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概要 本稿では、遺伝子転写制御ネットワークや代謝パスウェイなどの生物学的ネットワークを分析するため
の新しいクラスタリング手法を提案する。この手法では、それぞれのネットワークは辺に重みを持つ無向グラ
フとして扱われ、辺連結度をもとに定義されるグラフの極大成分が計算される。極大成分どうしは互いに節点
を共有し得るので、互いに重複のないように極大成分を選択することで節点集合をクラスターに分割する。タ
ンパク質の機能分類にこの提案手法を適用し、最短距離法、群平均距離法といった従来の手法と比較した。辺
の重みには、タンパク質配列間の類似度を用いた。GO (GeneOntology) を用いて評価を行い、よりよい結果を
得ることができた。
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Abstract This paper proposes a novel clustering method for analyzing biological networks. In this method,
each biological network is treated as an undirected graph and edges are weighted based on similarities of
nodes. Then, maximal components, which are defined based on edge connectivity, are computed and the
nodes are partitioned into clusters by selecting disjoint maximal components. The proposed method was
applied to clustering of protein sequences and was compared with conventional clustering methods. The
obtained clusters were evaluated using P-values for GO (GeneOntology) terms. The average P-values for the
proposed method were better than those for other methods.

1 Introduction

Clustering is one of fundamental techniques in bioinformatics. Indeed, many clustering methods have been
developed and/or applied for analyzing various kinds of biological data. Among them, such hierarchical
clustering methods as the single-linkage, complete-linkage and average-linkage methods have been widely
used [3, 9]. However, these clustering methods are based on similarities between two elements or two clusters,
and relations with other elements or clusters are not so much taken into account.

Relations between biological entities are often represented as networks or (almost equivalently) graphs.
For example, nodes are proteins in a protein-protein interaction network, and two nodes are connected by an
edge if the corresponding proteins interact with each other. For another example, nodes are again proteins
in a sequence similarity network of proteins, and two nodes are connected by an edge if the corresponding
protein sequences are similar to each other. Moreover, in this case, similarity scores are assigned as weights
of edges. Since these networks are considered to have much information, clustering based on network struc-
tures might be useful. Of course, conventional clustering methods can be applied to clustering of nodes in
these networks [3, 9]. But, information on network structure is not so much taken into account by these
methods. For an extreme example, suppose that the network is a complete graph and all edges have the same
weight. Then, all the nodes should be put into one cluster and sub-clusters should not be created. How-
ever, conventional clustering methods create many sub-clusters. Therefore, clustering methods that utilize
structural information on a network should be developed. Though clustering methods utilizing structural
information have been developed [7, 12], many of these are heuristic and/or recursive and thus it is unclear
which properties are satisfied for the final clusters.

On the other hand, in graph theory and graph algorithms, the Gomory-Hu tree is well-known [5] where
it is defined for an undirected network with weighted edges. This tree essentially contains all information on
minimum cuts for all pairs of nodes. It is known that a Gomory-Hu tree can be computed efficiently using a
maximum flow algorithm. Furthermore, maximal components can be efficiently computed from a Gomory-Hu
tree [11], where a maximal component is a set of nodes with high connectivity (the precise definition is given
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in Sec. 2). It is known that a set of maximal components constitutes a laminar structure, which is essentially
a hierarchical structure.

Based on the above facts, we develop a novel clustering method for an undirected network. In this
method, nodes are partitioned into clusters by selecting disjoint maximal components. The method works in
O(n2m log(n2/m)) time, where n and m are the numbers of nodes and edges, respectively. The Gomory-Hu
tree was already applied to analysis of protein folding pathways [8, 10, 13]. However, to our knowledge, it
was not applied to analysis of large scale protein sequence networks. Moreover, as to be shown in Sec. 3, our
method employs additional ideas to effectively utilize the Gomory-Hu tree.

