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Prediction of protein three-dimensional structures from amino acid sequences is a long-standing
goal in computational/molecular biology. The successful discrimination of protein folds would help
to improve the accuracy of protein 3D structure prediction. In this work, we propose a method
based on linear discriminant analysis (LDA) for recognizing proteins belonging to 30 different folds
using the occurrence of amino acid residues in a set of 1612 proteins. The present method could
discriminate the globular proteins from 30 major folding types with the sensitivity of 37%, which
is comparable to or better than other methods in the literature.

Background

Deciphering the native conformation of a protein from its amino acid sequence known as, protein
folding problem is a challenging task. The recognition of proteins of similar folds and/or proteins
belonging to same structural class is a key intermediate step for protein structure prediction. For
the past several decades several methods have been proposed for predicting protein structural
classes. These methods include discriminant analysis[1], correlation coefficient[2], hydrophobic-
ity profiles[3], amino acid index [4], Bayes decision rule[5], amino acid distributions[6], functional
domain occurrences [7], supervised fuzzy clustering approach[8}, amino acid principal component
analysis[9] etc. These methods showed that the sensitivity lies in the range of 70-100% for dis-
criminating protein structural classes and the sensitivity mainly depends on the dataset. Wang
and Yuan([5] developed a dataset of 674 globular protein domains belonging to different struc-
tural classes and reported that methods claiming 100% sensitivity for structural class prediction,
predicted only with the sensitivity of 60% with this dataset.

On the other hand, alignment profiles have been widely used for recognizing protein folds[10, 11].
Recently, Cheng and Baldi[12] proposed a machine learning algorithm for fold recognition using
secondary structure, solvent accessibility, contact map and S-strand pairing, which showed the
pairwise sensitivity of 27%. On the other hand, it has been reported that the amino acid properties
are the key determinants of protein folding and are used for discriminating membrane proteins[13],
identification of membrane spanning regions[14], prediction of protein structural classes[15], protein
folding rates [16], protein stability[17] etc. Towards this direction, Ding and Dubchak[18] proposed



with re-weighting without re-weighting

over all fold average over all fold average
Occurrence 0.33 0.32 0.37 0.28
Composition 0.26 0.27 0.32 0.24

Table 1: Leave-one-out cross validation results for two types of sensitivities.

a method based on neural networks and support vector machines for fold recognition using amino
acid composition and five other properties, and reported a cross-validated sensitivity of 45 %.

In this work, we have used the amino acid occurrence (not composition) of proteins belonging
to 30 major folds for recognizing protein folds. We have developed a method based on linear
discriminant analysis (LDA), which showed an accuracy of 37% in recognizing 1612 proteins from
30 different folds, which is comparable with other methods in the literature, in spite of the simplicity
of our method and the large number of proteins considered.

Results and Discussion

Role of re-weighting for fold recognition

We have computed the occurrence of all the 20 amino acid residues in each protein. The occurrence
of 20 types of residues represents the elements of 20 dimensional vectors for each protein. We have
applied LDA to these vectors for recognition. Here, we have employed two kinds of LDA, i.e., with
and without reweighing. In LDA with re-weighting, each fold equally contributes to the measure
of performance irrespective of the number of proteins in each fold; i.e., even if one fold includes
hundreds of proteins and another has only few proteins, LDA is optimized to achieve the highest
performance equally in each fold. This re-weighting is important especially when the number of
proteins included in each fold has large variations.

On the other hand, LDA without re-weighting, tends to achieve the maximum sensitivity for
the whole dataset. In this case, folds with less number of proteins have a strong tendency to be
ignored. In accordance with this choice, we have defined two kinds of sensitivities, (i) averaged
over folding types and (ii) overall. The overall sensitivity is the ratio between the number of
correctly predicted proteins (true positives) in each fold and total number of proteins. Folding
type sensitivity is computed as the average of sensitivities obtained in each fold.

In Table 1, we presented two types of sensitivities (overall and fold average) with two kinds
of LDA (with and without re-weighting). We observed that re-weighting significantly changed the
performance. This is due to the divergence in the number of proteins in each fold (min. 25, max.
173, mean 54, see Table 2). Two kinds of sensitivities differ from each other by almost 10%, without
re-weighting. We achieved the sensitivity of 37%, which is the best performance to our knowledge,
for large number of folds (30) and proteins (1612) considered. Further, the method is extremely
simple, which indicates that the physical properties of proteins carry sufficient information instead
of sequences.

