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Abstract: Analysis of hinge positions in flexible proteins is one of the keys to the under-
standing of their functions and interactions. The RMSD (Root Mean Square Deviation) is the
most popular measure for comparing two protein structures, but it is only for rigid structures
without hinge domains. In this paper, we propose a new measure called RMSDh (Root Mean
Square Deviation considering hinges) and its variant RMSDh®) for comparing two flexible
proteins with hinge domains. We also propose efficient algorithms for computing them, which
can detect the hinge positions at the same time. The RMSDh is suitable for cases where there
is one small hinge domain in each of the two target structures. The algorithm for computing
the RMSDh runs in linear time, which is same as the time complexity for computing the
RMSD and is faster than any of previous algorithms for hinge detection. The RMSDh*®) js
designed for comparing structures with more than one hinge domain. The RMSDh*) mea-
sure considers at most &k small hinge domains, i.e., the RMSDh®*) value should be small if
the two structures are similar except for at most & hinge domains. To compute the value, we
propose an O{kn?)-time and O(n)-space algorithm based on dynamic programming. We also
test our measures against both flexible protein structures and non-flexible protein structures,
and show that the hinge positions can be correctly detected by our algorithms.

tein 3-D structures [Eidhammer et al. 2000,
Lemmen et al. 2000, Wolfson et al. 2005].
Structure comparison algorithms can be cat-
egorized into two types: rigid structure com-
parison methods and flexible structure compar-
ison methods. The former methods consider
protein structures as rigid bodies. But there

1 Introduction

Proteins play enormous variety of roles in
living systems. ‘The functions of the pro-
teins are said to be determined by their 3-
D structures, and consequently the analy-
sis of protein structures is one of the most
important research topics in molecular biol-

ogy. The analysis of protein structures often
starts with comparison of two similar struc-
tures, and there have been proposed tremen-
dous number of methods to compare two pro-

are not a few proteins which change confor-
mationally. Most of their structures can be
divided into several rigid substructures sepa-
rated by small parts (which often consists of



Figure 1: Hinge bending of a protein. A pro-
tein sometimes changes its structure by rotat-
ing around an atom, which is called a hinge.

only one atom) called hinge domains or just
‘hinges’ (Figure 1). They change their struc-
tures by rotating around the hinge, due to their
physical conditions, relations to other proteins,
or some point mutations. The hinges some-
times take very important roles for their func-
tions [Wolfson et al. 2005). The latter flexible
structure comparison methods take hinges into
consideration when they compare structures.
There are three tasks when we compare
two flexible structures. At first we have to
find the correspondence between atoms. We
next have to find locations of hinges and fi-
nally we have to calculate superposition for
each rigid domain. But if we have deter-
mined the correspondence and the hinge po-
sitions, it is not difficult to compute the su-
perposition.  Thus, flexible structure com-
parison methods can be categorized into two
types.! One is a type of methods that does
everything — they find the atom correspon-
dence, the hinge positions, and the super-
position simultaneously [Shatsky et al. 2004,
Ye et al. 2003]. The other type of methods is
dedicated to only hinge detection and calcu-
lation of superposition [Boutonnet et al. 1995,
Huang et al. 1993, Nigham et al. 2007,
Ochagavia et al. 2002, Wriggers et al. 1997],
as they consider the atom correspondence is
given. The methods of the former type are
more general than those of the latter, but they
are definitely more difficult. Note that there
are many situations in which only the latter
methods are needed. For example, we always

!Similarly, rigid structure comparison methods can
also be categorized into two types.

know the atom correspondence in two struc-
tures of the same, or significantly similar pro-
teins. In this paper, we do not deal with how
to find the atom correspondence.

When we compare two structures (by ei-
ther of the two approaches), some appropri-
ate scoring measure is desired. The mea-
sure must be mathematically clear and more-
over easy to compute. The RMSD (Root
Mean Square Deviation) [Arun et al. 1987,
Eggert et al. 1997, Kabsch 1976, Kabsch 1978,
Schwartz et al. 1987] is the most commonly
used measure for comparing two rigid struc-
tures (see section 2 for details). It is defined
very clearly and can be computed very effi-
ciently (in linear time). But it is designed only
for rigid structures. There are no standard
measures to be optimized for flexible structure
comparison, as it seems very difficult to design
a measure that can be efficiently computed.