In this paper, we apply the proposed method to clustering of protein sequences and compare with the
single-linkage, complete-linkage and average-linkage methods. We evaluate the computed clusters using P-
values for GO (GeneOntology) terms. The results suggest the effectiveness of the proposed method.

The organization of the paper is as follows. In Sec. 2, we briefly review maximal components of undirected
graphs and conventional clustering methods. In Sec. 3, we present our clustering method based on maximal
components. In Sec. 4, we show the results on computational experiment. Finally, we conclude with future
work.

2 Preliminaries

In this section, we review edge-connectivity and maximal components [11]. We also review three conventional
hierarchical clustering methods: single-linkage, average-linkage and complete-linkage clustering methods.

2.1 Edge-connectivity

Let G = (V, E) be an undirected edge-weighted graph with a vertex set V and an edge set E, where each
edge e is weighted by a nonnegative real cG(e) ∈ �+. We define the edge-connectivity λG(u, v) between two
nodes u and v as follows:

λG(u, v) = min
{X⊆V |u∈X,v∈V −X}

∑
p∈X,q∈V −X

cG(p, q). (1)

A subset X of V is called (u, v)-cut if u ∈ X and v ∈ V − X, or u ∈ V − X and v ∈ X. Among them, a
(u, v)-cut X which gives a minimum λG(u, v) is called a minimum (u, v)-cut.

2.2 Maximal Components

Definition 1 A subset X of V is called a maximal component if it satisfies the following conditions,

∀u, v ∈ X λG(u, v) ≥ l, (2)
∀u ∈ X, ∀v ∈ V − X λG(u, v) < l, (3)

where l = minu,v∈X λG(u, v). Such a subset X is also called an l-edge-connected component.

Figure 1 shows an example of maximal components. Definition 1 means that the internal nodes of
a maximal component are connected with each other more strongly than with any other external nodes.
Moreover, nodes of internal maximal components are connected with each other more strongly than (and
equally to) those of external maximal components which include the internal maximal components.

Definition 2 A family χ ⊆ 2V is called laminar if X ∩ Y = ∅, X ⊆ Y , or Y ⊂ X for any sets X,Y ∈ χ.

A laminar family χ is represented by a rooted tree τ = (ν, ε). The node set ν is defined by ν = χ ∪ {V },
where V corresponds to the root of τ . Let tX denote a node corresponding to a set X ∈ ν. For two nodes
tX and tY in τ , tX is a child of tY if and only if X ⊂ Y holds and χ contains no set Z with X ⊂ Z ⊂ Y .

Theorem 1 Let χ(G) denote the set of all maximal components of G. Then, χ(G) is a laminar family.

Proof. We assume that there exist three nodes x, y and z so that x ∈ X − Y , y ∈ Y − X, and z ∈ X ∩ Y
for two maximal components X,Y ∈ χ(G), where X is an l-edge-connected component and Y is an h-edge
connected component. We can assume without loss of generality that l ≥ h. From x, z ∈ X and Eq. 2 of the
definition of maximal components for X, we have λG(x, z) ≥ l ≥ h. On the other hand, from x /∈ Y, z ∈ Y
and Inequality (3) for Y , we have λG(x, z) < h. It contradicts our assumption.
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Figure 1: Illustration for maximal components of a graph G = (V, E) with V =
{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s} and E, where each number denotes the weight of the edge,
and edges without numbers are weighted by 1. Each set of nodes surrounded with a dashed line is a maximal
component of G. For example, the set X = {a, b, c, d} is a maximal component because λG(u, v) ≥ 5 for
any u, v ∈ X , λG(u, v) < 5 for any u ∈ X and v ∈ V − X, and minu,v∈X λG(u, v) = 5. It is also called a
5-edge-connected component.

a b c d e f g h i j k l m n op q r s

Figure 2: The rooted tree representation of maximal components χ(G) of the graph G in Fig. 1. The six sets
of nodes surrounded by dashed lines are the resulting clusters provided by the procedure SelectLaminar.

