
���������
	�������������������������! #"#$�%

&('
)+*
†

† ,.-./�021.35426872/.9;:=<?>A@
B�C

D2E8F?G?H.IKJ5LNMPO5Q2R?S?TVUXWAY @[Z]\ IK^._XTVU[WKY @;ZX`]a[bKcAd8e[f[>g<h Z]i TjU[WKY @[Zlk S a5cAm.nXo=>g< h Zpi[frq[slt5u2v=kxw.y;z={K|=}Kfr~?v GH.Il�[T�U;WKY @[ZK���[�A����� M �A��������� I qXsAt8u[�l�8�[oK384�k[�P� T�UWKY @=Zlk��5�;z={?}X`�� G�� {�| Lanckriet et al.(2004) f�w8y��gc SVM �l�����v�`¡ .¢ M �g£g¤��gcK¥8¦ I w.y.�.v H.I8H {x§;�Km.n G[¨ � I=© cKª2«.¬8 H;®x¯
 GX¨ {2};`¡�2t°b�c5|

Fast Protein Classification with Multiple Networks

Koji Tsuda†

†Computational Biology Research Center,

National Institute of Advanced Industrial Science and Technology

Abstract

We propose an efficient method of protein classification using multiple protein net-

works. Multiple networks, such as physical interaction networks or metabolic net-

works, are combined to classify proteins, e.g., for function prediction. The combina-

tion weights are automatically determined by convex optimization so that noisy or

irrelevant networks can be automatically discarded. We compared our method with

the SVM-based approach by Lanckriet et al. (2004) in function prediction of 3588

yeast proteins, and obtained favorable results in computation time and prediction

accuracy.

1 Introduction

To understand the complex mechanisms of the

cell, it is crucial to identify the function of nu-

merous proteins. However, since identifying the

protein function by biological experiments is still

costly and difficult, there have been proposed a

number of methods for inferring protein function

by computational techniques (see [Tsuda and No-

ble, 2004] and references therein). Typically, these

methods use various kinds of information sources

such as gene expression data, phylogenetic profiles

and subcellular locations, because no single source

is sufficient to reliably identify protein functions.

Recently, it is getting increasingly popular that

the relations among the proteins are represented

as a network. In such a network, nodes represent

genes or proteins, and edges represent physical in-

teractions of the proteins [von Mering et al., 2002],

gene regulatory relationships [Lee et al., 2002],

closeness in a metabolic pathway [Kanehisa et al.,

2004], similarities between protein sequences, etc.

Protein networks have been used for function pre-

diction in a number of approaches, for example,

majority vote [Schwikowski et al., 2000], graph-

based [Vazquez et al., 2003], Bayesian [Deng et al.,

2003], discriminative learning methods [Lanckriet

et al., 2004a], and probabilistic integration by log-

likelihood scores [Lee et al., 2004].

–1–

島貫
テキストボックス
社団法人　情報処理学会　研究報告IPSJ SIG Technical Report

島貫
テキストボックス
2005－BIO－1（1）　2005／7／25

島貫
テキストボックス
－1－

Among these approaches, the support vector

machine (SVM) has been particularly successful

in function prediction using multiple data includ-

ing networks [Lanckriet et al., 2004a,b]. In or-

der to combine different data types (e.g. vec-

tors, trees and networks), each data set is rep-

resented by a kernel matrix. When we have n

proteins, the kernel matrix is an n × n positive

definite dense matrix, representing similarities be-

tween proteins. A kernel matrix is obtained from

each data set. Finally, the kernel matrices are inte-

grated into one matrix and fed into an SVM for in-

ferring the labels of unannotated proteins. For ex-

ample, the SDP/SVM method by Lanckriet et al.

[2004a] uses a weighted sum of kernel matrices,

where the weights are automatically determined

such that irrelevant data sets can be discarded.

