig. 10 Real traffic scene in Shanghai, China.

4.2 Real Traffic Scene Tests
Subsequent to initial tests, actual traffic video was acquired in Shanghai to

collect larger sampling statistics. A number of different tests were run on these
images. In the first set of tests, a short video clip, 7.5 minutes in length was
processed (Fig. 10).

In this test, no background model was generated, the background being
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Table 1 Traffic count for a PFM based solution with no robust background model.

Fig. 11 Configuration of the cameras and the region of observation (showing the road merg-
ing with the main road) used in the experiments. The three cameras used in the
experiments are shown as the black boxes. These are oriented so as to have axes that
are slightly convergent.

acquired from a single image with no vehicles present. Because of changing
conditions over time, it does limit the time over which the processing can be car-
ried out with the same background. The vehicle counts were sampled at 1 second
intervals and the results are shown in Table 1.

The camera configuration is shown below in Fig. 11.
In terms of camera positioning, there is no constraint except for the need to

have a common field of view between the cameras provided the homographies
can be established. With regards to the number of cameras, it is a compromise
between the increased information that can be obtained by having more cameras
and the increased cost of the system, a significant consideration in real-world
applications. Due to regulatory issues, our cameras had to be set up on existing
structures, which meant we had to rely on overpasses. Thus, our cameras were

Fig. 12 The PFM shows a vehicle in the upper, left of centre, part of the image. Although
it is slightly visible in the right image, it is not visible in the left image, and would
not be detected in the PFM. No shadow removal was used in the generation of this
PFM.

laid out in a linear arrangement. In this case, going from 3 to 4 or more cameras
was not judged to provide significantly more information.

The accuracy of the detected features, using the PFM, was computed as follows:
AD = (C − FP )/C (16)

where AD is the accuracy of the detection count, FP is the number of false
positives, and C is the number of moving features counted. This measures the
fraction of the detected moving features that are true moving features. The
detection rate accuracy, DR, is a measure of the fraction of moving features
detected by the PFM, and is computed as:

DR = (C − FP )/(C − FP + FN) (17)
where FN is the number of false negatives.

The truth value was established manually, by analysing all the images from
each camera. A vehicle was deemed present if it was present in all the camera
images as this provided confirmation, especially if only a small fraction of the
vehicle was present. It is worth noting that there were two main sources of errors:
shadows, and the incompleteness of the feature in the field of view of the PFM.
Examples of these are shown below in Fig. 12.

It is also worth noting that in higher traffic density situations, vehicles were
accurately detected as shown in Fig. 13.

Finally, the improvement in performance obtained by the use of a robust
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Fig. 13 Moderate to high volume traffic detection. Occlusion is seen in the left image. This
occlusion is removed in the lower left image by the use of the IPM (Inverse Perspective
Mapping) and the fusion of the images.

Fig. 14 Background model obtained by AMF.

background model was examined. An adaptive median filter was used for the
development of the background which is shown in Fig. 14.

The Shanghai images were processed over a one hour interval, which is suf-
ficiently long for outdoor illumination to start showing variation. A shadow
model was used to segment shadow area form the target region which is shown
in Fig. 15. The results were shown in 10 minute intervals to examine the ve-
hicle count over time intervals with minimal illumination changes. These were
compared to a conventional single camera system and the results are shown in

Fig. 15 Shadow model.

Table 2 Traffic count comparisons of a PFM solution and a conventional single camera
based solution.

Table 2.
The conventional single camera system used background subtraction, shadow

removal and threshold for vehicle detection. A counter-intuitive observation
was made during the analysis of the results from the single camera system.
It was observed that there were more vehicles detected with the conventional
system than with the multi-camera PFM algorithm. This was mainly due to
over-segmentation errors and illumination artefacts present in the single camera
system.

In addition, the system was examined in terms of speed measurement accuracy
with respect to the ground truth established by a single camera system. Results
of this comparison are shown in Table 3. For the speed measurements, lane
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Table 3 Comparison of speed measurements of the PFM based solution with the ground
truth.

markings, being of known dimensions and positioning, were used as reference
marks. Because the points of the vehicles closest to the road are subject to the
least distortion, especially in the PFM, the vehicle positions were determined
as the position of the rear of the vehicle (since vehicles were moving away from
the cameras). Time information was implicit in the frame number, consecutive
frames being 1/30ths apart. Because the displacement over 1/30th of a second,
even for a vehicle travelling at 120 km/hr (a speed significantly greater than the
speeds of the vehicles in our experiments), is on the order of 1 m, corresponding
to a few pixels, tracking was simply implemented by establishing the proximity
between the new positions and the previous positions.

The vehicle count results shown in Table 2 indicate that the PFM based ap-
proach to traffic monitoring is quite successful. This conclusion is further sup-
ported by the results of the speed measurements shown in Table 3.

Some vehicle extraction results obtained by the PFM solution are illustrated
in Fig. 16.

Figure 16 shows that even in the presence of occlusions, the vehicles are dif-
ferentiated in the PFM. However, Fig. 16 also shows rather clearly the general
tapered shape of the high-probability region of the PFM. This has not posed
a significant problem, although at higher traffic densities, it has the potential to
become so. These tails, which are largely the result of the distortions due to the
off-plane distance of the vehicle image points, are being examined and work is

Fig. 16 Results obtained with the PFM approach.

currently on-going to address this issue.

5. Conclusion

In this paper, a new approach to combining multi-camera information for the
effective detection of vehicles has been presented. In this solution, the various
images are re-projected into a common framework by perspectively undistorting
the individual images. We have shown that this method implicitly uses the
intrinsic and extrinsic parameters although no calibration is explicitly required.
In various tests, it has been shown to achieve a high accuracy in vehicle count
and speed measurements.

Currently we are pursuing further work in ancillary areas, such as shadow
removal, in order to improve the results of the background subtraction. As back-
ground subtraction is a significant pre-processing step in the PFM solution, the
PFM is potentially subject to issues that affect background subtraction, although
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in many cases, it is less of an issue than it is for a single camera solution.
Furthermore, for practical applications, the algorithm will need to have real-

time execution speed, that is, close to 30 frames per second (for NTSC standard
video) or 25 frames per second (for PAL standard video). There is ongoing
work in the optimization of the algorithm, especially with the advent of multi-
core processor systems. This algorithm is also currently being ported to a DSP
having an SIMD architecture to take advantage of the parallelism of DSP to
improve its performance.

In addition, work is being undertaken to offset the errors introduced by the
assumption that the image points represent a planar feature. Such developments
should enhance the proposed system by rendering positional accuracy and shape
extraction, especially in the third dimension (height), more robust, thus allowing
the system to be used for vehicle classification.
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