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Probabilistic models are a common and useful tool in bioinformatics due to the amount of noise known to
persist in biological data. A probabilistic tree Markov model, called PSTMM, that captures dependencies
between siblings has been introduced previously. In this work, we have modified this model to retrieve
profiles in tree structures of carbohydrate sugar chains, or glycans, calling this new model profilePSTMM.
While the parameter estimation algorithms are only slightly modified, more useful information is obtained to
characterize glycan structures, which currently contain much noise because of the recent advances of
informatics in the field of glycobiology. We introduce this new profile version of PSTMM, and we illustrate
its application to glycan structures known to be recognized by glycan-recognizing proteins called galectins.

1 Introduction

Glycans are the third major class of biomolecules, after DNA and proteins. In contrast to the linear
structure of DNA and proteins, glycans are branched, tree structures of monosaccharide units, or
sugars. These glycans are mainly found on the cell surface, and they are heavily involved in major
biological functions as their structures provide the signals for various developmental processes. This
occurs through recognition of glycan structures by proteins; thus the interactions between glycans and
proteins and their binding formations control the processes in the cell and the cell matrix. It has been
conjectured that the structures at the leaves of the tree (subtrees) are recognized by lectins in order to
facilitate binding. Thus, we were interested in capturing such formations using a probabilistic model.
(For further basic information regarding glycans and glycobiology, the reader is referred to Varki et
al.[16].)

Probabilistic models have been used in bioinformatics since the days of Margaret Dayhoff when
she first developed a score matrix for protein sequences to better assess amino acids according to their
evolutionary distances[7]. Since then, the BLOSUM score matrix[11] was introduced based on a more
computational approach focused on the data at hand and their alignment frequencies, followed by the
now popular hidden Markov models (HMM)[5, 9] and profile HMMs[8], which eventually led to the
development of databases for motif profiles of amino acid sequences such as Pfam[4] and SCOP[14].

Probabilistic models for trees first came out in 1998 with an application to signal processing[6]
and later in 2001 for multiscale image segmentation[13]. Then Ueda et al. developed one for labeled
ordered trees with a sibling-dependent tree Markov model called PSTMM][15, 1]. This model was
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applied to carbohydrate sugar chains, or glycans, and it was able to successfully capture patterns
known to exist in one of the largest classes of these glycans.

In this work, we have extended the PSTMM model to one that captures motif profiles in glycans, in
a model aptly called profile PSTMM. We illustrate the utility of this new model with the preliminary
experimental results of motif profiles found in the glycan structures that are recognized by proteins
called galectins.

2 Background

Because of the diversity of fields covered in this paper, we provide a brief explanation of some back-
ground information, including basic terminology, introduction to glycobiology and glycans, and the
PSTMM model.

2.1 Basic Terminology

Two nodes in a tree  and y are siblings if they have the same parent, and a node with no children is
a leaf. Siblings are ordered, so the first child of a parent is considered the elder sibling of the second,
etc.

The following notation is used in this paper. T = {Ti,...,T|p} is a set of labeled ordered
trees, where T,, = (V,, Ey), Vi (:{m’f,...,vaul}) is a set of nodes, and E, is a set of edges. z%
is the root of tree T, |V| = max, V4|, ty(i) is a subtree of T}, having z¥ as the root of t,(i),
Cu(p) €{1,...,[Cu(p)|} is a set of indices of children of z) in Ty, and |C| = max,, |Cu(p)|. If £ (p)
and z, (p) are the eldest and youngest child of node p, respectively, then Y., (p) = Cu(p) —2% (p). Each
node z} has label o} € ¥, where ¥ = {01,...,0x|} is the set of labels (i.e., the alphabet) applied to
the nodes. For simplicity, we will often use j for node z¥ if understood from the context, and for node
j, we will use ¢, k and p to refer to the immediately elder sibling, the immediately younger sibling,
and the parent, respectively.

