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Subcellular Location Prediction of Proteins
Using Support Vector Machines
with Alignment and Amino Acid Composition

Takeyuki Tamura and Tatsuya Akutsu
Bioinformatics Center, Institute for Chemical Research, Kyoto University

Abstract Subcellular location prediction of proteins is a problem of predicting which part in a cell a
given protein is transported to, where an amino acid sequence of the protein is given as an input. In
this report, we introduce a novel and general predicting method by combining techniques for sequence
alignment and feature vectors based on amino acid composition. We implemented this method with
support vector machines on plant data sets extracted from the TargetP database. Through fivefold cross
validation tests, obtained overall accuracy and average MCC were 0.8915 and 0.8363 respectively. These
values are higher than existing sequence-based predictors which use only sequence information. Our
predictor is considered to be applicable to other problems in bioinformatics since our method is simple
and general.

1 Introduction

Bioinformatics is one of the important fields for application of intelligent systems and technologies.
Though there exist many important problems in bioinformatics for which intelligent technology can be
applied, prediction of subcellular location of proteins is one of the most studied problems. This is a
problem of predicting which part (e.g., Mitochondria, Chloroplast, etc.) in a cell a given protein is
transported to, where an amino acid sequence (i.e., string data) of the protein is given as an input as
shown in Fig. 1. This problem is becoming more important because information on subcellular location
is helpful for annotation of proteins and genes and the number of complete genomes is rapidly increasing.

For the protein subcellular location problem, many methods have been proposed using various intel-
ligent techniques. Furthermore, many web-based prediction systems have been developed based on these
proposed methods. PSORT [14, 20], which is historically the first subcellular location predictor, uses
various sequence-derived features such as the presence of sequence motifs and amino acid compositions.
Although there are many predicting methods, they can be roughly classified into two groups. One is the
N-terminal based method and the other is based on amino acid composition. TargetP [11] requires the
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Figure 1: Subcellular location prediction of proteins is a problem of predicting which part in a
cell a given protein is transported to, where an amino acid sequence of the protein is given as
an input.

N-terminal sequence as an input into two layers of artificial neural networks (ANN) with utilizing the ear-
lier binary predictors, SignalP {21] and ChloroP [12]. Reczko and Hatzigeorgiou [24] used a bidirectional
recurrent neural network with the first 90 residues in the N-terminal sequence.

ProtLock [4] is based on the amino acid composition and the least Mahalanobis distance algorithm.
Chou and Elrod [9, 10] used the covariant discriminant algorithm besides amino acid composition. NNPSL
[25] is an ANN-based method using the amino acid composition. After the successful report in [25],
application of machine learning techniques became popular in this field. A support vector machine
(SVM) was implemented for SubLoc [15] instead of the ANN. Incorporating an amino acid order as well
as the amino acid composition is expected to make it possible to improve prediction performance. Chou
proposed the pseudo-amino acid composition to take the effect of the amino acid order into account [5].
Moreover, Cai and Chou [3] have recently developed an accurate method integrating the pseudo-amino
acid composition, the functional domain composition [6, 8], and the information of gene ontology (7).
Park and Kanehisa [4] developed an SVM based method that incorporates compositions of dipeptides
and gapped amino acid pairs besides the conventional amino acid composition. The concepts of the
pseudo-amino acid and gapped amino acid pair compositions were merged in the residue-couple model
proposed by Guo et al. [13].

Recently, Mastuda et al. [18] proposed a novel representation of protein sequences. That represen-
tation involves local amino acid compositions and twin amino acids, and local frequencies of distance
between successive (basic, hydrophobic, and other) amino acids. Each sequence is split into three parts:
N-terminal, middle, and C-terminal in order to calculate the local features. The N-terminal part is fur-
ther divided into four regions for considering ambiguity in the length and position of signal sequences. It
was combined with SVM for prediction of subcellular location of proteins. The results of computational
experiments suggest that their method is one of the state-of-the-art methods. Though the prediction ac-
curacy is high, the method is based on various heuristics. Furthermore, many of the heuristics are specific
to the protein subcellular location problem. In this paper, we try to develop a less heuristic method for
the protein subcellular location problem with keeping similar prediction accuracy. Development of such
a method is important since it may be applied to other problems in bioinformatics. For example, the
spectrum kernel [17], which is a simple and general kernel function for SVM, has been applied to various
problems including remote homology detection [17], recognition of DNA-binding proteins [2], prediction
of protein-protein interactions [1] and prediction of protein subcellular location.