In this paper, we propose measures for com-
paring flexible protein structures, which can
be very efficiently computed. We first pro-
pose a measure called the RMSDh (Root Mean
Square Deviation considering hinges), which is
a generalization of the RMSD with considera-
tion of a hinge domain. We also propose an
algorithm that computes the RMSDh in lin-
ear time, which is same as the time complexity
for computing the RMSD. Moreover, it detects
the hinge position at the same time. It is much
faster than any of previous hinge detection al-
gorithms. We then generalize the RMSDh for
proteins with at most & hinges, and call the
generalized measure the RMSDh(*), We pro-
pose an O(kn?)-time and O{n)-space algorithm
for computing it, where n is the length of the
structures to be compared. We will also show
that we can detect the hinge positions with the
same time and space complexity, by using a
divide-and-conquer technique.

The organization of this paper is as follows.
In section 2, we present the definition of the
RMSD and algorithms for computing it as pre-
liminaries. Then we propose the new RMSDh
measure and algorithms for it in section 3. We
propose the RMSDh(*) measure and algorithms
for it in section 4. In section 5, we show compu-
tational experiments. Finally in section 6, we
conclude our results and discuss future work.



2 Preliminaries

2.1 RMSD: The Root Mean Square
Deviation

A protein 3-D structure can be represented
by various ways, but the most common way
is to represent it by a list of 3-D coordinates
of its backbone C, atoms. The RMSD (root
mean square deviation) [Arun et al. 1987,
Eggert et al. 1997, Kabsch 1976, Kabsch 1978,
Schwartz et al. 1987] is the most common way
to compare two lists of 3-D coordinates.

Let the two sets of points (i.e., pro-
tein structures) to be compared be P =
{ﬁlaﬁ%"'aﬁn} and Q = {q‘laq_’Qv""q'n}a
where p; and §; are the coordinates of the i-
th C, atoms of P and Q, respectively. Then
the RMSD between P and Q is defined as the
minimum value of

Dps(P,Q) = JZHM (R- G + )2

over all the possible rotation matrices R and
translation vectors @, where || - || denotes the
norm. Let RMSD(P,Q) denote the mini-
mum value, and let R(P, Q) and ¢(P,Q) de-
note the R and ¥ that satisfy Dp3(P,Q) =
RMSD(P,Q).

2.2 How to compute the RMSD

In this section, we briefly describe how to com-
pute the RMSD. Let R - X denote the struc-
ture X rotated by the rotation matrix R. If
the rotation matrix R is fixed, Dg (P, Q) is
known to be minimized when the centroid of
R - Q is translated to the centroid of P by
the translation vector ¥, regardless of what
the rotation matrix R is. Hence, if both P
and Q are translated so that their centroids
are moved to the origin of the coordinates,
the RMSD problem is reduced to a problem
of finding R (i.e., R(P,Q)) that minimizes
Fr(P,Q) = S 17 ~ RG>

We can compute R(P,Q) in linear time
by using the singular value decomposi-
tion (SVD) [Arun et al. 1987, Kabsch 1976,
Kabsch 1978] as follows. Let H = 3.7, p; - Gi%,
where " means the transpose of vector
7. Clearly, H can be computed in O(n)
time. Then Fg(P,Q) can be described

