FEFEN SR
IPSJ SIG Technical Report

W

2007—BIO—9
200776714

REERFESHFEY I 21— v a Vit LA AT R X—
HICERAT SV A T L DOBF

BUgECAT LR
TEEEBATHG B IEAT

REEMT

O EAORAF KR
'TEARIBM  SERERIL¥EKRE

H RS T DOEIR D E1IMEHE L BILE L TV B 235, Protein Data Bank {28 % L 9 72 rigid 72 HrsiE Sic b~
LEREDE LV, RETH., £ TOEEL T L EITI AR RAX —HBHT 2175 V27 A
FRETDH, AL AT LTI, Blue Protein System (IBM Blue Gene/L 4 5 = 27 . 8192CPU)% I U C A
BEFBAFEL I 2 =3 VETD, V3o b—a UERD LIS ¥ER, Radius of gyration)RHIH
&5 & O RMSD (Root Mean Square Deviation), & DR 7 DOREREA Slod LT O BB R/LX—i)
FaROLELZTMEIC LTS, ARETH., KRVAFLERANTT U F L 2o EL =g iy
NRIBODEBRTRNF—HFERD, TOHRIZONTHET S,

Development of Free Energy Landscape Analysis System

using Large Scale Molecular Dynamics Simulation

Masakazu Sekijima', Jun Doi*, Shinya Honda', Tamotsu Noguchi®, Shigenori

Shimizu*, and Yutaka Akiyama'®

"National Institute of Advanced Industrial Science and Technology

YBM Japan Ltd.

*Tokyo Institute of Technology

We created a Free Energy Landscape Analysis System based on a parallelized molecular dynamics (MD) simulation adapted for the

IBM Blue Gene/L supercomputer. We begin with an outline of our Free Energy Landscape Analysis system. Next we discuss how

Parallel MD was tuned for Blue Gene/L. We then show the results for some test targets run on Blue Gene/L, including their

efficiency. Finally, we mention some future directions for extension of this project.

1. Introduction

Molecular structures and functions have relationships with
each other. However it is not easy to predict molecular
functions from the rigid structures recorded in the Protein Data
Bank (PDB) [1] files, because biomolecules are fluctuating in

living cells. A quantitative understanding of the relationships

between structure, dynamics, stability, and functional
behaviors of proteins are of paramount importance. There are
essential themes to represent fluctuations throughout

computational biology [2].

In this work, we used molecular dynamics (MD) simulation
to evaluate molecular fluctuations. MD simulations are widely
used for simulating the motions of molecules. Rapidly
increasing computational power has made MD simulation a
powerful tool for studying the structure and dynamics of
biologically important molecules [3]. To understand the
thermodynamics and kinetics of protein folding, we developed
a free energy landscape analysis system based on MD

simulation. The calculation of free energy is of great

importance for understanding the kinetics and the structural
determinants of biomolecular processes, such as the folding
and unfolding of proteins, ligand bindings to receptors and
enzymes, and the transport of small molecules through
they

configuration space, there are many variations of molecular

channels. Since require extensive sampling of
dynamics simulation methods such as unfolding simulations,
the replica exchange method [4], and the multi-canonical
simulation method to construct free energy landscapes [5].
One important underlying technique is optimization of the MD
simulation program.

In this paper, we describe a Free Energy Landscape Analysis
System, the relevant aspects of Blue Gene/L architecture, and
our tuning and evaluation of its performance in an MD

simulation.

2. Outline of Free Energy Landscape Analysis System

9



Fig. 2.1. Outline of Free Energy Landscape Analysis System.

In this system, first trajectory analysis was carried out to set
the free energy of the reaction coordinates after the
conformation sampling using MD simulation on the Blue
Gene/L. Second, estimation of the probability density was
done along a given coordinate from the set of configurations
generated via simulation. Then the free energy was calculated
from the probability density of each configuration. Finally, all
of the calculated free energy data was plotted using gnuplot.
These steps were done using a Linux server for the Free
Energy Landscape Analysis System. The free enmergy was
determined by calculating probabilities from a histogram
analysis. The value of the free energy of a conformation is F =
-R TinP, where P is the probability that a conformation exists,
R is gas constant, and T is temperature. This system handles
multiple trajectories from MD simulations, and is applicable
for unfolding simulations, replica exchange simulations, and
multi-canonical simulations, and constructs a histogram which
shows the conformational distribution. Currently, this system
automatically constructs and analyzes the free energy
landscape of (i) the Radius of Gyration (Rg), (ii) the
End-to-End distance, (iii) the RMSD (Root Mean Square
Deviation) from the initial structure, and (iv) the distances
among any residues that the user selects based on trajectory