To develop a general method, we combine two-techniques: sequence alignment and a feature vector



based on amino acid composition. It should be noted that amino acid composition-based feature vector is
as spectrum kernel. Elements of our proposed kernel matrix are scores of alignment between sequences of
subsequences of proteins. The alignment scores are calculated in accordance with amino acid composition-
based feature vectors. Note that there is a possibility that the obtained matrix is not semi-definite since
we use alignment. Fortunately, in most cases, our method can train SVM without additional operations
in order to satisfy the kernel condition. To evaluate the efficiency of our method, we compared the
prediction accuracy of subcellular location for TargetP plant data sets with existing methods through
fivefold cross validation tests. Although our prediction method is less heuristic than existing predictors,
the overall accuracy and average MCC, which are standard measures of prediction accuracy, are 0.8915
and 0.8363 respectively. They are higher than existing predictors.

2 Method

Contents of this section are as follows. First, our method is explained by using figures and examples
intuitively. Second, the method is expressed mathematically.

Assume that sequencel = AAAAACCCCCDEFGHITKKKLLLLL and sequence2 = MMMMMC
CCCCAAAAACCCCCONNN are given as shown in Fig. 2 (a) and (b) respectively. We make sequences
of subsequences as shown in Fig. 2 (c) in accordance with w and ¢, where w is the length of subsequences
and ¢ is the unit of distances of left ends of subsequences. Note that w = 10 and ¢ = 5 are used in Fig. 2
(a) and (b). In Fig. 2 (b}, “¢”s are assigned to the rightmost subsequence since there are not correspond-
ing amino acids. Obtained sequences are aligned as shown in Fig. 2 (d). In our method, while both left
ends of sequences must be used by the alignment, we do not have to use right ends of sequences. Note that
subsequences DEFGHITKKK and ITKKKLLLLL of sequencel, and a subsequence CCCCCNNNg¢p
of sequence2 are not used in Fig. 2 (d). One of the simplest methods for calculating pairing scores is to
use inner products of vectors based on amino acid compositions. For example, the amino acid composi-
tions for AAAAACCCCC, DEFGHIIKKK, and CCCCCNNN¢¢ are (A=0.5, C=0.5, the other=0),
(D=0.1, E=0.1, F=0.1, G==0.1, H=0.1, T=0.2, K=0.3, the other=0), and (C=0.5, N=0.3, the other=0)
respectively in our method. The score obtained by pairing AAACCCCCDD and DDDDDAACCC
is 0.3 x 0.2+ 05 % 03+02x 05 = 0.31. However, our implemented method is slightly different.
2 exp(—yl|bg ;, — by, 1|?) — 1 is used as a pairing score where b, ;. and b, ;_ are feature vectors for
subsequences which are based on amino acid compositions. Since 2 - exp(—7|[b,,;, — by s, 11%) — 1 always
takes [—1,1], pairing scores also take [—1,1] in our implemented method. Note that the pairing score
takes a positive value when two subsequences are similar each other. On the other hand, the pairing score
takes a negative value when two subsequences are not similar each other. Then, there is a possibility
that higher alignment scores are obtained in the case where right ends of sequences are not used than
in the case where right ends of sequences must be used. For example, in Fig. 2 (c) and (d), pairing
IIKKKLLLLL and CCCCCNNN ¢¢ takes a negative value in our implemented method since these
are not similar each other. Note that the inner product of the vectors of amino acid compositions is 0.
However, 2 exp(—||bz,;, — by,;,11?) — 1 takes a negative value by assigning appropriate ~. The optimal
alignment of given two sequences is calculated by using these obtained pairing scores of subsequences.
The optimal scores of alignments are used as elements of the kernel matrix. Finally, our predictor selects
a location whose “discriminant” value is higher than any other location. Note that our “discriminant”
values are calculated by slightly modifying values outputted by “gist-classify” [23].

