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サポートベクターマシンを用いた化合物の分類のために、様々なグラフカーネルが提案されてい
る。それらの多くでは、各グラフ構造は、ラベルつきパスの出現頻度や部分構造の出現頻度に基
づいて特徴ベクトルに写像される。本稿では、これらの特徴ベクトルが与えられた時に、もとの
グラフ構造を推定する問題について考察する。この問題は新規化合物の設計に応用できる可能性
がある。本稿では、木に似た構造を持つ化合物を、特徴ベクトルから多項式時間で推定するため
のアルゴリズムを示す。また、分枝限定法に基づくアルゴリズムも開発し、計算機実験により、数
十原子からなる化合物が推定可能であることを示す。
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This article proposes algorithms for inferring a chemical structure from a feature vector based
on frequency of labeled paths and small fragments, where this inference problem has a potential
application to drug design. In this article, chemical structures are modeled as trees or tree-like
structures. It is shown that the inference problems for these kinds of structures can be solved
in polynomial time using dynamic programming-based algorithms. Since these algorithms are
not practical, a branch-and-bound type algorithm is also proposed. The result of computational
experiment suggests that the algorithm can solve the inference problem in a few or few-tens of
seconds for moderate size chemical compounds.

1 Introduction

Drug design is one of the important targets of bioinformatics. For designing new drugs, classifi-
cation of chemical compounds is important and thus a lot of studies have been done. Recently,
kernel methods have been applied to classification of chemical compounds [6, 8, 10, 13]. In
most of these approaches, chemical compounds are mapped to feature vectors (i.e., vectors of
reals) and then support vector machines (SVMs) [7] are employed to learn classification rules.
Though several methods have been proposed, feature vectors based on frequency of labeled paths
[10, 13] or frequency of small fragments [6, 8] are widely used, where other chemical properties
such as molecular weights, partial charges and logP are sometimes combined with these, and
weights/probabilities are sometimes put on paths/fragments.

On the other hand, a new approach was recently proposed for designing and/or optimizing
objects using kernel methods [4, 5], which has a potential application to drug design. In this
approach, a desired object is computed as a point in the feature space using suitable objective
function and optimization technique and then the point is mapped back to the input space,
where this mapped back object is called a pre-image. Let φ be a mapping from an input space

-1-

島貫
テキストボックス
社団法人　情報処理学会　研究報告IPSJ SIG Technical Report

島貫
テキストボックス
2006－BIO－4（12）　   2006／2／10

島貫
テキストボックス
－81－

研究会temp
テキストボックス



none
φ(x*)

φ

y

x*

input space feature space

Figure 1: Inference of a chemical compound from a feature vector. Multiple compounds may be
mapped to the same point in a feature space.

to a feature space. Then, the problem is, given a point y in the feature space, to find a pre-image
x in the input space such that y = φ(x). It should be noted that φ is not necessarily injective
or surjective. If φ is not surjective, we need to compute the approximate pre-image x∗ defined
by x∗ = arg minx dist(y, φ(x)) (see Fig. 1).

There are several related works. Bakir, Weston and Scölkopf proposed a method to find pre-
images in a general setting by using Kernel Principal Component Analysis and regression [4].
Bakir, Zien and Tsuda developed a stochastic search algorithm to find pre-images for graphs [5].
However, the pre-image problems are not studied from a computational viewpoint. Graphical
degree sequence problems [3], graph inference from walks [14] and the graph reconstruction
problem [12] are related to the pre-image problem for graphs. However, results on these problems
are not directly applicable to the pre-image problem.

In our previous works [1, 2], we studied a theoretical aspect of the pre-image problem on
graphs. In [1], we studied the problem of inferring a graph from the numbers of occurrences
of vertex-labeled paths. We showed that this problem can be solved in polynomial time of the
size of an output graph if graphs are trees of bounded degree and the lengths of given paths
are bounded by a constant, whereas this problem is NP-hard even for planar graphs of bounded
degree. In [2], these results were further improved. We showed that the inference problem can
be solved in polynomial time if graphs are outerplanar of bounded degree and bounded face size
and the lengths of given paths are bounded by a constant, whereas this problem is NP-hard
even for trees of bounded degree if the lengths of paths are not bounded.