Prediction of proteins belonging to different folding types

We have examined the ability of the present method for predicting proteins belonging to 30 major
folds. In Table 2, we have shown the sensitivity of recognizing 30 different folds. We observed that
the sensitivity of folds with fewer proteins has increased after re-weighting. All the folds that have
the sensitivity of less than 10 % without re-weighting are the ones with fewer proteins. For example,
SAM domain like fold has the sensitivity of 7%, which has only 26 proteins. Similar tendency is
also observed for the folds b.2, b.34, ¢.3, ¢.47, ¢.55, d.15 and d.17. On the other hand, many folds



Sensitivity (%)
ID Fold Fold Description Number without re- with re-
weighting  weighting  hierarchical

all-a
1 a3 Cytochrome C 25 24 48 48
2 a4 DNA/RNA binding 3-helical bundle 103 72 49 33
3 a24 Four helical up and down bundle 26 23 39 34
4 239 EF hand-like fold 25 40 44 44
5 a.60 SAMdomain-like 26 7 27 19
6 a.118 a-« superhelix 47 46 45 46
all-g8
7 bl  Immunoglobulin-like S-sandwich 173 76 38 13
8 b2 Common fold of diphtheria toxin/transcription factors/cytochrome f 28 3 29 28
9 b6  Cupredoxin-like 30 26 37 30
10 b.18 Galactose-binding domain-like 25 20 36 36
11 b.29 Concanavalin A-like lectins/glucanases 26 23 27 26
12 b.34  SH3-like barrel 42 0 28 7
13 b.d0 OB-fold 78 21 24 7
14  b.82 Double-stranded a-helix 34 11 18 20
15 b.121 Nucleoplasmin-like 42 52 52 50
o/
16 ¢l  TIM barrel 145 44 26 25
17 ¢2  NAD(P)-binding Rossmann-fold domains 7 33 31 29
18 ¢3 FAD/NAD(P)-binding domain 31 9 16 16
19 ¢23 Flavodoxin-like 55 10 5 3
20 ¢.26 Adenine nucleotide a hydrolase-like 34 11 29 26
21 ¢.37 P-loop containing nucleoside triphosphate hydrolases 95 43 33 32
22  ¢A7 Thioredoxin fold 32 9 18 9
23  c55 Ribonuclease H-like motif 49 4 6 4
24  ¢66 S-adenosyl-L-methionine-dependent methyltransferases 34 29 29 29
25  ¢.69 o/B-Hydrolases 37 35 40 40
a+f
26 d.15 B-Grasp, ubiquitin-tike 42 4 21 35
27 d.17 Cystatin-like 25 0 8 20
28 d.58 Ferredoxin-like 118 32 7 16
small
29 g3 Knottins 80 97 88 88
30 g4l Rubredoxin-like 28 10 71 85

Table 2: Leave-one-out cross validation sensitivity in each fold.

with less than 30 proteins have the sensitivity of more than 20% even without re-weighting (e.g.,
a.3, a.24, a.39 etc.). As there are 30 folds, the expected sensitivity is only 3.3 % if classification
is supposed to be random. Hence the sensitivity of 20% obtained for several folds is significantly
higher than that of random for fold recognition. Interestingly most of the folds, which have more
than 20% sensitivity, in spite of less number of proteins, belong to either all-o or all-3. This might
be due to the fact that the proteins belonging to all-o and all-3 classes have different secondary
structural patterns and hence they are easy to discriminate them. In addition, folds in these classes
are near-by each other in amino acid occurrence vector space, which caused high sensitivity. The
comparison between experimental vs predicted folds is shown in Fig. 1. In this figure, dark block
indicates the presence of relatively higher number of proteins and the data are normalized so that
the total percentage of true fold is 100 %. We noticed that before re-weighting (Fig. 1(a)), the
folds, to which many proteins are misclassified, are the ones with more number of proteins (e.g.,
a.4, b.1, c.1 and d.58). On the other hand, after re-weighting, the trend has been changed: the
misclassified proteins mainly accommodates within the same structural class. Especially, in o+ 3,
the block diagonal region is filled almost uniformly, which is partially caused by re-weighting. Since
each fold is equally weighted, ar+ 8 class is less weighted than other classes. This causes inter-class
misclassification between a + 3 and other classes, because « + 8 class includes only three folds.
This problem can be clearly seen in Table 3(a) where we have shown true vs predicted classes with



Figure 1: Comparison between predicted and experimental folds in 1612 proteins. The diagonal
elements show the correctly predicted proteins. Dark block indicates the presence of more number
of proteins and solid line indicates boundary between five classes as shown in Table 2, i.e., all-a,
all-3, a/3, and a + 3 and small proteins. (a)without reweighing. (b) with reweighing.

re-weighting. Here, the classes are not evenly sampled and «/f3 class keeps almost three times as
large as a:+ 3. Further, neither all-a nor all-3 are mainly misclassified into o + f.