However, one of the inherent problems of

SDP/SVM is its computational inefficiency. In

theory, the method has the time complexity of

O(n3) where n is the number of data or the di-

mension of kernel matrix. Thus, when the data is

large-scale, learning may not be finished in a rea-

sonable time. 1 The inefficiency is mainly caused

by the fact that the kernel matrix is dense. Com-

puting the product of two dense matrices already

takes O(n3). In general, it is difficult to make the

kernel methods faster than O(n3) without rather

radical approximations (e.g., low rank approxima-

tion). One may attempt to sparsify the kernel

matrix by setting small values to zero. But, in

general, a kernel matrix artificially “sparsified” is

no longer positive definite, hence it may introduce

local minima or convergence problems into the op-

timization problem for learning.

Another drawback of the SDP/SVM method

arises when a protein network is used as an infor-

mation source. Since the SVM requires a kernel

matrix of the data source, each network has to be

converted to a corresponding kernel matrix. Con-

ventionally, the diffusion kernel is used for that

purpose [Kondor and Lafferty, 2002]. However, it

has a time complexity of O(n3), and produces a

dense matrix of n × n, making it thus computa-

tionally expensive both in time and memory.

In recent years, we have seen a significant

progress of graph-based semi-supervised learning

1Recently, a fast and greedy approximation method was
proposed [Bach et al., 2004]. But the worst case complexity
does not change.

�
1: Functional class prediction on a protein net-

work: Focusing on a particular functional class,

the function prediction problem boils down to two-

class classification. An annotated protein is la-

beled either by +1 or −1. The positive label indi-

cates that the protein belongs to the class. Edges

represent associations between proteins. The task

is to predict the class of the unlabeled proteins

marked as ‘?’.

methods in the machine learning community [Zhou

et al., 2004]. As in kernel methods, n proteins are

represented as an n × n symmetric matrix, but

now it is sparse and therefore can be depicted as

an undirected graph (Figure 1), where each edge

represents a non-zero entry. Our assumption is

that an edge represents association of two proteins,

thus the labels of two adjacent nodes are likely to

be the same (See Section 2 for details). Each edge

can have a positive weight, representing the de-

gree of association. Focusing on a particular func-

tional class, the function prediction problem boils

down to a two-class classification problem. For

annotated proteins, the labels are known (+1 for

those belonging to the class, -1 otherwise). Our

task is to predict the labels of unannotated pro-

teins (’?’ in the figure). In graph-based learning

algorithms, the prediction can be done by solving

a linear system with a sparse coefficient matrix,

which is faster than the SVM learning by orders

of magnitude [Spielman and Teng, 2004].

One important problem in graph-based learning,

which has not yet been addressed, is the combina-

tion of multiple graphs (Figure 2). A graph can

be generated from a kernel matrix by threshold-

ing. Also, one can use various kinds of protein

networks directly. Since it seems unlikely that one

graph contains all the information necessary for

function prediction, one has to integrate all the

graphs into one. However, some graphs can be

harmful for accurate prediction, because they con-

–2–

島貫
テキストボックス
－2－

�
2: Multiple graphs: A set of graphs is given,

each of which depicts a different aspect of the pro-

teins. Since different graphs contain partly inde-

pendent and partly complementary pieces of infor-

mation, one can enhance the total information by

combining these graphs.

tain a number of false edges, or because the data

itself has inherently nothing to do with the func-

tion prediction. Therefore, we need an algorithm

to select “good” graphs automatically. The need

for automatic selection will get larger, as the num-

ber of available data increases due to the progress

of biological screening techniques.

In this paper, we propose a new algorithm to

assign weights to multiple networks, and thereby

select important ones. The selection mechanism

is close to the way that the SVM selects support

vectors. Label inference and weight assignment

are formulated as one convex optimization prob-

lem (i.e., no local minima problems).

We applied our approach to functional class pre-

diction of 3588 yeast proteins. We used five net-

works in total, three of which come from pro-

tein networks (co-participation in a protein com-

plex, physical interactions, genetic interactions),

and the remaining two are generated from non-

network data (Pfam domain structure and gene

expression). In comparison with the SDP/SVM

approach, we get comparable prediction accuracy

in a remarkably short time. When all the net-

works are combined with uniform weights, the pre-

diction took only 1.4 seconds on a standard PC.