In this article, we extend algorithms in [1, 2] so that constraints on valences of atoms are taken
into account. Moreover, we modify and extend these so that feature vectors based on frequencies
of small fragments can be treated. These modifications are important because major feature
vectors are based on either frequencies of labeled paths [10, 13] or frequencies of small fragment
structures [6, 8]. The modified algorithms have another application: elucidation of chemical
structures from mass/NMR spectra data. This elucidation problem has a long history and many
methods have been developed [9, 11]. However, to our knowledge, no polynomial time algorithm
was known for the problem. We also present a branch-and-bound type algorithm for inference of
tree and related chemical structures. It works within a few or few-tens of seconds for inference
of moderate size chemical compounds with tree or tree-like structures.

2 Problem Definitions

First, we review the definition of the problem on inference of graph from path frequency [1].
Let G(V,E) be an undirected vertex-labeled connected graph and Σ be a set of vertex labels,
where all results can be modified for including edge labels. Since we are considering chemical
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Figure 2: Examples of feature vectors fK(G) for GIPF/CIPF (K = 1) and fF (G) for CIFF.

structures, we reasonably assume in this article that the maximum degree of vertices and the
size of Σ are bounded by constants. Let Σ≤k be the set of label sequences (i.e., the set of
strings) over Σ whose lengths are between 1 and k. Let l(v) be the label of vertex v. For a path
P = (v0, . . . , vh) of G, l(P ) denotes the label sequence of P . For graph G and label sequence
t, occ(t,G) denotes the number of paths P in G such that l(P ) = t. Then, the feature vector
fK(G) of level K for G(V,E) is defined by fK(G) = (occ(t,G))t∈Σ≤K+1 . See Fig. 2 for an
example. It should be noted that the size (i.e., number of vertices) n of the original graph can
be obtained from fK(G). In this article, we assume for simplicity that tottering paths (paths
for which there exists some i such that vi = vi+2) are not counted in feature vectors.

Graph Inference from Path Frequency (GIPF) [1] Given a feature vector v of level K,
output a graph G(V,E) satisfying fK(G) = v. If there does not exist such G(V,E), output “no
solution”.

For the case of “no solution”, we can consider the problem (GIPF-M) of finding G(V,E)
which minimizes the L1 distance between v and fK(G) (see also Fig. 1) [1].

We sometimes omit K from fK(G) if K is obvious or is not relevant. We may also use f
to denote a feature vector if G and K are not relevant. For a vector v, (v)i denotes the i-th
element of v (i.e., the value of i-th coordinate of v). For vectors v and u, v � u means that
(v)i ≤ (u)i for all i.

In order to treat chemical compounds, constraints on valences of atoms must be taken into
account. For example, a carbon atom can be connected to at most four other atoms. If double
bounds are used, it can be connected to at most two other atoms. Let Σ be the set of atom types.
For each a ∈ Σ, the maximum valence val(a) is associated. We also assume that each edge e has
multiplicity m(e) where m(e) is usually 1 (single bond), 2 (double bond) and 3 (triple bond).
When treating aromatic structures, aromatic bond may be modeled as an edge with multiplicity
1.5. In this article, we use “degree” to mean the number of edges connected to a vertex and
“valence” to mean the sum of multiplicities of edges connected to a vertex, respectively. Then,
we define chemical compound inference problem from path frequency as follows:

Chemical compound Inference from Path Frequency (CIPF) Given a feature vector v
of level K, output a graph G(V,E) satisfying fK(G) = v and

∑
w:{v,w}∈E m({v,w}) ≤ val(l(v))

for all v ∈ V . If there does not exist such G(V,E), output “no solution”.

For the case of “no solution”, CIPF-M is defined in the same way as in GIPF-M. Next,
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we define pre-image problems for feature vectors based on frequencies of fragments. Let F =
{F1, . . . , FM} be a set of graphs (chemical substructures) satisfying the valence conditions. Since
information on the number of occurrences of each atom type is usually included in feature vectors,
we assume that a graph consisting of each single atom is contained in F . We also assume that
the size of each Fi is bounded by a constant K because small fragments are usually employed.
Let occ(Fi, G) denote the number of subgraphs of G that are isomorphic to Fi, where we assume
that subgraphs consisting of the same vertices are counted only once for each Fi. Then, a feature
vector fF (G) for G is defined by fF (G) = (occ(Fi, G))Fi∈F . The pre-iamge problem from a
feature vector based on fragments is defined as below (see also Fig. 2).