analysis. We computed the Rg parameter as

1 & - —
R; = W;(Fi—ﬁ)z,

—

considering only the coordinates 7, of the Ca-atoms of all
of the N residues.

3. Blue Gene/L and Tuning Policy

3.1. Specifications of the Blue Gene/L Architecture

The IBM® System Blue Gene® Solution is a massively
parallel supercomputer based on IBM’s system-on-chip
technology. It is designed to scale to 65,536 dual-processor
nodes, with peak performance of 360 teraflops. Each core in
the system has a pair of IBM Power PC® (PPC 440)
processors with two floating-point units (FPU) produced in
130-nm copper IBM CMOS technology [6]. To achieve a high

level of integration and large quantity of micro-processors

with low power consumption, the machine was developed
based on a processor with a moderate frequency. Each
processor core runs at a frequency of 700 MHz giving a
theoretical peak performance of 2.8 Gflops/core, and
5.6Gflops/chip since each chip includes two cores. Each chip
constitutes a compute node. Each node is very simple,
consisting of a single ASIC containing two processor cores
and double-data-rate (DDR) SDRAM chips of 1-Gbyte
capacity. The nodes are interconnected through five networks,
the most important of which is a three-dimensional torus
network that has the highest aggregate bandwidth and handles
the bulk of communications. There are virtually no
asymmetries in this interoonnect, so the nodes communicate
with neighboring nodes that are physically close on the same
board and with nodes that are physically far removed on a
neighboring rack with the same bandwidth and nearly the
same latency. This allows for a simple programming model
because there are no edges in a torus configuration. The SoC
ASIC that contains the node incorporates all of the
functionality needed by Blue Gene. It also contains a 4-MB L3
cache of extremely high-bandwidth embedded DRAM that is
on the order of 30 cycles from the registers for most L1/L2
cache misses. The next building block is the compute card.
Two compute nodes attached to a processor card with memory
(RAM) make up a compute card. The VO card is the next
building block. This card is very similar to the compute card.
The I/O card has an integrated Ethernet connection for
communicating with the outside world. Compute cards and
1/0 cards are plugged into a node card. There are two rows of
cight compute cards on the node card. A midplane consists of
16 node cards stacked in a rack. One rack holds two midplanes,
for a total of 32 node cards consisting of 1,024 compute nodes

interconnected by a 3D torus.

an
EURA

s coam

b0
| Comm |

| Tores { teew |
4 L i

v v v v v
o srac  Gewtand 3 wut sk v 1otk e
F et skt dimormbal gkbal iR
LA Ghits link 25 Ghigs ik, Darmers s 28

-

Fig. 3.1. Compute node ASIC of Blue Gene.

Some aspects of the machine which are interesting to
application programmers are summarized below. First, there
are two identical IBM PowerPC 440 CPU cores on each chip,
and each CPU has a dual floating-point unit (FPU). This FPU
executes instructions in single-instruction multiple-data
(SIMD) fashion, like a two-element vector processor. Making
effective use of these double-FPUs is one of the key strategies



for application performance improvement. Although the two
CPU cores are identical, one of the CPU cores is intended as a
communication coprocessor when executing
communication-intensive applications. There are two main
modes of operation supported by the system software: each
processor can handle its own communication (virtual node
mode), or one processor can be dedicated to communication
and one to computation (communication coprocessor mode).
Making effective use of the virtual node mode is another key
aspect for the performance improvement. BG/L has two
physically separate networks used for high-performance
communication between nodes: a 3D torus network in which
every node is connected to its six nearest topological
neighbors, and a hardware collective network that allows rapid
broadcasts and reductions. The collective hardware supports
fixed-point operations within reductions. Making effective use
of these networks and related hardware functions is also

important for performance.