2.2 Glycobiology and Glycans

Glycobiology is the study of glycans, which covers the study of carbohydrate structure as well as
function in interaction with proteins and the biological system. There has been much work recently
in glycoinformatics, which entails the structural determination of specific glycan structures through
such technologies as mass spectrometry and nuclear magnetic resonance (NMR). A term we use for
the computational analysis of glycan data at the glycome level is glycome informatics, starting from
glycan structure comparison algorithms([3], corresponding score matrices[2], onto expression analysis
of glycosyltransferases and glycome level representations of all possible glycan structures known[10].

Glycan structures themselves are labeled ordered trees, with nodes representing monosaccharides
and edges representing glycosidic bonds. Glycosidic bonds link two monosaccharides by one of their
hydroxyl groups, usually 2, 3, 4, or 6, via one of two types of linkages, a or 5.

2.3 PSTMM

The probabilistic sibling-dependent tree Markov model was shown to be able to capture patterns in tree
structures, especially glycans[15]. Algorithms were also developed which could estimate parameters
and find most likely paths within the bounds of the maximum known limits. In comparison to HMMs
and tree Markov models, PSTMM included dependencies between siblings such that the order between
them could be maintained.Then, in addition to the classic forward and backward parameters of Baum-
Welch, upward and downward parameters were incorporated to estimate parameters most efficiently.
Thus, a tree’s parameters would be estimated starting from the leaves and traveling up the parents,
and forward and backward between siblings, up to the root. Then downward parameters would be
estimated in a breadth-first fashion. Finally, most likely state paths were estimated by finding the
states with the highest probabilities.
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Experiments were performed on glycan structures using PSTMM, and it was shown that patterns
could indeed be captured better than previous models. In fact, one of the most popular classes of
glycans called N-glycans were analyzed, and PSTMM found the three known subclasses of N-glycans
called hybrid, high-mannose, and complex type, which are characterized by patterns at their leaves.
Thus the utility of this model in bioinformatics was illustrated.

3 Profile PSTMM

The incorporation of different types of states into PSTMM results in a profile PSTMM where motif
profiles may be determined from a set of tree structures. However, this is easier said than done. First,
each state in PSTMM is considered a match state. Then insert and delete states are added for each
corresponding match state position. Transitions are added appropriately, including insert loops, as
well as a begin state to the root state position, and an end state leaving the youngest sibling among
all leaves. Also, instead of one type of transition, this new model contains two: one for going down
(to match children) and one for going right (to match younger siblings). Figure 1 illustrates this new
model. In this figure, match and delete states are combined for simplicity as they always appear at
the same positions. Similarly, when both down and right transitions start and end at the same states,
they are drawn as a single black transition representing both.

Just as profile HMMs implement insertion and deletion states, profile PSTMMs also implement,
M, I, and X as match, insertion, and deletion states, respectively. There is also a single BEGIN
state and a single END state. BEGIN is a silent state that transitions to the first root state and only
goes down. The silent END state transitions from the youngest child leaf states. The profile PSTMM
model thus looks like the following:

——=—=-p Down ‘

----» Right f
———» Down/Right C 6 \-\ 8
D Match/Delete 'l o~
/ T
O Insert A'/ D‘ == @

Figure 1: Model sketch of profilePSTMM. Match and delete states are combined for simplicity; they
always appear at the same position together. There are also two types of transitions: one that goes
down to match children, and one that goes right to match younger siblings. For simplicity, when
both down and right transitions start and end at the same states, they are drawn as a single black
transition representing both. There are also two special states, BEGIN and END; BEGIN transitions
to the first node, and END transitions out of the last (n representing the youngest child leaf state
among all leaves in the state model).