Chemical compound Inference from Fragment Frequency (CIFF) Given a feature
vector v based on a set of fragments F , output a graph G(V,E) satisfying fF (G) = v and∑

w:{v,w}∈E m({v,w}) ≤ val(l(v)) for all v ∈ V . If there does not exist such G(V,E), output
“no solution”.

CIFF-M is defined in the same way as in GIPF-M and CIPF-M. In the case of elucidation
of chemical structures from mass/NMR spectra [9], upper and lower bounds of the number of
occurrences of each fragment are specified. Let ub and lb be vectors corresponding to upper
and lower bounds, respectively. Then, CIULF is defined as:

Chemical compound Inference from Upper and Lower bounds of frequencies of
Fragments (CIULF) Given feature vectors ub and lb based on a set of fragments F , output
a graph G(V,E) satisfying lb � fF (G) � ub and

∑
w:{v,w}∈E m({v,w}) ≤ val(l(v)) for all

v ∈ V . If there does not exist such G(V,E), output “no solution”.

It is worthy to note that CIFF is clearly a subproblem of CIULF. It should also be noted
that CIPF is a subproblem of CIFF because each labeled path can be treated as a fragment.

3 Dynamic Programming Algorithms

In this section, we extend algorithms in [1, 2] for CIPF, CIFF and CIULF.

3.1 A Basic Algorithm for CIPF

As in [1], we begin with a very simple case: we consider inference of chemical compounds
with tree structures from a feature vector of level 1 (i.e., K = 1). For simplicity, we assume
that only two kinds of atoms N and H, and single bonds (i.e., edges with multiplicity 1) can
appear in chemical compounds. In this case, a feature vector for tree T has the following form:
f1(T ) = (nN , nH , nNN , nNH , nHN , nHH), where nx denotes the number of atoms of type
x and nxy denotes the number of occurrences of a labeled path of (x, y).

We construct the dynamic programming table D(. . .) defined by

D(nN1, nN2, nN3, nH , nNN , nNH , nHN ) =


1, if there exists a chemical compound (tree) T such that
f1(T ) = (nN1 + nN2 + nN3, nH , nNN , nNH , nHN , 0),
the number of nitrogen atoms with degree 1 is nN1,
the number of nitrogen atoms with degree 2 is nN2,
and the number of nitrogen atoms with degree 3 is nN3,

0, otherwise.

It should be noted that we ignore chemical compound of H2 here and thus nHH should be always
0. This table can be constructed by a dynamic programming procedure based the following
recursion where the initialization part is straight-forward.
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D(nN1, nN2, nN3, nH , nNN , nNH , nHN ) = 1 iff.
D(nN1, nN2 − 1, nN3, nH , nNN − 2, nNH , nHN ) = 1 or
D(nN1 − 1, nN2 + 1, nN3 − 1, nH , nNN − 2, nNH , nHN ) = 1 or
D(nN1 + 1, nN2 − 1, nN3, nH − 1, nNN , nNH − 1, nHN − 1) = 1 or
D(nN1, nN2 + 1, nN3 − 1, nH − 1, nNN , nNH − 1, nHN − 1) = 1.

The correctness of the algorithm follows from the fact that any tree can be constructed
incrementally by adding a vertex (leaf) one by one. Since the value of each element of the
feature vector is O(n), the table size is O(n7) and thus the computation time is O(n7). Since it
is straight-forward to extend this algorithm for a fixed number of atom types and a fixed number
of bond types, we have:

Theorem 1 CIPF for trees is solved in polynomial time in n for K = 1.

As in [1], we can modify the algorithm for CIPF-M (since we only need to examine polynomial
number of items in the DP table).

Corollary 1 CIPF-M for trees is solved in polynomial time in n for K = 1.