as Yo (7P + @'q) — trace(R - H), and

trace(RH) is maximized when R = VU7,
where UAV is the SVD of H and AT means
the transpose of matrix A. Thus R(P,Q)
can be obtained from H in constant time,
as H is a 3 x 3 matrix and the SVD can
be computed in O(d?) time for a d x d ma-
trix [Golub et al. 1996]. Note that there are
rare degenerate cases where det(VUT) = —1,
which means that VU7 is a reflection matrix.
We ignore the degenerate cases in this paper.
We can compute the RMSD value in linear time
once we have obtained R(P,Q). In total, we
can compute the RMSD value in O(n) time.
Let S[i..j] denote the substructure of S
from the i-th atom to the j-th atom (e.g.,
P[i..7] {Ps, Pit1,---,P;})- According to
[Shibuya 2007], the RMSD and correspond-
ing superposition between two substructures
P[i..j] and Q[i..j] can be computed in con-
stant time for any ¢ and j, after linear-time pre-
Rrocessing, as follows: RM SD(P[i..j}, Q[i-.5]),
R(Pli.j), Qli.j]) and H(Pfi.j],Qli.4]) can
be computed in O(1) time if we a.re given
i P Zk_zpk Py S Gy Sy GG, and
S T Prdit. These values can be computed also
in constant time, if we compute the follow-
ing values in advance: Y %_; B, Sb; Bk'Pik,
ko1 Gk ke @tdi, and Yy Frdi’, for all £
(1 <2< n). It is easy to see that all of these
values can be computed in O(n) time in to-
tal. Thus we conclude that the RMSD and cor-
responding superposition between P[i..j], and
QJ¢..7] can be computed in O(1) time after
linear-time preprocessing.

3 RMSDh: A Linear-Time
Computable Measure for
Hinge Detection

3.1 Definition of the RMSDh

In this section, we consider a new measure
to compare two flexible protein 3-D structures
that are very similar except for one small hinge
domain. We consider that the hinge domain
is so small that it can be considered as only
a single backbone atom.? Let the two struc-
tures to be compared be P = {§1,52,...,0n}
and Q = {¢1, @, - - -, Gn}, and consider that the

20n the backbone, there are atoms other than the
C, atoms, and the hinge can be located at any of them.



hinge is located at a backbone atom between
the ¢-th C, atom and the (¢+1)-th C, atom, or
at the ¢-th Cy atom. Then P[1..4] and Q[1..]
should be similar to each other, and P[£+1..n]
and Q[/ + 1..n] should also be similar to each
other. Thus if the two rigid parts of Q are ro-
tated and translated appropriately with differ-
ent rotation matrices and translation vectors,
P and the transformed Q should be very simi-
lar to each other, and consequently should have
a small RMSD value. It means that

1 )
P — i —fgleft right
Ge(P,Q) oy, in ,172\/ At + griett}

must be a very small value, where R, and Ry
are (possibly different) rotation matrices, o
and ¥, are (also possibly different) translation
vectors, and g*¢f* and ¢"9" are defined as fol-
lows:

gt = Z 15; — (Ra - @ + 5012

gt = Z 17 — (Rz - G + 2)|1*
=041

G¢(P, Q) can be used as the similarity mea-
sure between P and Q, if the hinge is at or
around the /-th atom. Note that this value is
same as the RMSD if Ry = Ry and ©1 = ¥
when they are optimized.

But we do not know the actual hinge posi-
tion in most cases when we compare two struc-
tures. Hence, we consider the minimum value
of G¢(P,Q) over all the possible hinge posi-
tions £, i.e. minj<y<pn G¢(P, Q), as the measure
to compare a pair of flexible structures with
one hinge. We call it the RMSDh (Root Mean
Square Deviation considering hinges), and let
RMSDh(P, Q) denote this value. Note that
the RMSDh is always smaller than or equal to
the RMSD.

3.2 How to compute the RMSDh
The problem of computing RM SDh(P, Q) can
be reduced to the problem computing

121;2” Ll,l(Pa Q) + Lf-i—l,n(P) Q)a

where

Lij(P,Q) mmanz— (R- & + D)%

Notice that
Lij(P,Q) = n - (RMSD(P[i..j],Q[i-j]))*,
which means that we can compute the RMSDh
value by computing 2n — 2 RMSD values, i.e.,
RMSD(P[1..£],Q[1..£]) and RMSD(P[¢ +
1.n),Q[¢ + 1..n)) for all £ (1 < £ < n). Ac-
cording to section 2.2, the computation of each
RMSD can be done in constant time after
linear-time preprocessing.® Hence, the RMSDh
value can be computed in O(n) time, includ-
ing the preprocessing phase. Moreover, we can
detect the corresponding hinge position at the
same time.