Even when the weights are iteratively optimized,

it finished in 49 seconds.

2 Graph-based Learning

First, we introduce the graph-based learning al-

gorithm for a single network [Zhou et al., 2004].

Let us assume a weighted graph G with n nodes in-

dexed as 1, . . . , n. A symmetric weight matrix, de-

noted as W , represents the strength of linkage. All

weights are nonnegative (wij ≥ 0), and if wij = 0,

there is no edge between nodes i and j. We assume

that the first p training nodes have binary labels,

y1, y2, . . . , yp, where yi ∈ {−1, 1}, and the remain-

ing q = n − p test nodes are unlabeled. The goal

is to predict the labels yp+1, . . . , yn by exploiting

the structure of the graph under the assumption

that a label of an unlabeled node is more likely to

agree with those of more adjacent or more strongly

connected nodes. In our case, the label indicates

whether a protein belongs to a functional class or

not. We solve this binary classification problem for

every class to finally predict the functional classes

of proteins.

Let us define an n-dimensional score vector f =

(f1, · · · , fn)>. In learning, we determine f using

all the available information, and in prediction,

the labels are predicted by thresholding the score

fp+1, . . . , fn. We require (A) the score fi should

not be too different from the scores of adjacent

vertices, and (B) the scores should be close to the

given label yi in training nodes. One can obtain f

by minimizing the following quadratic functional:

p∑

i=1

(fi − yi)
2 + µ

n∑

i=p+1

f2
i + c

n∑

i,j=1

wij(fi − fj)
2.

The first term corresponds to the loss function in

terms of condition (B), and the third term de-

scribes the smoothness of the scores in terms of

condition (A). The parameter c trades off loss ver-

sus smoothness. The second term is a regulariza-

tion term to keep the scores of unlabeled nodes in

a reasonable range. Alternative choices of smooth-

ness and loss functions can be found in Chapelle

et al. [2003]. From later on, we focus on the spe-

cial case µ = 1 [Zhou et al., 2004]. Then, the three

terms degenerate to the following two terms,

min
f

(f − y)>(f − y) + cfT Lf , (1)

where y = (y1, . . . , yp, 0, . . . , 0)>, and the matrix

L is called the graph Laplacian matrix [Chung,

1997], which is defined as L = D − W where

–3–

島貫
テキストボックス
－3－

D = diag(di), di =
∑

j wij . Instead of L, the ‘nor-

malized Laplacian’, L̃ = D− 1

2 LD− 1

2 can be used

to get a similar result [Chung, 1997]. The solution

of this problem is obtained as

f = (I + cL)−1y (2)

where I is an identity matrix.

Actually, the score vector f is obtained by solv-

ing a large sparse linear system y = (I + cL)f .

This numerical problem has been intensively stud-

ied, and there exist efficient algorithms, whose

computational time is nearly linear in the number

of nonzero entries in the coefficient matrix [Spiel-

man and Teng, 2004]. Therefore, the computa-

tion gets faster as the protein network gets sparser.

Moreover, when the linear system solver is paral-

lelized and distributed on a cluster system, the

graph-based learning algorithm easily scales to

much larger networks.

3 Combination of Multiple

Networks

Since proteins are represented by many aspects

(e.g., amino acid sequences, structures and inter-

actions), it is natural to assume multiple networks.

However, we do not really know in advance, which

networks are important for predicting functional

classes. Selecting exactly one network out of m

networks would be relatively easy, because one

can solve the learning problem using each net-

work, and select the best one in terms of, say,

the cross-validation error. However, as the integra-

tion of multiple data sources is essential to achieve

high accuracy [Lanckriet et al., 2004a], our task

is rather to choose m0(≤ m) networks out of m.