Hierarchical re-weighting

In order to resolve this problem, we proposed the scheme of hierarchical re-weighting. In this
method, weight is equally distributed to 5 classes (all-o, all-3, a/3, & + §, and small) then it is
re-distributed to each fold. For example, fold ¢.37 gets 0.02 weight since it gets one tenth of weight
0.2, which is delivered to /3. The results obtained with hierarchical re-weighting is also included
in Table 2. The comparison of results obtained with and without re-weighting showed that the folds
with less number of proteins increase the sensitivity after re-weighting and vice-versa. However,
the trend is different between simple and hierarchical re-weighting. For example, although all folds
in all-a class have the same weight with hierarchical re-weighting only three folds (a.3, a.39, and
a.118) have similar or better sensitivity compared with simple re-weighting. On the other hand,
sensitivity of fold a.4 drastically decreased from 49% to 33%. This might be due to the fact that
several proteins belonging to all-a, all-3 and «/f proteins are misclassified into a + 3. Further,
the data presented in Table 3(b) showed that folds belonging to both all-a and all-g classes are
misclassified into a + G class.

(a) simple reweighting (b) hierarchical reweighting
predicted predicted
True alla all-§ ao/f a+J small total True alla alllf o/ o+ 5 small total
all-a 178 32 13 20 9 252 all-e 144 4 3 84 17 252
all-3 41 320 56 42 19 478 all-g 20 180 27 203 48 478
a/f 61 89 413 25 1 580 a/f 62 61 372 90 4 589
a+d 54 34 34 44 19 185 a+ G 30 8 12 109 26 185
small 3 3 0 i 101 108 small 0 1 0 2 105 108

Table 3: Leave-One-out results of true vs predicted structural classes (a) with simple and (b)
hierarchical re-weighting.



mean occurrence

il

T
5 10 »

Figure 2: (a)Comparison between mean amino acid occurrences of the most distant pair of folds,
TIM barrel (black) and knottins (red). (b) Distribution of these two folds over the first two
discriminant functions with re-weighting.

Comparison among different re-weighting procedures

The results presented in Tables 2 and 3 showed that the sensitivity of recognizing protein folds
differs significantly between different prediction methods (without, simple and hierarchical re-
weighting). Hence, it would be difficult to choose the best method for fold recognition. However, it
may be selected based on the interest of the users, whether the prediction can be done for proteins
that are within a specific structural class or whole dataset and/or obtaining the accuracy of each
fold or overall.

Usually, training and test sets of data are obtained from sequence and structure databases and
are culled with sequence identity. However, these datasets do not always reflect proper represen-
tatives of all proteins in different folds, e.g., protein population in each fold. Further, the proteins
available in databases such as, PDB are biased with the proteins that can be solved experimen-
tally, which may be different from the proportion of real proteins. Hence, considering these aspects
would help to develop “good” methods for protein fold recognition in future.

In essence, based on the methods and datasets used in the present work, we suggest that the
performance with simple re-weighting is better than that without and hierarchical re-weighting,.

Influence of amino acid occurrence in recognizing protein folds

The importance of amino acid occurrence is illustrated with Figure 2(a).

In this figure we show the occurrence of the 20 types of amino acid residues in TIM barrel fold
and knottins. We noticed that TIM barrel fold has eight alpha helices and eight beta strands and
hence the occurrence of all the residues except Cys is higher than that of knottins. Knottin is a
small protein and hence it has lower occurrence of all the residues and due to the importance of
Cys it has more number of Cys residues than TIM barrel fold. In Figure 2(b), we have shown
the distribution of residues in “amino acid occurrence” space. It is clearly seen that the two folds
are separated well in this space. We observed similar results about the variation of amino acid
occurrences among different folds in our data set.

In addition, we have tested the performance of the method using amino acid composition (i.e.,
amino acid occurrence/total number of residues) in each protein. We noticed that the overall
sensitivity without re-weighting decreased to 32% indicating the importance of amino acid occur-



Sensitivity (%)

Fold Description Number without re-  with re-
weighting  weighting
Cytochrome C 16 56 94
DNA/RNA binding 3-helical bundle 32 75 56
Four helical up and down bundle 15 33 33
EF hand-like fold 15 53 53
Immunoglobulin-like F-sandwich 74 66 31
Cupredoxin-like 21 29 38
Concanavalin A-like lectins/glucanases 13 38 38
SH3-like barrel 16 0 50
OB-fold 32 16 28
TIM barrel 77 40 25
FAD/NAD: (P)-binding domain 23 22 30
Flavodoxin-like 24 8 13
NAD: (P)-binding Rossmann-fold domains 40 40 35
P-loop containing nucleoside triphosphate hydrolases 22 23 18
Thioredoxin fold 17 18 35
Ribonuclease H-like motif 22 5 18
«/B-Hydrolases 18 33 39
[-Grasp, ubiquitin-like 15 0 33
Ferredoxin-like 40 23 3
over all 532 36 32
fold average 30 35

Table 4: Predictive ability of our method to the independent dataset of proteins used in Ding and
Dubchak[18].

rence (un-normalized composition) in each fold (Table 1). Similar tendency is also observed for
discriminating G-barrel membrane proteins[16]. Hence, we suggest to use un-normalized composi-
tion for better prediction results. In fact, the normalization of amino acid composition produced
the problem of co-linearity, i.e., diversity of vectors is not sufficient compared with the number of
proteins.