The position of each state is fixed and our model has three probability parameters, 7, a and
b. The initial state probability n[l](= P(z1 = s;;0) is the probability that the state of the root
node is s;. The state transition probability a[{s,,si},sm] (= P(z] = smlzy = 84,2 = 51;0)) is the
conditional probability that the state of node z; is s, at position m given that the states of the parent

(zp) and immediately elder sibling (z;) are s, and s;, respectively, and the label output probability
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b[si, o] (= P(o;-‘ = ah|z;f = s1;6)) is the conditional probability that the output of node z; is oy, given

that the state is s; at position I. Note that ), n[l] =1, Y a[{sq,s1},5m] =1 and ), b[s;,04] = 1.
For convenience, we can set the BEGIN state as a MATCH state, and ignore the DELETE state,

and we thus allow transitions from the BEGIN state to Iy and X;. Correspondingly, the END state

collects all transitions from the youngest sibling states.

3.1 Parameter Estimation

These probability parameters are estimated using the same four auxiliary probability parameters as
PSTMM, but adjusted for the different types of states fixed at each position. These are the forward
probability F;(s,, si), backward probability B;(sg, si), upward probability U;(s,) and downward prob-
ability D;(sq). For each probability parameter, i represents node z; in the given tree, and s, and
s; are states at position ¢ and [, respectively. s can be either a MATCH (M), an INSERT (I) or a
DELETE (X) state. For convenience, for a node j, we usually represent its parent, older sibling, and
younger sibling by p, i, and k, respectively.

A straightforward application of the EM algorithm used for estimating and maximizing the likeli-
hood can be applied. Below are the algorithms used for estimation.

3.2 Initialization

We only need to initialize the forward and downward parameters as follows. Note that all values are
unlogged values, but the actual implementation uses log calculations.

Fo(Sq,Mo) = 0
Do(Mo) = O

3.3 Forward Probability

If z; =xz(p) then a[{sq, —}, M],

0.w.
Fi(s,, My) = Fi(sq, My)Us(Mg)a[{sq, My}, Mi]+
7o Fi(sq, In)Ui(Mi)a[{sq, I }, Mi]+
Fi(sq, Xi)Ui(My)al{sq, Xi}, Mi]
where z; is the older brother of z;, s, is the state of ;.
If z; =x(p) then a[{sq, —}, 1],
0.w.
F(S I) — Fi(SQ7Ml)Ui(Il)a[{sanl}aIl]+
7 Fi(sq, I)Ui(I)al{sq, I}, ]+
Fi(sq, X0)Ui(I)a[{sq, X1}, 1]
where z; is the older brother of z;.
If z; =x(p) then a[{sq, -}, Xi],
0.W.
Fj(Sq,Xl) — Fi(sank)a'[{sank}le]+

Fi(sq, Ir)al{sq, Ir }, Xi]+
Fi(sq, Xk)a[{sq, Xi}, Xi]
where z; is the older brother of z; and sy, is the state of z;.
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3.4 Backward Probability

If z} =2 (p) then U;(sk),
0.W. U,(Mk)a[{sq, Sk}, Ml]Bj(Sq, Ml)+
Bi(sq, sk) = Ui(Ix)al{sq, sk}, Ik Bj(sq, Ik) +
Ui(Xk)a[{quSk}aXl]Bj(quXl))
where z; is the younger brother of z; and s; is the state of z;.

3.5 Upward Probability

([ If Cyu(p) =0 then
if s4 is a delete state then 1
else b[sy, 0p],
o.w. if s, is a match or insert state then
blsg, 0p](Fj(5¢, Mm)Bj(sq, M)+
Uy(s,) = Fj(sq, Im)Bj(sq, Im)+
P Fj(sq, Xm)Bj(sq, Xm))
else if s, is a delete state then
Fj(sq, Mm)Bj(sg, Mm)+
Fj(sqv Im)Bj(stN L)+
Fj(sq, Xm)Bj(sq, Xm))
[ where sy, is the state of child z; € Cy(p)

