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マイクロアレイは遺伝子発現プロファイルの研究に広く使われているが、考慮さ
れた実験条件に関係する遺伝子は通常、ごく少数であり、殆どの遺伝子はノイズの
もととなってしまう。通常は発現度の大小で遺伝子選択を行うが、一方で、発現プ
ロファイルの解析には振幅を考慮しない相関係数が使われることもあり、この様な
場合には解析自身に内部矛盾ができてしまう。我々は、最近、非計量多次元尺度構
成法の新しいアルゴリズムを提案し、マイクロアレイなどの遺伝子発現実験に応用
することを試みているが、同手法で遺伝子選択を行うことも可能であることを見出
したので、ここにそれを報告する。
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Although microarray experiments are widely used to investigate gene expression
profiles, there are very few genes whose expressions levels are affected by the specific
conditions being changed in an experiment. Thus, most gene expression changes are
largely due to noise effects. The selection criterion for genes is often based on the
level of gene expression. This may be inconsistent with the analysis which often uses
correlation coefficients where the amplitude is ignored. We recently invented a new
non-metric multidimensional scaling method (nMDS) algorithm and applied it to
the analysis of gene expression profiles obtained from (say) microarray experiments.
In this paper, we demonstrate that nMDS can be used as gene selection tool for
gene expression profiles.

1 Introduction

Microarray experiments allow us to study transcription levels of numerous genes
simultaneously. Although microarrays have been applied to many systems, it is
still very difficult to biologically interpret these results. In particular, genes with
expression levels unaffected by the conditions being changed in an experiment are
hard to distinguish from those connected to the conditions, because the number of
experiments is much smaller than total number of genes.
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Figure 1: (a)2D embedding of 40 genes of cdc15-base synchronization experiments
for budding yeast(for detail, see text). (b) Normalized PCA result for the same
data.

Although massive amounts of data are generated, methods are needed to deter-
mine whether changes in gene expression are experimentally significant. Methods
based on conventional t-tests tell us the probability (P)that a difference in gene
expression could occur by chance [1, 2]. Although P = 0.05 is significant in the
context of experiments designed to evaluate small numbers of genes, a microarray
experiment for a thousand genes would give around 50 false positives.

In order to avoid such problems, many more sophisticated methods have been
proposed (e.g., Ref. [3]). In this paper, we would like to propose a new criterion for
gene filtering based on our implementation of non-metric multidimensional scaling
method (nMDS)[4, 5]. Since nMDS can be regarded as the most unsupervised form
of multivariate analysis, our criterion is also maximally unsupervised.

2 Applying nMDS to microarray data

In this section we demonstrate the usefulness of nMDS in the analysis of gene expres-
sion data. For time course gene expression profiles, we have previously shown[5, 6]
that 2D nMDS embeddings give us circular configurations with the polar angle read-
ily interpretable biologically (typically being time related). Fig. 1(a), shows the 2D
nMDS embedding of budding yeast cell cycle division microarray data[7, 8] with
correlation coefficients[5, 6] used as the similarity measure. It is clear that nMDS
can separate out cell cycle phases with no supervision being required. In our expe-
rience, other methods like k-means clustering, self organized map and kernel PCA,
cannot produce such a striking results. The only exception is normalized PCA[5, 6]
which gives results consistent with those of nMDS, albeit of lower quality (See Fig.
1(b)).
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Figure 2: (a)2D embedding of randomly selected 988 genes from factor-based syn-
chronization (abbreviated as alpha). (b)The same for size-based synchronization
(abbreviated as elu). (c) Top 743 good-embedded genes for (a). (d) Top 882 good-
embedded genes for (b).

3 Noise reduction

Unfortunately, such clean circular results are fairly uncommon, making the definition
of polar angles unreliable. In Fig. 1 and Ref. [5], only genes pre-selected for the
right periodicity are embedded. For such cases, we usually get a clean circular
arrangement, with the polar angle interpretable as the extent of progress through
the cell cycle. In general, the circular arrangement is much poorer (except yeast data
synchronized by elutriation which does in fact give a clear circular arrangement[6]).
In Figs. 2 (a) and (b), we compare 2D nMDS embeddings of 998 randomly selected
genes from experiments using two different synchronization methods[7]. Clearly,
synchronization by elutriation (Fig. 2(b)) gives a much clearer circular arrangement.