Comparison with other methods

We have compared the performance of our method with other related works in the literature. Ding
and Dubchak[18] introduced a combined method for predicting the folding type of a protein. They
have used six parameters, amino acid composition, secondary structure, hydrophobicity, van der
Waals volume, polarity and polarizability as attributes, and neural networks and support vector
machines for recognition. The features have been combined with the number of votes in each
method. They reported the sensitivity of 56% in a test set of 384 proteins and 10-fold cross
validation sensitivity of 45% in a training set of 311 proteins from 27 folding types. We have used
the same dataset of 311 proteins and assessed the performance of our method. We observed that
our method could predict with the leave-one-out cross validation accuracy of 44%, which is similar
to that (45%) reported in Ding and Dubchak][18].

In addition, we have selected the proteins from the folds that are common in both the studies
and tested the performance of our method (trained with our dataset of 1612 proteins) in predicting
the folding types of the proteins used in Ding and Dubchak[18]. The results are presented in Table
4. Interestingly, our method could predict the proteins belonging to cytochrome C fold to the
sensitivity of 94 %. Further, our method with re-weighting could correctly identify the folding
types with the sensitivity of more than 30 % in 13 among the 19 considered folds. The average
sensitivity is similar to the one that we reported with the dataset of 1612 proteins. Although
our method is optimized with different dataset it has the power to predict the folding type of
independent dataset of proteins with similar sensitivity.

Further, there are several advantages in our method: (i) only one feature, amino acid occurrence



is sufficient for prediction rather than six features. The comparison of results obtained with only
one feature showed that the performance of our method (45%) is significantly better than that of
Ding and Dubchak[18] reported with amino acid composition (20-49%), (i) voting procedure is
not necessary and our method can be directly used for multi-fold classifications, (iii) our method
uses LDA, which requires significantly less computational power compared with SVM. In SVM one
has to diagonalize the matrix with the size of (protein number) x (protein number); on the other
hand, LDA requires only diagonalization of 20 (the number of kinds of amino acid residues) x 20
matrix independent of number of proteins and (iv) although they have reported the dependency
of fold specific sensitivities upon number of proteins in each fold, it is difficult to compensate this
effect without modifying the complicated voting systems; our method has freedom to compensate
it as shown in the previous sections.

Recently, Shen and Chou[19] reported better sensitivity for the same data set of Ding and
Dubchak{18]. However, the results are biased with training set of data. We have evaluated the
sensitivity of identifying proteins belonging to the folds, four helical up and down bundle (a.24)
and EF hand-like (a.39) and we observed that the sensitivity is 30.5 % and 24 %, respectively. Our
predicted accuracies (39 % and 44 %) are better than that of Shen and Chou[19].

Fold recognition on the web

‘We have developed a web server for recognizing protein folds from amino acid sequence. It takes
the amino acid sequence as input and displays the folding type in the output. Further, the server
has the feasibility of selecting the method, with, without and hierarchical re-weighting. It is freely
available at http://granular.com/PROLDA/ [20].

Conclusions

In this paper, we have proposed a simple method for protein fold prediction, where both the
number of folds and the number of proteins are extensive. Interestingly, the simplest method is
the best method for the truly complicated problems. Although complicated methods have several
possibilities for tuning they generate over fitting to the data set. Further, the simple method
proposed in this work is better than or comparable to other complicated methods, such as, amino
acid principal principal component analysis, neural networks and support vector machines proposed
in the literature for fold recognition. In addition, our method has several advantages including the
less computational time and classifying the folds at a single run rather than pairwise comparisons.
We have developed a web server[20], which takes the amino acid sequence as the input and displays
the folding type in the output.

Dataset

We have used a dataset of 1612 globular proteins belonging to 30 major folding types obtained
from SCOP database[21] for recognizing protein folds. This dataset has been constructed with the
following criteria: (i) there should be at least 25 proteins in each fold and (ii) the sequence identity
between any two proteins is not more than 25%. The amino acid sequences of all the proteins are
available at [20].
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