To examine every possible combination, we have

to solve a combinatorial number of (
m

m0

) learn-

ing problems. In this section, we instead propose

a convex programming-based algorithm to deter-

mine the important networks efficiently. The con-

tents of the last section are already popular in the

machine learning community. The novelty of this

paper lies in the algorithm described in this sec-

tion. Without loss of generality, the optimization

problem (1) is rewritten in the constrained form

as

min
f ,γ

(f − y)>(f − y) + cγ, f>Lf ≤ γ. (3)

When we have multiple Laplacian matrices

L1, . . . , Lm, this problem can be extended to take

all of them into account,

min
f ,γ

(f−y)>(f−y)+cγ, f>Lkf ≤ γ, ∀k. (4)

This amounts to taking the upper bound of the

smoothness function f>Lkf over all networks and

applying it for regularization.

To investigate the properties of the solution of

(4), let us derive the dual problem. Our convex

optimization problem can be rewritten as the fol-

lowing min-max problem using Lagrange multipli-

ers,

max
α,η

min
f,γ

(f − y)>(f − y) + cγ

+
∑m

k=1
αk(fT Lkf − γ) − ηγ,

(5)

where the Lagrange multipliers satisfy αk, η ≥ 0.

If the inner minimization problem is solved analyt-

ically, we end up with the maximization problem

with respect to the Lagrange multipliers only. This

maximization problem is called the “dual prob-

lem”, which is often easier to solve. The optimal

solution of the original problem is written in terms

of the Lagrange multipliers, which assist in the

interpretation of the optimal solution. For exam-

ple, for support vector machines, the analysis using

the dual problem is effectively used for explaining

the basic properties of the discriminant hyperplane

(e.g., large margin and support vectors).

Let us solve the inner optimization problem.

Setting the derivative with respect to γ to zero,

we get

c −

m∑

k=1

αk = η. (6)

Since η ≥ 0, the sum of αk is constrained as∑m
k=1

αk ≤ c. Substituting (6) into (5), we have

(f − y)>(f − y) +

m∑

k=1

αkfT Lkf (7)

Setting the derivative with respect to f to zero,

we get

(I +
m∑

k=1

αkLk)f = y. (8)

–4–

島貫
テキストボックス
－4－

This is solved as

f = (I +

m∑

k=1

αkLk)−1y. (9)

Now the optimal solution of f is written in terms of

the Lagrange multipliers αk. Comparing (9) with

the single network solution (2), it is clear that the

Lagrange multipliers αk play a role as the combi-

nation weights of the networks. Also, the param-

eter c constrains the sum of all weights.

Substituting (9) into the Lagrangian (5), we get

the following dual problem:

maxα y>y − y>(I +
∑m

k=1
αkLk)−1y∑

k αk ≤ c.
(10)

Ignoring a constant term, this maximization prob-

lem is equivalent to the following minimization

problem:

minα y>(I +
∑m

k=1
αkLk)−1y∑

k αk ≤ c.
(11)

Denote by d(α) the dual objective function (11).

Due to the Karush-Kuhn-Tucker (KKT) condi-

tions, we have αk(f>Lkf − γ) = 0 at the opti-

mal solution. Therefore, αk = 0 iff f>Lkf < γ,

and so αk > 0 iff f>Lkf = γ. If the constraint

f>Lkf ≤ γ is satisfied as an equality only for

several networks, we get a sparse solution for αk,

namely some of αk’s are exactly zero. The net-

works with zero weight (i.e., αk = 0) are consid-

ered as unnecessary, because the optimal score vec-

tor f would not change, even if we removed those

networks. On the other hand, the networks with

nonzero weight satisfy f>Lkf = γ and play a es-

sential role in determining the score vector.

3.1 Regularized Version

In combining networks, one has to balance two

contradicting goals: selection and integration. In

practical applications, we found the above algo-

rithm too selective (i.e., the maximum weight is

too dominant). To make the weights {αk}
m
k=1

more uniform, we introduce other terms as follows:

min
f ,ξ,γ

(f − y)>(f − y) + cγ + c0

∑m
k=1

ξk

fT Lkf ≤ γ + ξk, ξk ≥ 0, γ ≥ 0.