3.2 Tuning Policy of Blue Gene
3.2.1 Enabling the double-FPU

To maximize the performance we nced to use as many
double-FPU instructions as possible. The double-FPU can do
two floating point calculations at once, so the double-FPU is
good at handling even-number data sets such as 2-dimensional
or 4-dimensional vector calculations or complex arithmetic. In
particular, the double-FPU has a special instruction set for
complex arithmetic. For example, the multiplication of two
complex values can be calculated by two double-FPU
instructions [7].

For such even-number data sets or complex arithmetic, the
IBM XL compiler can generate double-FPU instructions
automatically in many cases. However, for odd-number data
sets such as 3-dimensional vector calculations, the IBM XL
compiler can rarely generate double-FPU instructions
automatically. For odd number data sets, if the data and
calculations can be handled sequentially, it is a possible to use
double-FPU instructions. To allow the compiler to generate
double-FPU instructions for sequential data, it is better to use
1-dimensional arrays instead of the original array structure
used in the subroutine. The following modifications of the
source code allow the compiler to generate double-FPU

instructions for a 3-dimensional vector calculation.

3.2.2 Enabling parallel load and store instructions

To feed two floating point values into a double-FPU, there
are special load and store instructions which can load two
sequential values from an array into a double-FPU register or
store two sequential values from a register into an array at the
same time. We can improve the performance of programs by
using these parallel load and store instructions as much as
possible. Parallel load and store decrease the time to load and
store, and also these instructions are good for improving

instruction scheduling.

To execute parallel load and store instructions, there are two
limitations [8]:

- the two values in the array must be sequential

- the two values must be aligned on a 16-byte boundary

If the two values are separated, for example in different
arrays, we can not use parallel load and store instructions. In
this case, we should use two of the usual load and store
instructions. The second limitation is very ecritical to
performance. If the two values are stored at an address
crossing over a 16-byte boundary, the parallel load and store
instructions can still be used but it takes thousands of clocks to
handle the irregular procedure call in software.

The IBM XL compiler always allocates arrays to be aligned
on 16-byte boundaries. Thus we need to be concerned about
16-byte boundaries only for even number data sets or for
sequential calculations on 1-dimensional arrays. Unfortunately
we have to take care of the 16-byte boundaries if the data
structure is odd-numbered or if the data access is
non-sequential in a 1-dimensional array.

The IBM XL compiler can detect whether or not the data is
aligned and can generate code for each case automatically for
simple sequential calculations. However in most cases, the
compiler can not detect the 16-byte alignment for a given
array in subroutines. To make the compiler aware of the
16-byte alignment, the alignx intrinsic function is used for
arrays that are known (by the programmer) to be guaranteed to
be 16-byte boundary aligned. Given appropriate use of alignx,
the compiler can generate parallel load and store instructions
for computations which would otherwise escape automatic

detection.

3.3 Profiling and tuning Amber 9 on Blue Gene

3.3.1 Porting Amber 9 on Blue Gene

(i) Compiling SANDER program

Although we adopted a parallel SANDER (Simulated
Anncaling with NMR-Derived Energy Restraints) module that
is one of the MD programs in Amber 9 [9], the elements
mentioned below will apply to other MD programs. This
simulation of a continuous process is broken down into small
discrete time steps, each of which is an iteration of two parts: a
force calculation (calculating the forces from the evaluated
conformational energies) and an atom update (calculating the
new coordinates of the molecules).

SANDER already uses the Message Passing Interface (MPI)
[10] for data communication, so it is easy to port this program
to Blue Gene. There is an automatic configuration script in the
Amber 9 package, but unfortunately there is no setting for
Blue Gene, so to create a configuration for Blue Gene, we ran
the configuration script with ““/configure -mpich xI1f90_suse™
and we modified the configh file generated by the

configuration script.



We used the IBM XL FORTRAN compiler v.10.1 for Blue
Gene to build SANDER. The compiler optimization options
we used were “-O3 -ghot -gstrict -qarch=440d -qtune=440".

(i1) Increasing the limits of parallelization

SANDER limits the maximum number of processors to 256
processors in the default settings. We can increase the limit by
modifying the value of “MPI MAX PROCESSORS” defined
n “parallel.h” and “ew_parallelh” for an appropriate number
of processors. Then we must add the data for the array
“logtwo” defined in “parallelh”.