Of course, the appearance of a clean circular arrangement is not a necessary con-
dition for the polar angle to be biologically meaningful; polar angles obtained from
normalized PCA, which gives a rather diffuse circular arrangement, are consistent
with those obtained from the clean circular arrangement produced by nMDS[6].

We now show that it may be possible to obtain such clean circular configuration
simply by discarding noisy genes without pre-selection being needed. To do this,
we propose the following procedure. Firstly, gene quality is determined on the basis
of goodness of nMDS embedding ∆(i) (for the definition, see Appendix 1 in [5]).
We then discard the worst embedded. The question of exactly how many genes to
discard is a hard one, and to propose two ways to resolve it.

The first method (called Shuffle Test) is that genes whose quality cannot be easily
distinguished, statistically, from random vectors are considered noisy and discarded.
Randomized gene expression profiles are generated by shuffling the gene expression
profile of each gene, i.e., the time order of gene expressions is mixed up. We embed
these randomized gene expression profiles into 2D space and find the distribution of
the ∆(i) values . For each gene we find the significance level of its true ∆(i) value
under the null hypothesis (i. e., gene expression profiles are random), by comparing
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it to the random distribution.
In Figs. 2 (c) and (d), we have only preserved genes with a significance level of

5 % or less under our null hypothesis. It is clear that our noise reduction procedure,
enhance the circular arrangement in much the same way as pre-selection does (Ref.
[5] and Fig. 1(a)).

The problem with the Shuffle Test is that the determination of quality are made
with respect to embedding which contain noisy data, making such determinations
unreliable. Secondly, for a good test, the null hypothesis should respect the data
structure as much as possible, except for the information we are interested in. Shuf-
fling profiles destroys all intra-gene as well as inter-gene correlations. Since we are
only interested in inter-gene relations here, it seems possible that the test may be
too weak. With this in mind we propose a completely different test known as the
bootstrap test.

The bootstrap test is a recursive test, discarding the worst 10% of genes at each
step and re-embedding the remaining ones. The question now is how many steps
of recursion are required. We propose to stop the recursion when we cannot be
confident that the genes that are identified as belonging to the worst 10% may not
even be among the next 10% of genes to be discarded. This confidence level is
determined by bootstrapping. 90% of genes are selected randomly, and for each
genes it rank is found. This is repeated for a large number of randomly selected
sets (of 90% of the remaining genes), to produce a distribution of ranks for the
goodness of embedding of each gene. When we start polishing, the worst points
are clearly bad, and their rank distributions are very narrow (i.e., we can discard
them with confidence). As we discard more points, the worst points increasingly
start resembling the better ones, and their rank distribution broadens and eventually
become statistically indistinguishable from the points with less mismatches. We stop
when this happens. The explicit algorithm for this may be found in the appendix.

For actual use, we recommend using the two test in conjunction. The bootstrap
test should be applied first. Then the shuffle test should be used on the genes
passing the bootstrap test. Note that that bootstrap test is far more demanding
computationally, so for exploratory purpose it is often enough simply to use the
shuffle test.

Despite passing these tests, it may still be possible that these results are not
biologically meaningful. However, if we compute `2-distance[6] of polar angles be-
tween alpha experiment and elu experiment, it decreases from 1.58 between Figs.
2 (a) and (b) to 1.48 between Figs. 2 (c) and (d). This value is as small as Table
1[6] of `2 distances, for which we have observed biological information among genes.
Thus, noise reduction increases the agreement between alpha and elu experiments
and excluded noisy parts because gene relationship among genes is expected to be
common for both experiments.

We also note that the appearance of circular arrangement does not guarantee
that the nMDS result is biologically meaningful, although the data must satisfy some
simple law for it to be embeddable as one dimensional structure since our criterion
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Figure 3: (a)2D embedding of 799 genes assigned as cell cycle regulated (cdc15-based
synchronization, cdc15). (b)2D re-embedding of 385 genes after noise reduction
procedure.

of goodness of embedding ensures that the circular arrangement is well embedded
in 2D.