(12)

The dual problem then reads

minα y>(I +
∑m

k=1
αkLk)−1y ≡ d(α)

0 ≤ αk ≤ c0,
∑

k αk ≤ c.
(13)

This extension adds a new parameter c0, which

gives us large flexibility. When c0 = c, we re-

cover the solution of (11), and on the other ex-

treme (c0 = c/m), we obtain uniform weights.

3.2 Optimization

The optimization problem is solved, for ex-

ample, by gradient descent. This requires

the computation of the dual objective d(α) as

well as its derivative. The derivative is de-

scribed as ∂d
∂αj

= −y>(I +
∑m

k=1
αkLk)−1Lj(I +∑m

k=1
αkLk)−1y. Note that we used the relation

∂
∂x

Y −1 = −Y −1(∂
∂x

Y)Y −1. Although we have

the inverse matrix (I +
∑m

k=1
αkLk)−1 in the so-

lution (9), the objective (11), and the deriva-

tive as well, we do not need to calculate it ex-

plicitly, because it always appears as the vector

(I+
∑m

k=1
αkLk)−1y, which can be obtained as the

solution of sparse linear systems. Therefore, the

computational cost of the dual objective and the

derivative is nearly linear in the number of nonzero

entries of
∑m

k=1
αkLk [Spielman and Teng, 2004].

4 Function Prediction Exper-

iments

The proposed method was evaluated in function

class prediction of yeast proteins, based on the

dataset provided by Lanckriet et al. [2004a]. The

dataset contains 3588 proteins, and the function

of each protein is labelled according to the MIPS

Comprehensive Yeast Genome Database (CYGD-

mips.gsf.de/proj/yeast). It focuses only on the 13

highest-level categories of the functional hierarchy.

Notice that a protein can belong to several func-

tional classes. We solved a two-class classification

problem for every functional class, and evaluated

the accuracy of each classification.

Table 1 lists the five different types of protein

networks used in experiments. The networks W1

and W5 are created from non-network data. The

networks W2, W3, and W4 have binary edges (i.e.,

0/1 weights), and are taken from the database di-

rectly. See [Lanckriet et al., 2004a] for more in-

–5–

島貫
テキストボックス
－5－

�
1: Protein networks used in the experiment. ‘Density’ shows the fraction of non-zero entries in the

respective Laplacian matrix.

matrix description density (%)

W1

Network created from Pfam domain structure. A protein is represented by a
4950-dimensional binary vector, in which each bit represents the presence or
absence of one Pfam domain. An edge is created if the inner product between
two vectors exceeds 0.06. The edge weight corresponds to the inner product.

0.7805

W2

Co-participation in a protein complex (determined by tandem affinity purifi-
cation, TAP). An edge is created if there is a bait-prey relationship between
two proteins.

0.0570

W3 Protein-protein interactions (MIPS physical interactions) 0.0565

W4 Genetic interactions (MIPS genetic interactions) 0.0435

W5

Network created from the cell cycle gene expression measurements [Spellman
et al., 1998]. An edge is created if the Pearson coefficient of two profiles exceeds
0.8. The edge weight is set to 1. This is identical with the network used in
[Deng et al., 2003]

0.0919

formation. The sparsity of the Laplacian matri-

ces (i.e. the fraction of nonzero entries) is shown

in the last column of the table. All the matrices

are very sparse (0.7% density in maximum), which

contributes to memory-saving. If one tries to use

diffusion kernel, it will take much more memory

(1/0.007 ≈ 142). In learning, all the networks

were transformed to normalized Laplacian matri-

ces Lk’s. The prediction accuracy is evaluated by

five-fold cross-validation three times. For each par-

tition of training and test nodes, the ROC (re-

ceiver operating characteristic) score is calculated,

and then averaged over all the five partitions. The

value of parameter c was determined by the results

of search over

c ∈ {0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 25, 50, 100}.