3.3.2 Profiling SANDER on Blue Gene

Before we tune a program for Blue Gene, it is important to
know the characteristics of the program to plan the tuning
strategy. SANDER includes its own timing routines and can
display timing information for each module in the program.
We used this information for profiling SANDER on Blue
Gene.

We ran SANDER in coprocessor mode. In coprocessor mode,
we can only use one processor core in a compute node for
caloulations while the other processor core is used for the MPI
functions. There is another mode called virtual node mode, in
this mode, we can use both processor cores for calculation,
and these processor cores can be treated as independent MPI
tasks. Thus virtual node mode potentially has double the
computational power, but the actual performance is not always
twice that of coprocessor mode, because in virtual node mode
the L3 cache and memory bandwidth are shared by two
processor cores, and each processor core has to handle MPI
functions. The following table shows comparisons of the
elapsed time for the prion data set (sec Results section)

between coprocessor (CO) mode and virtual node (VN) mode.

Table 3.1. Comparison of elapsed time between coprocssor

mode and virtual node mode.

CO mode VN mode
16 nodes 181.02 sec. 136.61 sec.
(32 procs. in VN mode)
32 nodes 116.08 scc. 98.13 sec.
(64 procs. in VN mode)
64 nodes 92.43 sec.
(128 procs. in VN mode)

Comparing the times with the same numbers of nodes, VN
mode is faster, but comparing times with the same number of
processors, CO mode is faster. Therefore, if we can only use a
limited number of nodes, then it is better to choose VN mode,
but if we can use as many nodes as the program’s scalability
will allow, then CO mode will be better (Tab.3.1), so we
choose CO mode to run SSANDER.

We tested various numbers of processors for profiling. We
used a prion data set that contains 31,562 atoms. Most of the
calculations performed by SANDER are the calculations of the

forces between atoms. Using molecular topology, it is casy to
calculate forces between two connected atoms. These forces
are called the bonding forces, shown in Fig.3.2 as
“Bond/Angle/Dihedral”. These calculations are not too heavy
and the scalability is good. The forces between non-connected
atoms are called non-bonding forces. When calculating the
non-bonding forces, there is no topology information, so the
program has to collect a list of all of the atoms that may affect
cach other at the beginning of each time step. This module is
shown as “List time”. This module is also well parallelized.
Non-bonding forces are calculated by the two modules shown
as “Recip Ewald time” and “Direct Ewald time”. “Direct
Ewald time” shows good scalability but “Recip Ewald time” is
not so scalable as the number of processors increases. The
“Other” category shows no scalability, because there are
non-parallelized procedures in “Other”. These non-parallelized

procedures limit the scalability of the program.

350 M Bond/Angle/Dihedral
300 M List time
[ Recip Ewald time
250 . .
O Direct Ewald time
E 200 K 0 Other
£ 150 |
100 [
50 M|
0 i i
8 16 32 64 128 256 512

Number of Processors

Fig. 3.2. Profiling result of prion data set. This graph shows
the timing of major 4 modules and other procedures (lumped
together) of SANDER.

Fig.3.3 shows detailed profiling results for the ‘Recip Ewald
time”. “Scalar sum”, “Grad sum”, and “Fill Charge grid” are
very well parallelized but the other procedures are not. The
heaviest module in the reciprocal Ewald force calculation is
the FFT module and the scalability of FFT is saturated by 128
processors. This FFT module is included in SANDER but is

not tuned well for any architecture.

8 Soalar sum
@ Grad sum

B Fill charge grid

B FFT time

@ Fill Bspline coeffs

B Other time in Recip Ewald

Time [sec]

10 ﬂ'”TI

16 32 84 128 256 512
Number of Processors

Fig.3.3. Profiling result of reciprocal Ewald force calculation.



3.3.3 Tuning study of SANDER on Blue Gene

Fig.3.4 shows another profiling result that compares the time
of some procedures: scaled, FFT, and non-scaled. In this graph,
the non-scaled procedures consist of non-parallelized
procedures and procedures for which the scalability is bad.