3.2 Algorithm for CIPF

In this subsection, we show that CIPF can be solved in polynomial time for fixed K. For
that purpose, we modify our previous algorithm for GIPF [1]. As in the original algorithm, we
maintain the current degrees and valences of vertices of subtrees. When adding a new leaf u to
an existing vertex w in a subtree, we check the constraint on valences and update information
about degrees and valences. Clearly, this part can be done in constant time per addition of a
leaf and thus does not affect the order of the time complexity.

Proposition 1 CIPF (and CIPF-M) for trees can be solved in polynomial time in n if K and
Σ are fixed.

3.3 Algorithms for CIFF and CIULF

We develop algorithms for CIFF and CIULF by modifying the algorithm for GIPF. Since CIULF
is more general than CIFF, we only consider CIULF here. We modify the table D(v,e, d) in [1]
as follows. Let h = (h1, h2, . . . , hM ) be a vector of non-negative integers, where hi corresponds
to the number of occurrences of fragment Fi. Then, we define the table D′(h,e, d) by

D′(h,e, d) = 1 iff. there exists a tree T such that fF (T ) = h, gK(T ) = e, and d(T ) = d.

Based on this table, we can develop a dynamic programming algorithm, where details are omitted
here.

Theorem 2 CICF and CIULF (and CICF-M) for trees of bounded degree can be solved in
polynomial time in n if K, M and Σ are fixed.

As a nagative result, it was shown in [2] that GIPF (a subproblem of CIFF) is NP-hard
for trees of bounded degree if K is not fixed. This suggests that the time complexity increases
non-polynomially in K. Here, we show another hardness result for CIULF (without the proof),
which suggests that the time complexity increases non-polynomially in M .

Theorem 3 CIULF can not be solved in polynomial time unless P=NP even if the maximum
degree is bounded by 2, where the size and number of fragments are not bounded by a constant.
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3.4 Extensions to Outerplanar Graphs

Though many chemical compounds have tree structures, many other chemical compounds have
rings such as benzene rings. Therefore, it is desirable to develop algorithms for more general
structures than trees. In the case of GIPF, the algorithm for trees [1] was extended for outer-
planar graphs [2]. The same technique can also be applied to CICF and CIFF.

Theorem 4 CIPF, CIPF-M, CICF, CICF-M and CIULF for chemical compounds with outer-
planar structures can be solved in polynomial time in n if K, M and Σ are fixed and the number
of edges of each face is bounded by a constant.

4 A Branch-and-Bound Type Algorithm

Though the algorithms in the previous section work in polynomial time, these are not practical.
Thus, we develop a branch-and-bound type algorithm (called BB-CIPF) for CIPF, where this
algorithm can be modified for inferring more general classes of chemical compounds and/or for
feature vectors based on frequency of small fragments.

Before presenting BB-CIPF, we need several definitions. Let f target be the given feature
vector for which a pre-image should be computed. Since information on paths of length 0
is included in f target, we know the number of occurrences of atom types in the pre-image of
f target. Let atomset(f) be the multi-set of atom types in the pre-image of a feature vector
f . Let ATOMBONDPAIRS be a set of possible atom-bond pairs. For example, if we only
consider C,N,O,H and do not consider aromatic bonds, it is defined as

ATOMBONDPAIRS = {(C, 1), (C, 2), (C, 3), (N, 1), (N, 2), (N, 3), (O, 1), (O, 2), (H, 1)}.

It should be noted that (C, 4) is not included since it is not necessary.
The basic idea of BB-CIPF is similar to that of the algorithm in Section 3.1: beginning from

a small tree, a leaf is added one by one. Though trees are not explicitly constructed in Section
3.1, BB-CIPF maintains trees.

When adding a leaf u, BB-CIPF basically examines all combinations of an atom-bond pair
(a, b) and a vertex w in the current tree. However, we do not need to examine the following
cases, where T cur be the current tree and T next be the next candidate tree obtained by adding
a leaf to T cur:
(i) Addition of a leaf with atom label a violates the condition on the numbers of atoms,
(ii) Connection of a leaf to w ∈ T cur by bond type b violates the condition on the valence of w,
(iii) Connection of a leaf to w ∈ T cur violates the condition on feature vectors (i.e., f(Tnext) �

f(T target) must hold since T next must be a subgraph of T target).
Therefore, we do not examine T next further in these cases. These conditions significantly con-
tribute to reducing the search space and are implemented in BB-CIPF.