And the chosen value for each class is as follows:

(5, 5, 25, 25, 10, 10, 5, 5, 10, 10, 100, 2.5, 25).

The proposed method was compared with the

state of the art SDP/SVM method based on the

reported results [Lanckriet et al., 2004a]. Succeed-

ingly, we compared the proposed method, namely,

‘integration by optimized weights’ with ’integra-

tion by fixed weights.’

4.1 Comparison with SDP/SVM

Figure 3 presents the comparison between the

ROC scores of the proposed method and those of

SDP/SVM method reported by Lanckriet et al.

[2004a]. We also plot the scores of the Markov

random field (MRF) method proposed by Deng

et al. [2003]. For most classes, the proposed

method achieves high scores, which are similar to

the SDP/SVM methods. In classes 11 and 13 the

proposed method was worse (but still better than

the MRF method), which is probably due to the

superior generalization performance of the SVM.

We could not perform tests of significance since it

was not available to obtain all the detail exper-

imental results of MRF or SDP/SVM. However,

taking into account the simplicity and efficiency

(and thus scalability) of the proposed method, we

consider the shown results good enough to moti-

vate the use of our method instead of SDP/SVM.

Solving the sparse linear system took only 1.41

seconds (standard deviation 0.013) with MATLAB

command mldivide in a standard 2.2Ghz PC with

1GByte of memory. Solving the dual problem (13)

that includes multiple times of computation for

the sparse linear system, took 49.3 seconds (stan-

dard deviation 14.8) with MATLAB command

fmincon. On the contrary, SDP/SVM method

–6–

島貫
テキストボックス
－6－

1 2 3 4 5 6 7 8 9 10 11 12 13

0.6

0.7

0.8

0.9

1

Function Class

R
O

C
 S

co
re

�
3: ROC score comparison between MRF, SDP/SVM, and Lopt for 13 functional protein classes: White

bars correspond to the MRF method of Deng et al. [2003]; gray bars correspond to the SDP/SVM method

of Lanckriet et al. [2004a]. Black bars correspond to Lopt.

takes several hours (according to discussion with

an author of Lanckriet et al. [2004a]). Thus, the

shorter computational time will be compromis-

able on non-significant loss of accuracy against

SDP/SVM method.

4.2 Comparison with Fixed Weight

Integration

Another combined network was defined as

Lfix = 1

m

∑m
k=1

Lk. Note that the uniform weights

corresponds to the solution of (13) when c0 =

c/m = 0.2c. The ROC scores for all functional

classes are shown in Figure 4, together with the

weights of networks. The optimization of weights

did not always lead to better ROC scores (ex-

cept for the classes 10, 11, 13). However, the

advantage of Lopt is that redundant networks are

automatically identified. Looking at the weights

of Lopt in the figure, W4 and W5 almost always

have very low weights, which suggests that these

two networks can be removed. The weights would

be valuable when function prediction experiments

are conducted in similar situations, e.g., for dif-

ferent species, because one needs not to prepare

the redundant data. There was no statistically

significant difference between Lopt and Lfix in

performance (McNemar’s test, significance level

α=0.05).

5 Concluding Remarks

We have presented a new algorithm to classify

proteins based on multiple networks. The appli-

cation of this algorithm is not limited to func-

tion prediction. Many problems such as subcel-

lular localization and operon detection can also

be formulated as classification problems on net-

works, and solved in a similar way. We believe

that graph-based learning algorithms are going to

become standard methods in computational biol-

ogy, because they exhibit very good generalization

ability as well as excellent efficiency both in terms

of memory and speed. In future work, we will fol-

low this direction and try to solve other problems

on multiple networks.

�������

F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel
learning, conic duality, and the SMO algorithm. In
Proceedings of the Twenty-first International Con-
ference on Machine Learning (ICML). ACM Press,
2004.

O. Chapelle, J. Weston, and B. Schölkopf. Cluster
kernels for semi-supervised learning. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in
Neural Information Processing Systems (NIPS) 15,
pages 585–592. MIT Press, 2003.