Fig.3.4 shows the limitations of the performance
improvement of SANDER. If we tune the scaled procedures,
the performance will be greatly improved when we use a small
number of processors; but the performance improvement in
terms of the total time will be small when we use a large
number of processors. If we can tune the non-scaled
procedures, the scalability of SANDER will be improved for a
larger number of processors. FFT is one of the heaviest
non-scaled procedures and potentially there is some room to
tune it for the Blue Gene architecture. Most of the other
non-scaled procedures can not be parallelized. If we can tune
the local performance of these procedures, the scalability will

not be changed, but the overall time will be decreased.

350

O Scales well

0 F
- \ SFFT
250 [

O Not parailelized / bad scaling|

N
3
8

Time [sec]

Number of Processors

Fig.3.4. The execution times of procedures: sum of scaled
procedures, FFT routine, and sum of non parallelized or non

scalable procedures are shown.

For both cases, scaled and non-scaled procedures, we tuned
the procedures by exploiting the double-FPU as much as
possible. SANDER is well parallelized except for the FFT
module, and it is difficult to modify non-parallelized
procedures so that they are parallelized well on Blue Gene.
Thus our tuning of SANDER focused on two points: (i)
enabling double-FPU operations and (ii) improving the FFT

module.

(1) Enabling double-FPU operations

Most of the calculations of the MD programs are
3-dimensional vector calculations, because the properties of
atoms such as their positions, velocities, and forces are
presented as 3-dimensional vectors. As we described in
Section 3.2.1, the double-FPU is not good at handling
odd-numbered data structures such as 3-dimensional vector
calculations. To generate double-FPU instructions for MD
calculations, we merge two 3-dimensional vectors and let the
two vectors be calculated together. However in most case in

SANDER, it is very difficult to merge pairs of calculations.

We tried to enable double-FPU operations in many cases, but
most of the modifications were not effective in improving
performance because these calculations were not critical to the
overall performance according to the profiling results.
Therefore we selected some functions where merging pairs of
calculations was possible and effective in boosting the
performance.

SANDER has its own array allocation routine that allocates
the array by sharing a part of the large array stack allocated
when the program starts. When the IBM XL compiler
allocates an array, the address of the top of the array is always
aligned to a 16-byte boundary. However the array allocation
routine of SANDER was not designed to check for 16-byte
boundaries, so we modified this routine to returns allocated
arrays whose address is always aligned to a 16-byte boundary.
With this modification and by inserting the ALIGNX intrinsic
function, double-FPU instructions can be generated for simple

cases involving sequential access.

(ii) Improving the FFT module

The FFT module of SANDER is a complex 3-dimensional
FFT, so an external FFT library could be used instead of the
original FFT module, and this seemed to be the best way to
improve the performance of the FFT. But the original FFT
module is tightly dependent on the rest of SANDER for
memory allocation and data structures. Therefore, for the
current research, we did not use an external FFT library, but
instead we tuned the original FFT module to support
double-FPU operations.

In an FFT module, most of calculation is complex arithmetic,
which is suitable for the double-FPU. Unfortunately, the
original source code does not use the complex data type, but
uses the real data type so the compiler cannot generate
double-FPU instructions. We modified the code to use
complex data types and the double-FPU intrinsic functions to
generate appropriate instructions.

The original FFT module used MPI_ISEND and MPI RECV
to exchange data between processors for the amray transpose.
We  modified the transpose procedure and we used
MPI_ALLTOALL to exchange all of the data at once, because
‘we ran the program using the coprocessor mode of Blue Gene.
In  the performance  of
MPI_ALLTOALL is better than uwsing MPI ISEND and
MPI_RECV for all of the pairs of processors.

coprocessor mode  the

4. Results
4.1 Performance Evaluation of MD simulation

We measured the simulation time of SANDER for two
different protein data sets (Tab. 4.1): the prion protein and the
SARS coronavirus main proteinase. These structures were
obtained from PDB. The prion protein is associated with the
infection of Prion diseases such as BSE, the new variant CJD,
and scrapie. The SARS coronavirus main proteinase is a key

structure of the SARS coronavirus and plays an important role



in the virus lifecycle through the specific processing of viral
polyproteins. There are disulfide bonds between
Cys179-Cys311 and Cys214-Cys287 in the dimeric prion
protein. The systems were surrounded with a layer of TIP3P
water molecules using the LeaP program. The number of
solvent water molecules and counter ions in each system are
shown in Table 4.1.