2.3 Linkage methods

We briefly review three linkage clustering methods: single linkage (or nearest neighbor method), complete
linkage (or farthest neighbor method), and average linkage. Each method starts with a set of clusters, where
each cluster consists of a single distinct node. Then, two clusters having the minimum distance are merged
into one cluster. This procedure is repeated until there is only one cluster. The distance D(X,Y ) between
two clusters X and Y is defined in a different way depending on a clustering method:

D(X,Y ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
x∈X,y∈Y

d(x, y) (for single linkage)

max
x∈X,y∈Y

d(x, y) (for complete linkage)

1
|X||Y |

∑
x∈X,y∈Y

d(x, y) (for average linkage)
, (4)

where d(x, y) denotes the distance between two nodes x and y.
It should be noted that the distance between two nodes should be small if the similarity between these

nodes is high, whereas the weight of the edge between these two nodes should be large. Since we are going
to use the similarity score (which is high for similar nodes), we use modified versions of these clustering
algorithms. In the modified versions, the clusters with the maximum score are merged, instead of the clusters
with the minimum distance. Moreover, ‘min’ and ‘max’ in Eq. 4 are exchanged.

3 Selection of Disjoint Clusters from Hierarchical Structure

The set of all maximal components χ(G) of a graph G provides a hierarchical structure which can be
represented as a rooted tree τ (G) because the set χ(G) is a laminar family. This structure gives a kind
of hierarchical clustering. However, what we need is a set of disjoint clusters because we are interested in
classification of protein sequences. That is, input nodes should be partitioned into disjoint clusters. Thus, we
propose a method to find disjoint clusters from χ(G). In our method, a set of maximal components χ(G) of
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the graph G is first computed using a Gomory-Hu tree. And then, disjoint maximal components are selected
in a bottom-up manner, based on the tree structure τ (G). The detailed procedure is given below.

Procedure SelectLaminar
Input : a laminar family χ
Output : a set of clusters χc ⊆ χ

Begin
τ := the rooted tree made from χ
χc := ∅
repeat

Xp := a parent node of not marked deepest leaves of τ
repeat

Xs := Xp

Xp := the parent node of Xs

until Xp has a child Xt except Xs such that |Xt| ≥ 2
Add all the child nodes of Xp to χc

Mark all the descendant leaves of Xp in τ
until all the leaves of τ are marked
return χc

End

It should be noted that |Xt| denotes the number of nodes in G that are contained in Xt. This procedure
outputs a subset χc = {X1, . . . , Xm} from the laminar family χ(G) of all maximal components of a graph
G such that Xi ∩ Xj = ∅ holds for any two sets Xi �= Xj ∈ χc, and

⋃m
i=1 Xi = V holds. Figure 2 shows an

example. This procedure provides the clusters according to the hierarchical structure.

4 Experimental Results

4.1 Data and Implementation

In order to evaluate the proposed clustering method, we applied clustering methods to classification of
protein sequences based on the pairwise similarity. We used 5888 protein sequences (The file name is
“orf trans.20040827.fasta”) from Saccharomyces Genome Database (SGD) [6]. This file contains the transla-
tions of all systematically named ORFs except dubious ORFs and pseudo-genes. We calculated the similarities
between all pairs of the proteins using a BLAST search [1] with an E-value threshold of 0.1. An edge between
two nodes exists only when the E-value between the proteins is less than or equal to 0.1. All isolated nodes
(i.e., nodes with degree 0) are removed. As a result, 32484 pairwise similarities and 4533 nodes were detected.

As an edge-weight, we used the integer part of −3000 log10 h for the E-value h of 10−
1000

3 < h ≤ 0.1, and
106 for 0 ≤ h ≤ 10−

1000
3 . This mapping was injective for all the E-values of the data. It should be noted

that the similarity between proteins is large when the E-value is small, and comparison operations of floating
point numbers can cause incorrect results.