4 Biological significance of nose reduction proce-

dure

Following Spellman[7], we preselected 799 genes, which were considered to be cell-
cycle related, based on a Fourier based method. The cdc15-based synchronization
data was used to embed these genes into 2D. Of these genes, many are known,
biologically, to be upregulated in specific cell cycle phases. The nMDS positions of
this subset of genes are shown in Fig. 3(a).

When the bootstrap and shuffle tests are used in conjunction we find that only
385 genes pass our criterion. These genes are re-embedded into 2D by nMDS (Fig.
3(b)). The separation of phases is much improved. This shows that the polishing
procedure enhances the biological significance, and also that the circular arrange-
ment which appears after noise reduction is biologically meaningful. nMDS turns out
be powerful enough to separate out cell cycle phases even for very noisy microarray
experiments.

Thus, in general, to check if the circular arrangement produced by noise reduction
is genuine, we must identify whose biological meaning is understood and try to
identify patterns of these informative genes.
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Figure 4: (a)2D embedding of randomly selected 500 genes[9]. (b)The same for Ref.
[10] (c) Top 266 good-embedded genes for (a). (d) Top 248 good-embedded genes
for (b).

5 Some other examples

So far, we have suggested that the appearance of circular arrangement is indicative of
some biological meaning. We now demonstrate that the noise reduction procedure
works for systems other than budding yeast cell cycle regulated genes. We have
applied same procedure to two distinct cases[9, 10]. For 500 randomly selected
genes, we obtained 266(248) genes after noise reduction procedure for Ref. [9]([10]).
Both give us clear circular arrangements (Figs. 4). Ref. [9] has been criticized
strongly by Shedden and Cooper[11]. Even random data will occasionally show
genes with the correct periodic behavior, it is claimed that the number of cyclic
genes in Cho’s data could have indeed been produced by random data. We attempt
to overcome such issues by explicit comparisons to shuffled data.

So far, we have not been able to biologically interpret the polar angles for these
cases, although the presence of such a clean pattern makes us optimistic that such
an interpretation exists.

At the very least, the appearance of a clean circular arrangement shows that
there is a one dimensional structure under periodic boundary condition irrespective
of interpretation.

6 Conclusion

We have demonstrated the powerfulness of our nMDS based noise reduction pro-
cedure. It gives us clean circular arrangements of genes which has allows for easy
definition of the polar angle which we usually find to be biologically meaningful[6].
Since pre-selected genes often give circular arrangements([5] and Figs. 1), the ap-
pearance of circular arrangement is promising, although its biological meaning has
not yet been understood completely. Noise reduction procedure is based upon the
comparison with shuffled data, thus it is free from the criticism by Shedden and
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Cooper[11]. Since this procedure is very general, we expect it should find a wide
range of applications.
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A : Details of Recursive Honing

Algorithm with nMDS:

1. Analyze the data set by nMDS to extract the mathematical structure.

2. Calculate the rank mismatch of each data point and identify the worst 10%
of points in terms of mismatch. These are candidates for removal (called the
candidate set).

3. Calculate the empirical distribution of mismatch of each gene after randomly
discarding 10% of the data set many times. Now, focus on the distribution of
mismatch for the members of the candidate set in (2) in this framework.

4. If the distribution obtained in (3) strongly supports the results from (2), re-
move the candidate set in (2).

5. With the remaining genes as the starting set for the next iteration repeat the
procedure from (1) to (4) until (3) no longer supports (2).

Cutoff criterion
In Step 4 of the algorithm above, we are asked to decide if the bootstrap results support

the set of points we have selected for removal.
As indicated in the algorithm, for each point, the bootstrapping procedure gives us a

distribution for its normalized rank, i.e., Rank/N . This distribution resembles a Gaussian
centered close to its pre-bootstrap rank. We characterize the uncertainty in rank by the
3σ value of this distribution. More specifically, when the distribution becomes so broad
that for some point i

〈r(i)〉 ≥ 0.9 but 〈r(i)〉 − 3σ(i) ≤ 0.8

we stop our honing process, and accept the result. Here, 〈r(i)〉 and σ(i) are the mean and
standard deviation respectively of the normalized rank distribution of the point i.
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