Table 4.1. description of data sets.

Prion protein SARS coronavirus main

(PDBID:114M [11]) proteinase

(PDBID:1UTL [12])

216 residues
(3,440atoms)
9,374 water molecules
total: 31,562 atoms

605 residues (4,675
atoms)
24,212 water molecules
total: 77,314 atoms

e
s
e

For each data set we set the iteration count to 1,000. Fig.4.1
shows the elapsed time measurements for these two data sets.
In this measurement we used the non-tuned original

SANDER.

10000 —& PRION (31,562 atoms)

—O-SARS (77314 atoms)

/

1000

Elapsed time [sec]

3
8

iy

1 10 100 1000
Number of Pracessars

Fig.4.1. Time measurement results of simulating two protein

data sets with the original SANDER program on Blue Gene.

Both data sets showed very similar scalability in Fig.4.1,
reaching saturation near 128 processors. The performance gain
slowly decreased over 64 processors. Therefore we selected 32
processors as a practical number of processor for MD
simulation with SANDER for data sets with similar numbers
of atoms, because we can run more test cases on different
partitions with 32 processors than when running one test case
on a large partition. We originally expected that the SARS
data would scale up to more processors. However our

measurements show almost the same scalability as the prion

data set. We think this scalability limitation is due to the
implementation of SANDER, and Fig42 effectively
illustrates this problem. Non-scaled or non-parallelized
modules are very dominant if the number of processors is
large. The percentage of scaled modules can be increased if
the number of atoms is large enough, but for this we need at
least 10 times as large a data sct as the SARS data set.
Otherwise, we should use another MD implementation for
problem sizes similar to those measured in this paper.

As we noted in Section 3.3.3, we modified SANDER to
enable double-FPU operations, and in particular we tuned the
FFT module. We compared the simulation times between the
original SANDER and the tuned SANDER. Fig. 4.2 and Fig
4.3 show the comparison results of the prion data set and the
SARS data set, respectively.

We increased the performance of the FFT module by about
30-40%, and we also increased the scalability limit of the FFT
module to up to 64 processors for the prion data set, and up to
128 processors for the SARS data set. Even though we tuned
the FFT module, the overall performance was little improved.
We also modified other modules to enable double-FPU
operations, but we could not enable them for all of the
calculations and the performance did not improve. For
significant improvement it appears to be necessary to optimize
the overall algorithm or data structures for the double-FPU

architecture.

=0 PRION original time | 108
= PRION tuned time

1000

~{F otiginal FFT time
—®— tuned FFT time

3
2
=
FFT time [sec]

Elapsed time [sec]

=}

8 16 32 64 128 256 512
Number of Processors

Fig.4.2. Comparisons of measured simulation times of the
prion data set. Bar graphs denote total simulation times, and

line graphs denote FFT times.

1000 [0 SARS original time 100
= SARS tuned time
O original FFT time
—@— tuned FFT time

=
8
B
FFT time [sec]

Elapsed time [sec]

°

L L NU=NE - 1
8 16 32 64 128 256 512
Number of Processors

Fig.4.3. Comparisons of measured simulation times of the

SARS data set.



4.2 Free Energy Landscape Construction

We constructed free energy landscapes for two different
protein data sets (See Table 4.2): the prion protein and the
chignolin protein. The chignolin protein was designed,
synthesized, and had its structure determined by one of the
authors [14]. We used 64 processors to calculate both data sets
by using coprocessor mode. The prion data was evaluated 20
times for 30 nanoseconds with different initial velocities in
simulations at 300°K. The chignolin data was evaluated for
1-microsecond simulations at 315°K. Although Tab.4.2 shows
the folded structure of the chignolin protein (PDBID:1UAO),
we executed the simulation from the elongated state in the
simulations. There are disulfide bond between Cys170-Cys222
in the prion protein. The systems were surrounded with layer
of TIP3P water molecules using the LeaP program. The
numbers of solvent water molecules and counter ions in each

system are shown in Table 4.2.

Table 4.2. Description of the data sets.