We solved maximum flow problems with HIPR (version 3.5) [14] which is an implementation of the
algorithm developed by Goldberg and Tarjan [4], and constructed a Gomory-Hu tree [5] for an edge-weighted
graph G to obtain all the maximal components of G from the tree.

4.2 Results

To evaluate the performance of our clustering method, we used GO-TermFinder (version 0.7) [2]. To find
the most suitable GO term for a specified list (cluster) of genes, this software calculates a P-value using the
hypergeometric distribution as follows:

P = 1 −
k−1∑
i=0

(
M
i

)(
N − M
n − i

)
(

N
n

) =
n∑

i=k

(
M
i

)(
N − M
n − i

)
(

N
n

) (5)

where N is the total number of genes, M is the total number of genes annotated by the specific GO term, n
is the number of genes in the cluster, and k is the number of genes annotated by the specific GO term in the
cluster. P-value means the probability of seeing k or more genes with an annotation by a GO term among
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Table 1: Results for three ontologies on biological processes, cellular components, and molecular functions,
by four clustering methods using maximal components, single linkage, complete linkage, and average linkage.
Left column: the average of logarithm of corrected P-values. Right: the number of annotated proteins.

Method Process Component Function
Maximal component -8.9462 2618 -5.9189 2641 -10.657 2624
Single linkage -5.2346 2947 -4.5076 2970 -4.7721 2903
Complete linkage -3.0674 3258 -2.3149 3391 -3.8539 3050
Average linkage -3.2556 3692 -2.4423 3761 -4.1007 3508

n genes in the list, given that M in the population of N have that annotation. For example, P = 1 holds if
none of the genes in the specified list are annotated by the GO term. On the other hand, if all the genes are
annotated, P = M(M−1)···(M−n+1)

N(N−1)···(N−n+1) is very small because M is usually much smaller than N .
In order to avoid that a lot of false positive GO terms are chosen, GO-TermFinder can use corrected

P-values. We employed these corrected P-values to evaluate clustering results.
We used three types of ontologies on biological processes, cellular components, and molecular functions

(Their file names are “process.ontology.2005-08-01”,“component.ontology.2005-08-01”, and “function.ontology.
2005-08-01”). We obtained these files also from SGD [6].

We compared the proposed method with other clustering methods using single linkage, complete linkage,
and average linkage. These clustering methods usually produce a hierarchical clustering. In order to obtain
non-hierarchical clustering results, we applied our proposed procedure in the previous section, SelectLaminar,
to their results.

Table 1 shows the averages of logarithms of corrected P-values over all 4533 proteins. Among these
proteins, there were some proteins which could not be annotated by GO-TermFinder. Therefore, we regarded
a corrected P-value as 1 for such proteins, and calculated the averages. We see from the table that our
clustering method using maximal components outperformed other methods. For every ontology, the average
of our method was lower than that of others. It means that our method classified protein sequences into
protein functions better than others.

Figures 3, 4 and 5 show logarithms of corrected P-values on 800 lowest proteins for the ontologies on
biological processes, cellular components, and molecular functions, respectively. For every ontology, corrected
P-values of our method were lower than others. The distributions of complete linkage and average linkage
had similar behavior. For the ontologies on biological processes and cellular components, corrected P-values
of single linkage were close to those of our method. In particular, our method provided good results for
molecular functions.

Table 2 shows GO terms with lowest 8 corrected P-value for the ontology of biological processes in
resulting clusters of clustering methods using maximal components, single linkage, complete linkage, and
average linkage. In both complete linkage and average linkage, the same GO term (GO:0006319 Ty element
transposition) was annotated to the first and second lowest clusters. It means that a cluster having the GO
term was divided into two or more clusters by the methods.

As for CPU time, the proposed method is reasonably fast. Though the worst case time complexity of
the proposed method is O(n2m log(n2/m)), it is expected to work faster in practice. Indeed, the proposed
method took 6.3 sec. for clustering of a graph with 4533 nodes on a Linux PC with Xeon 3.6GHz CPU
and 4GB memory. Though the single-linkage clustering took only 0.024 sec., our proposed method produced
better results.