F.R.K. Chung. Spectral Graph Theory. Number 92 in
Regional Conference Series in Mathematics. Ameri-
can Mathematical Society, Providence, RI, 1997.

M. Deng, T. Chen, and F. Sun. An integrated prob-
abilistic model for functional prediction of proteins.

–7–

島貫
テキストボックス
－7－

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13
Function Class

optimized

fixed

R
O

C
 S

co
re

C
oe

ffi
ci

en
ts

fixed

optimized

�
4: Prediction accuracy for 13 functional protein classes. The thin and thick lines in the upper figure

show the ROC scores of Lfix and Lopt, respectively. In the middle and lower figures, the combination

weights of Lfix and Lopt are described, respectively.

In W. Miller, M. Vingron, S. Istrail, P. Pevzner, and
M. Waterman, editors, Proceedings of the Seventh
Annual International Conference on Computational
Biology (RECOMB), pages 95–103. ACM, 2003.

M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and
M .Hattori. The KEGG resources for deciphering
genome. Nucleic Acids Res., 32:D277–D280, 2004.

I. Kondor and J. Lafferty. Diffusion kernels on graphs
and other discrete structures. In C. Sammut and
A.G. Hoffmann, editors, Machine Learning, Pro-
ceedings of the Nineteenth International Conference
(ICML 2002), pages 315–322. Morgan Kaufmann,
2002.

G. R. G. Lanckriet, M. Deng, N. Cristianini, M. I.
Jordan, and W. S. Noble. Kernel-based data fusion
and its application to protein function prediction in
yeast. In Proceedings of the Pacific Symposium on
Biocomputing (PSB), 2004a.

G.R.G. Lanckriet, T. De Bie, N. Cristianini, M.I. Jor-
dan, and W.S. Noble. A statistical framework for
genomic data fusion. Bioinformatics, 20:2626–2635,
2004b.

I. Lee, S.V. Date, A.T. Adai, and E.M. Marcotte. A
probabilistic functional network of yeast genes. Sci-
ence, 306 (5701):1555–1558, 2004.

T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-
Joseph, G. K. Gerber, N. M. Hannett, C. R. Har-
bison, C. M. Thompson, I. Simon, et al. Transcrip-
tional regulatory networks in Saccharomyces cere-
visiae. Science, 298:799–804, 2002.

B. Schwikowski, P. Uetz, and S. Fields. A network
of protein-protein interactions in yeast. Nature
Biotechnology, 18:1257–1261, 2000.

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer,
K. Anders, M. B. Eisen, P. O. Brown, D. Botstein,
and B. Futcher. Comprehensive identification of cell
cycle-regulated genes of the yeast Saccharomyces
cerevisiae by microarray hybridization. Mol. Biol.
Cell, 9:3273–3297, 1998.

D.A. Spielman and S.H. Teng. Nearly-linear time algo-
rithms for graph partitioning, graph sparsification,
and solving linear systems. In Proceedings of the
26th annual ACM symposium on Theory of comput-
ing, pages 81–90. ACM Press, 2004.

K. Tsuda and W.S. Noble. Learning kernels from bi-
ological networks by maximizing entropy. Bioinfor-
matics, 20(Suppl. 1):i326–i333, 2004.

A. Vazquez, A. Flammini, A. Maritan, and A. Vespig-
nani. Global protein function prediction from
protein-protein interaction networks. Nature
Biotechnology, 21(6):697–700, 2003.

C. von Mering, R. Krause, B. Snel, M. Cornell, S. G.
Olivier, S. Fields, and P. Bork. Comparative as-
sessment of large-scale data sets of protein-protein
interactions. Nature, 417:399–403, 2002.

D. Zhou, O. Bousquet, J. Weston, and B. Schölkopf.
Learning with local and global consistency. In Ad-
vances in Neural Information Processing Systems
(NIPS) 16, pages 321–328. MIT Press, 2004.

–8–E

島貫
テキストボックス
－8－