BB-CIPF employs a kind of distance defined by:

dist(f ,f target) =
{ ∞, if (f target)i < (f)i for some i,∑

i c
k(i)((f target)i − (f)i), otherwise.

where summation is taken over all elements (i.e., dimensions) of feature vectors, c is a constant
(currently, c = 10) and k(i) denotes the length of a path corresponding to the i-th element of
a feature vector. Though we use the word “distance” for the sake of convenience, this measure
is not symmetric and thus does not satisfy the conditions on usual distances. The meaning of
weighting factor ck(i) is that priorities are put on longer paths when calculating distances.
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The pseudocode of BB-CIPF is given below, where details of the implemented code are
slightly different from it: for example, benzene rings can be added as if these were leaves, where
structural information on benzene is utilized for calculating feature vectors.

Procedure BB − CIPF (n,f target)
Let T cur be an initial tree constructed from a longest path appearing in f target;
Compute feature vector f cur from T cur;
if DFS − CIPF (T cur,f cur, n, f target)=false then output “no solution”;

Procedure DFS − CIPF (T cur,f cur, n, f target)
if |V (T cur)| = n then

if f cur = f target then output T cur; return true;
else return false;

for (a, b) ∈ ATOMBONDPAIRS do
L← ∅;
if {l(v)|v ∈ V (T cur)} ∪ {a} � atomset(f target); (set means multiset here)
then continue (i.e., examine the next pair in ATOMBONDPAIRS);
for all w ∈ V (T cur) do

Let T next be a tree got by connecting new leaf u with label a to w by bond b;
if w does not satisfy the valence constraint then continue;
Compute fnext from T next and f cur;
distnext ← dist(fnext,f target);
if distnext �=∞ then Add (Tnext,fnext, distnext) to L;

while L is not empty do
Remove (Tnext,fnext, distnext) from L such that distnext is the minimum;
if DFS − CIPF (Tnext,fnext, T target,f target) =true then return true;

return false;

It should be noted that BB-CIPF finds an exact solution (i.e., an exact pre-image of a given
feature vector) if it exists. BB-CIPF can be modified so that it can find a kind of approximate
pre-image or it can enumerate all possible pre-images.

5 Computational Experiment

We performed computational experiment on BB-CIPF in order to evaluate practical computation
time. We used a PC cluster with Intel Xeon 2.8GHz CPUs, where it was working under the
LINUX operating system and only one CPU was used per execution of BB-CIPF.

We examined several chemical structures by varying K. As mentioned before, BB-CIPF
can handle chemical compounds with tree structures where benzene rings can also appear in
structures. In the experiment, a target feature vector is computed from a target chemical
compound and is given as an input for BB-CIPF (a target chemical compound is not given to
BB-CIPF). Then, BB-CIPF computes a chemical structure whose feature vector coincides with
the target feature vector. We examined 8 chemical compounds with K = 1, 2, 3, 4. CPU times
are shown in Table 1. CPU time is shown with underline if the same structure as the target
compound was obtained. N/A means that search did not succeed in 10 minutes.

It is seen from the table that the computation time decreases as K increases in general. It is
reasonable that pruning operations are effectively performed if longer paths are employed. It is
also seen that the same structures as the target ones are inferred when larger K is used. From
this table, it is suggested that the algorithm can output a solution for moderate size chemical
structures (e.g., the number of carbon atoms are less than 20) if K is 3 or 4.
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Table 1: Computation time of BB-CIPF for various chemical compounds.
Name Chemical Formula CPU time (sec.)

K = 1 K = 2 K = 3 K = 4
Methionine C5H11NO2S 9.08 0.16 0.019 0.002
Phenylalanine C9H11NO2 0.020 0.010 0.010 0.014
Arginine C6H14N4O2 N/A 500.0 19.9 1.51
Aspirin C9H8O4 0.060 0.001 0.002 0.003
2-Ethylhexyl phthalate C16H22O4 N/A 4.29 6.04 7.88
Etidocaine C17H28N2 N/A N/A N/A 0.470
Esatenolol C14H22N2O3 N/A N/A 25.6 1.46
Trimethobenzamide C21H28N2O5 N/A N/A N/A 30.7
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