5 Conclusion

We developed a clustering method using maximal components, where a maximal component can be charac-
terized as a subgraph having maximal edge connectivity. We compared the proposed method with the single
linkage, complete linkage, and average linkage clustering methods using protein sequence data. Our proposed
method outperformed these three methods in terms of the corrected P-values provided by GO-TermFinder,
and classified protein sequences into protein functions better than the three methods.

There are several future works. We used log of E-values as edge-weights. However, this weighting method
is not necessarily the best. Thus, finding better weighting method is important future work. We developed a
simple method in order to select disjoint clusters from a set of maximal components. However, better results
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Table 2: GO terms with lowest 8 corrected P-value for the ontology of biological processes in resulting clusters
of clustering methods using maximal components, single linkage, complete linkage, and average linkage.

Rank Maximal component P-value
1 GO:0006319 (Ty element transposition) 2.7522e-190
2 GO:0006468 (protein amino acid phosphorylation) 2.4181e-113
3 GO:0008643 (carbohydrate transport) 1.2509e-43
4 GO:0006865 (amino acid transport) 1.0052e-37
5 GO:0006511 (ubiquitin-dependent protein catabolism) 9.4800e-24
6 GO:0006810 (transport) 1.2224e-21
7 GO:0006081 (aldehyde metabolism) 8.1134e-21
8 GO:0016567 (protein ubiquitination) 1.1405e-19

Rank Single linkage P-value
1 GO:0006319 (Ty element transposition) 3.0396e-176
2 GO:0006081 (aldehyde metabolism) 4.0950e-19
3 GO:0006530 (asparagine catabolism) 3.5363e-16
4 GO:0006166 (purine ribonucleoside salvage) 5.0151e-15
5 GO:0045039 (mitochondrial inner membrane protein import) 3.1055e-14
6 GO:0046839 (phospholipid dephosphorylation) 7.8293e-14
7 GO:0005992 (trehalose biosynthesis) 3.4570e-13
8 GO:0006913 (nucleocytoplasmic transport) 4.4109e-13

Rank Complete linkage P-value
1 GO:0006319 (Ty element transposition) 3.7058e-81
2 GO:0006319 (Ty element transposition) 9.1783e-55
3 GO:0008645 (hexose transport) 1.1156e-20
4 GO:0006319 (Ty element transposition) 4.1098e-18
5 GO:0000209 (protein polyubiquitination) 5.7229e-17
6 GO:0006530 (asparagine catabolism) 3.5363e-16
7 GO:0006081 (aldehyde metabolism) 2.1634e-15
8 GO:0006166 (purine ribonucleoside salvage) 5.0151e-15

Rank Average linkage P-value
1 GO:0006319 (Ty element transposition) 4.4023e-79
2 GO:0006319 (Ty element transposition) 9.1783e-55
3 GO:0008645 (hexose transport) 1.1156e-20
4 GO:0006081 (aldehyde metabolism) 4.0950e-19
5 GO:0006319 (Ty element transposition) 4.1098e-18
6 GO:0006530 (asparagine catabolism) 3.5363e-16
7 GO:0006166 (purine ribonucleoside salvage) 5.0151e-15
8 GO:0045039 (mitochondrial inner membrane protein import) 3.1055e-14

may be obtained by using a more elaborated method. Thus, improvement of selection of disjoint clusters
should be done. We have applied the proposed clustering method to clustering of protein sequences. However,
our method is not limited to analysis of protein sequences. For example, clustering of gene expression data
is one of extensively studied problems. Therefore, application to analysis of gene expression data is also
important future work.
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Figure 3: Logarithms of corrected P-values on 800 lowest proteins for ontology on biological processes.
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Figure 4: Logarithms of corrected P-values on 800 lowest proteins for ontology on cellular components.
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Figure 5: Logarithms of corrected P-values on 800 lowest proteins for ontology on molecular functions.
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