Chignolin protein
(PDBID:1UAO)

Prion protein
(PDBID:1XYX [13])

112 residues (1,794atoms)

3,868 water molecules

10 residues (138 atoms)
2,270 water molecules
2 sodium ions

total: 6,950 atoms

1 sodium ion
total: 13,399 atoms

Fig. 4.4. Free energy landscape of mouse Prion protein along
Rg and RMSD.

Fig. 4.4 shows plots of the free energy landscape of the mouse
Prion protein. The value of Rg gives an estimate of the
characteristic volume of a globular polymer, which is

inversely related to compactness. Fig. 4.4 suggests the mouse

Prion protein has two stable states (conformations). This

simulation required approximately 19,200 days of CPU time.

Fig. 4.5 Free encrgy landscape of chignolin protein along the
distance between Asp3:0-Gly7:N vs. Asp3:0-Thr:8:N.

Fig. 4.5 shows plots of the free energy landscape of the
chignolin protein. In the figure, the distances of
Asp3:0-Gly7:N and of Asp3:0-Thr:8:N were used as axes,
because the hydrogen bonds between these atoms are believed
to be related to the essential interactions of the chignolin
protein. Honda et al. have experimentally determined that the
chignolin protein does not have a large energy gap between its
folded and unfolded states as compared with a typical wild
protein. Although this was confirmed in past research [15,16],
our results also show the effectiveness of our method in
obtaining the free energy landscape even for this kind of small
artificial protein. This simulation required approximately
9,600 days of CPU time. The details of these free energy
landscape analyses will be published for the protein science
literature. These kinds of analyses will support rapid progress

in life science based on the computer science contribution.

5. Conclusion

In this paper, we discussed a Free Energy Landscape
Analysis System and optimization of an MD program on Blue
Gene/L. We improved the total scalability up to 64 processors.
Now we can effectively use 64 processors for MD simulation
for both cases. However although the scalability of the FFT
module for the SARS data set was greatly improved, the total
time was not improved compared to 128 processors. There
remains room to tune modules other than the FFT module that
currently do not scale well with more processors. We modified
other modules to support double-FPU operations, but actual
double-FPU instructions were not generated by the compiler in
many cases. Currently, there are many 3-dimensional vector
calculations for which it is difficult to induce the compiler to
generate double-FPU instructions. Even in the FFT module,
there are some cases for which we could not figure out why
the compiler was unable to generate parallel load and store
instructions for arrays that were clearly aligned to 16-byte
boundaries. We intend to further analyze the MD program and
the code generated by the compiler and feed this analysis back



into the further development of the Blue Gene compiler. We
also showed the free energy landscapes of two data sets, the
prion protein and the chignolin protein. We suggested that the
prion protein has two stable states in conformational space
from the free energy landscape of Rg vs. RMSD, and our
method is also applicable to small artificial proteins such as
the chignolin protein which has a small energy gap between
the native and denatured states.

It is still necessary to improve the simulation performance to
obtain biological results within realistic amounts of time. We
plan to apply Space Decomposition (SD) [17] in which the
simulation domain is usually broken into P (number of
processors) subdomains and each processor computes forces
only on the atoms in its subdomain or apply other paradigms
[18] for similar optimizations.

In addition, we are planning to consider additional analysis
methods  which and

automatically detect salt-bridges

similarities between free energy landscapes.

Acknowledgements

We thank Dr. C. Motono and Mr. Y. Yamaguchi at
CBRC/AIST for administration of Blue Protein (4 racks of
IBM® System Blue Gene® Solution at CBRC/AIST). We also
thank Mr. H. Furuta, Miss Y. Ishii, Mr. A. Takeuchi, Mr. N.
Koizumi, Mr. T. Nozawa, Dr. K. Kajitani, and Mr. T.
Kotegawa of IBM Japan for their kind assistance. Dr. K. Ikeda
at PharmaDesign Inc. gave us helpful advice on free energy

landscape analysis.

References

[11 HM. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N.
Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne,
The Protein Data Bank. Nucleic Acids Research, 28,
2000, pp. 235-242.