Let ¢ and w be some positive integers used as parameters. Let S; = $i,184,2 - - Simy
¢p¢--- be given protein sequences (i = 1,2,---,m), where m is the number of sequences and n; is
the length of S;. Let B; = b; 1b; ... bi,max(((ni,w)/dyo)ﬂ be a sequence of subsequences of S;, where
bi,j = S c(5-1)4155,c(j—1)+2 - - - Si,c(j—1)+w- Note that there is a possibility that b; ; includes ¢.

Let z and y be integers which satisfy 1 < z,y < m. Moreover, let j, and Jy be integers which satisfy
1 < je <max([(ny —w)/c],0)+1and 1 < j, < max([(n, —w)/c],0)+ 1. Feature vectors (defined later)
of b, j, and by ;, are denoted by b, ;_ and by ;, respectively. The kernel-like value between B, and By,
which is denoted by K(B;, By), is calculated by the following dynamic programming (DP) procedures:

K(BI7 By) = ?na']XD(JCE:]yL



Subcellular location No. of sequences (plant)
Chloroplast(cTP) 141
Mitochondrial(mTP) 368
Secretory(SP) 269
Nuclear+cytosolic(other) 162
Total 940

Table 1: Number of sequences in each subcellular location of TargetP plant data sets

D(]z,]y) = max D(Jz»]y _‘1) -P o
D(ja— 1,5y — 1) + fJas Jy)s

where f(]z:]y) =2 exp(_'}’“bamjz - by,ijQ) -1, D(0,0) = 0, D(jz,0) = ~pj., D(0,37,) = —PJy, 7 is
the parameter of RBF kernel, and p is the gap penalty of the alignment. Note that the value of fldzsdy)
is on the interval [~1,1]. When by, ;, and by ;_ are similar, f(js, 7,) takes a positive value. On the other
hand, when by ;, and by ;, are not similar, f(j., j,) takes a negative value.

The feature vector to represent a protein subsequence is expressed as follows: b = (r1,72,...,720,q1, @2,
ey G20y 21,22, - -+, 218) T, Where 71,79, ..., roo indicate the composition of 20 amino acids. g1, ¢s,...,q0
are the composition of 20 twin amino acids (e.g., RR, KK). z,..., 2% represent the distance frequency
[18] of basic amino acids (R, K, and H). To calculate distance frequencies, we defined six distance classes
(H=1,1<H<6,6<H<11,11<H<16,16 < H<21,21 < H). Similarly the distance frequencies
for hydrophobic amino acids (I, V, L, F, M, A, G, W, and P) and the other amino acids (D,N,E, Q, Y,
S, T, and C) are represented by z7,..., 212 and 213, ..., 213 respectively.

In this work, the data sets were collected from plant proteins of TargetP [11] (See Table 1). In
order to perform a fivefold cross-validation test, each data set was partitioned into five subsets that have
exactly equal sizes. Note that it can be done since the number of sequences is 940. Before partitioning,
we shuffled the sequences by using at least 1000 random numbers. One subset is regarded as test data
and the remaining four subsets as training data. This procedure is repeated five times so that each subset
is used as test data once.

Let score(cT'P), score(mTP), score(SP), and score(other) be values of “discriminant” calculated
for a protein sequence by gist-classify [23] when “cTP”, “mTP”, “SP”, and “other” are positive locations
respectively. Our predictor calculates max{score(cT'P)+ constant, score(mTP)+ constant, score(SP)+
constant, score(other) + constant} and chooses the corresponding location as an output. Note that
“constant”s are different for each location as shown in Table 3.

3 Results

In order to implement SVM, we used the software GIST [23]. We evaluated the prediction performance
of our method by calculating sensitivity, specificity, Matthew’s correlation coefficient (MCC) [19], and
overall accuracy for each subcellular location. The definitions of these measures are as follows:

Lo p(l) ()
Sensitivity(l) = m Specificity(l) = m
Mce() = tp(D) - tn(l) — fp(l) - fn(l)

Vtp() + fr) @) + f) () + fp@)En(D) + fr(0)),

k
1
Total accuracy = o ; tp(1),
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Figure 2: (a)(b)(c) Sequences of subsequences are obtained, where w = 10 is the length of
subsequences and ¢ = 5 is the unit of distances of left ends of subsequences. (d) Obtained
sequences are aligned. While both left ends of sequences must be used by the alignment, we do
not have to use right ends of sequences in our method.