3.6 Downward Probability

(

If 7 is the root then =,
else if j = x_, (p) then
Dy (My)b[My, 0p]F (Mg, s1)+
Dy (14)bl1y, 0p]F(Ig, 51)+
Dy (Xq)Fj(Xg, 51).-
0.w.
Dj(si) = Dy, (Mg)b[My, 0p] Fj(My, s1)
{a[{M47 Sl}v Mm]Bk(M47 Mm) + a,[{Mq, Sl}v [l]Bk(M47 Il) + a,[{Mq, Sl}v Xm]Bk(Mq: Xm)}+
Dy (1)1, 0p] Fs (11, 51)
{al{li, s}, M| B (It, M) + al{Iq, si}, Il Be(Iq, 1) + a[{Iq, 51}, Xn] Br(Ig, Xim) b+
Dp(Xq)Fj(ansl)
{al{Xq, st} M) Be(Xq, M) + a[{Xg, s}, 1| Be (X, 1) + a[{ Xy, 81}, Xin] B (Xg, Xm) }
where zj, is the younger brother of z; and m is the younger brother state of [.

\

3.7 Likelihood Computation

Just as for PSTMM, the likelihood for a given tree can still be calculated by Uy (Mp) as in the following
equation:

M,I,X

L(T;0) = Z Z w[s:1]Uo (1)
l s

Using these four probability parameters, expectation values are computed in the same manner as
when estimating PSTMM.

4 Experimental Motif Profiles

Profile PSTMM was tested on the glycan structures that are believed to be recognized by certain
galectins, a protein family known to interact with glycans. Based on a review by Hirabayashi et al.[12],
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measurements of galectin affinity were compiled, from which glycan specificity could be estimated.
We took the galectins measured in this work to determine the actual glycans that are most likely
recognized. These glycans were then profiled using profile PSTMM.

4.1 Data set

The glycan data set consisted of those which had high affinity with galectins. A sample of these
structures are listed in Table 1.

Table 1: Glycan structures used for profiling

Glycan name | Structure

Galili pentasaccharide | o o0 mo e

el
R o Table 2: Legend of monosaccharides,

GDla their abbreviations, and their symbols.

o—m—o.
N IR R
Co—m—=®

o—m—o Sugar Abbr.  Sym.
bi-antennary N-glycan Glucose Clc °
oTETeN Galactose Gal e
o—m-. P B |
e’ Mannose Man @]
. o—n’ N-acetylglucosamine GlcNAc [ ]
tri-antennary N-glycan Fucose Fuc A
O—n
PN
oO—n \
Jo—m—m
o—m /
>e’
o—n

quadra-antennary N-glyca

When profilePSTMM was run on these structures, disregarding carbon numbers, the model as
given in Figure 4.1 resulted. Under a simple cross-validation test, the ROC performance was similar
to that of PSTMM, in the 80each node is given next to each monosaccharide in the figure.

The explanation for the mannose at the leaf may be related to the fact that (1) the model contains
only one branch and (2) the input structures are not easily alignable. However, it is clear that the
O-M pattern is learned. It is intriguing that the final node is a B as opposed to a sibling O, but this
may be an affect from the other non-N-glycan structures.

W 107

© 893 O 415
W 1.00 W 552 Il 1.00

W 978

Figure 2: PSTMM model learned from the data in Table 1.

5 Discussion and Future Work

Future work will entail the fine-tuning of this model for certain lectins. Although galectins were
studied in this work, these structures are limited in that they are currently characterized by the di-
saccharide l/@-O. Thus, the utility of this model would be better demonstrated by other data sets,
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which are currently lacking. For example, it is suspected that another group of sialic acid-binding
lectins called siglecs recognize a more complex structure at the leaves of glycans. But nothing has
been characterized as of yet. Thus, with the increasing data sets of glycans currently available, and
with more studies of saccharide affinity, this model can be well used to characterize further structures
that may be recognized not only by lectins, but by other biomolecules as well.
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