M. Karplus and J. Kuriyan, Molecular Dynamics and
Protein Function, Proc Natl Acad Sci U § A.,102,2005,
pp.6679-6685.

M. Sekijima, C. Motono, S. Yamasaki, K. Kancko, and

{21

[3]
Y. Akiyama, Molecular dynamics simulation of dimeric
and monomeric forms of human Prion protein: Insight
into dynamics and properties, Biophysical Journal .85,
2003,pp. 1176-1185.

[4] Y. Sugita and Y. Okamoto, Replica-exchange molecular

dynamics method for protein folding, Chemical Physics

Letters, 314, 1999, pp. 141-151.

N. Nakajima, H. Nakamura,

Multicanonical

and A. Kidera,

ensemble generated by

[5]
molecular
dynamics simulation for enhanced conformational
sampling of peptides, J. Phys. Chem., B101, 1997,
pp.817-824.

A. Gara et al. Overview of the Blue Gene/L. system
IBM  Journal of Research
Development,.49, 2005, pp. 195-210..

J. Doi, H. Samukawa, H. Matsufuru, and S. Hashimoto,

[6]

architecture, and

M

(8]

[91

[10]

1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

High Parallelization of Lattice QCD program for Blue
Gene, IPSJ High Performance Computing Symposium
2006, Tokyo, Japan, 2006, pp. 87-94.

S. Chatterjee et al. Design and exploitation of a
high-performance SIMD floating-point unit for Blue
Gene/L, IBM Journal of Research and Development, 49,
2005, pp. 377-391.

D.A. Case, T.A. Darden, T.E. Cheatham, IIl, C.L.
Simmerling, J. Wang, R.E. Duke, R. Luo, K.M. Merz,
D.A. Pearlman, M. Crowley, R.C. Walker, B. Wang, S.
Hayik, A. Roitberg, G. Seabra, X. Wu, S. Brozell, V.
Tsui, H. Gohlke, L. Yang, C. Tan, J. Mongan, V.
Hornak, G. Cui, DH. Mathews, C.
Schafmeister, W.S. Ross, and P.A. Kollman, 2006,
AMBER 9, University of California, San Francisco.
Message Passing Interface Forum, MPI: A Message
Interface Standard,
http://www-unix.mcs.anl. gov/mpi/

K.J. Knaus, M. Morillas, W. Swietnicki, M. Malone,
W.K. Surewicz, and V.C. Yee, Crystal structure of the

P. Beroza,

Passing

a mechanism for
Biol., 8, 2001, pp.

human prion protein reveals
oligomerization, Nat. Struct.
770-774.

H. Yang, M. Yang. Y. Ding, Y. Liu, Z. Lou, Z. Zhou, L.
Sun, L. Mo, S. Ye¢, H. Pang, G.F. Gao, K. Anand, M.
Bartlam, R. Hilgenfeld, Z. Rao, The crystal structures of
severe acute respiratory syndrome virus main protease
and its complex with an inhibitor, Proc. Natl. Acad. Sci.
USA, 100, 2003, pp. 13190-13195

A.D. Gossert, S. Bonjour, D.A. Lysek, F. Fiorito, and K.
‘Wauthrich, Prion protein NMR structures of elk and of
mouse/elk hybrids, Proc. Natl. Acad. Sci. USA, 102,
2005, pp.646-650.

S. Honda, K. Yamasaki, Y. Sawada, and H. Morii,
10-residue folded peptide designed by segment statistics,
Structure, 12, 2004, pp. 1507-1518.

MM. Seibert, A. Patriksson, B. Hess, and D. van der
Spoel, Reproducible polypeptide folding and structure
prediction using molecular dynamics simulations, J.
Mol. Biol., 354, 2005, pp. 173-183.

D. Satoh, K. Shimizu, S. Nakamura, and T. Terada,
Folding frec-energy landscape of a 10-residue
mini-protein, chignolin, FEBS Lett, 580, 2006, pp.
3422-34226.

D. Fincham, Parallel computers and molecular
simulation. Molecular Simulation, 1, 1987, pp. 1-45.

M. Sekijima, S. Takasaki, S. Nakamura, and K Shimizu,
Automatic Improvement of Scheduling Policies in
Parsley Parallel Programming Environment, In
of the 14th IASTED International
Conference on Parallel and Distributed Computing and

Systems, 2002, pp. 380-385.

Proceedings