Predictor Location | Sensitivity | Specificity | MCC | Average | Overall
MCC accuracy
Our method cTP 0.8227 0.8169 0.7879 | 0.8363 0.8915
mTP 0.9158 0.9158 0.8616
SP 0.9517 0.9209 0.9124
other 0.7963 0.8431 0.7831
Matsuda et al. cTP 0.7591 0.8474 0.7694 | 0.8244 0.8809
(2005) mTP 0.9240 0.8652 0.8227
SP 0.9219 0.9326 0.8983
other 0.8210 0.8586 0.8070
Kim et al. cTP 0.6874 0.8435 0.7222 | 0.7791 0.8479
(2004) mTP 0.8970 0.8392 0.7773
SP 0.8592 0.9428 0.8872
other 0.8027 0.7549 0.7296
Emanuelsson cTP 0.85 0.69 0.72 0.79 0.853
et al. mTP 0.82 0.90 0.77
(2000) SP 0.91 0.95 0.90
other 0.85 0.78 0.77

Table 2: Comparison of predictive accuracy for plant proteins in the TargetP data set. “cTP”,
“mTP”, “SP”, and “other” indicate proteins destined for chloroplast, mitochondria, secretory
pathway, and other locations (nucleus and cytosol), respectively.

where m is the total number of protein sequences and k is the number of subcellular locations. tp(l) is
the number of correctly predicted sequences belonging to location [ (true positive). ¢n(l) is the number
of correctly predicted sequences that do not belong to location ! (true negative). fp(l) is the number of
overpredicted sequences in location ! (false positive). fn(l) is the number of underpredicted sequences in
location ! (false negative).

Results and used parameters are shown in Table 2 and 3 respectively. “posconstraint” is a parameter of
GIST which sets an explicit upper bound on the magnitude of the weights for positive training examples.
Similarly, “negconstraint” sets an explicit upper bound on the magnitude of the weights for negative
training examples. “constant” is added to the obtained score when locations are predicted. The other
parameters are explained above.

Table 2 shows the comparison of predictive accuracies with existing methods on the TargetP plant
data sets. Although it is known that the overall accuracies of the predictor by Chou and Cai [7, 8] are
remarkably high, the sensitivity, specificity, and MCC of their method are not given in their paper and
their method uses the information of gene ontology and functional domain. Since the other methods
require only sequence information, we cannot compare their method with the other methods directly.

In Table 2, our overall accuracy and average MCC are higher than any other predictor. Although our
MCC for “other” is lower than Matsuda et al. (2005), our MCC for “cTP”, “mTP” and “SP” are higher
than any other predictor. Then, it can be said that the prediction accuracy of our method is higher than
existing methods.

4 Conclusion and Future Works

In this paper, we introduced a novel subcellular location predicting method which is based on sequence
alignment and amino acid composition. Through fivefold cross validation tests for TargetP plant data
sets, we obtained the overall accuracy of 0.8915 and the average MCC of 0.8363. These values are higher
than existing predictors which use only sequence information.

We are trying to improve the accuracy by optimizing some parameters and actually obtained better



Location | gap penalty | < of RBF | posconstraint | negconstraint [ ¢ | w | constant
cTP 0.6 2 0.05 0.012 10 20 0
mTP 0.6 2 not limited not limited 10| 20 -0.013
Sp 0.6 2 0.05 0.019 10| 20 0
other 0.6 2 0.05 0.014 10 20| +0.011

Table 3: Parameters which are used in our method in Table 2. Gap penalty is used in alignment.
7y is the parameter of RBF kernel. “posconstraint” and “negconstraint” are parameters of GIST.
“constant” is added to the obtained score when locations are predicted.

results although these are not shown in this paper. We are also developing the web-based prediction
system based on our proposed method. Our predictor is considered to be applicable to other problems
in bioinformatics since our method is simple and general.
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