4 RMSDh®:
Measures
4.1 Definition of the RMSDh®*)

In the previous section, we considered only one
hinge, but many flexible protein structures are
known to have more than one hinge. In this
section, we consider that the target structures
have k hinges at most, which means they can
be divided into k + 1 rigid domains. Again, let
P = {p1,52,...,Pn} and Q = {G1, &, ..., G}
be the flexible structures to be compared, and
let the positions of the hinges be £1,0s, ..., .
To ease discussion, let £y = 1 and £y = n+1.
Let Hfl,...,lk (P7 Q) be

More Flexible

k Liy1—1

min Z > Igi -

Roye s R, 005Uk

R;- @+ 92

] =0 i={;
where Rg, Ri1,...,R; are rotation matrices,
and g,71,...,U; are translation vectors.

Then, with discussion similar to section 3.1,
the value should be a very small value,

But, as in section 3.1, we do not know the
actual hinge positions in most cases. Thus we
propose to use the minimum value of the above
expression over all the possible sets of k hinge

positions {{1, la,..., 4}, i.e.,
min H P
1<8y <ty <o <by<n 21,...,£k( ,Q)7

as the measure for comparing such flexible
proteins. We call it RMSDh®), and let
RMSDh®) (P, Q) denote the value. Note that

30ne can do the same in the same time complexity

by using the incremental RMSD computation technique
described in [Shibuya 2006].




the RMSDh(?) is same as the RMSDh. Note
also that the RMSDh®) is always smaller than
or equal to the RMSDh*~1_ for any k.

4.2 How to Compute the RMSDh®)

As in the case of computing the RMSDh, the
problem of computing the RMSDh®) can be
reduced to the problem of computing

Z Ciflip1— 1 P Q)

1<4, <Z2< <l <n

where L; ;(P, Q) is the same expression as de-
fined in section 3.2. There are ,_1C} possible
set of k hinge positions, which means that we
might need O((k+1)-,-1C}) time or more if we
naively compute it. But, in the following, we
propose an algorithm based on dynamic pro-
gramming (DP), which compute the RMSDh(*)
in O(kn?) time and O(n) space.
Let Ii,r be

Z £,8501-1(P[1.3], Q[1..4)),

where we let £y = 1 and ¢,4; = ¢+ 1 to ease
discussion. We utilize this value to compute
the RMSDh(®) as follows. The RMSDh®) is
described as (In,k/n)%. Note that I;, is defined
only when 0 < r < ¢ < n. In caser = 0,
it can be easily seen from the definition that
Lo = L1;(P,Q) for any i. In addition, the
following equation holds when r > 1:

1< <52< <lp <z

Ly, = rggi{lj’r;l + Lj_H’i(P, Q)}

The above equation represents a DP algo-
rithm for computing I, ; and consequently the
RMSDh® (i.e., (I, x/n)2). During the DP
procedure, we compute I, forall r (1 <r <
k), from which we can immediately obtain the
RMSDh{") values (1 < r < k) too.

Recall that the L; ;(P, Q) can be computed
in constant time after linear-time (O(n)) pre-
processing (see section 3.2). Thus the values
Lo for all i can be computed in O(n) time in
total. Moreover, in case r > 0, the value I;,
can also be computed in O(i —r) time by using
the values of Ij,_1 (j < ¢). It means that the
overall computation time required for comput-
ing I (and consequently the RMSDh®)) is
O(kn?). The space required for computing the

RMSDh*) is only O(n), because we only need
the information of I;,_1 values (for all j such
that j < ¢) to compute the I;, values for any
1.

To compute the positions of the corre-
sponding hinges, we can use the ordinary trac-
ing back technique for DP algorithms, with-
out increasing the time complexity of the over-
all algorithm. But the space requirement in-
creases to O(nk) space, if we do it naively
by using a table of O(nk) size for tracing
back. It can be reduced to O(n) space by us-
ing a divide-and-conquer technique similar to
the Hirschberg algorithm for sequence align-
ment [Hirschberg 1975], as follows.

Let J;, be

,
i Ly o _1(P[i..
i521<£§2-r-1-<mgn]§ 0, 45411 (P[i-.n], Qfi..n]),

where we let £y = i and ¢,41 = n + 1 to ease
discussion. J;, can also be computed by DP,
as the following equation holds:

Ji,r = ig]jign{Li,j(Py Q) + Jj+1,r—1}-

Moreover the I, ; can be described as follows,*

letting k' = |k/2| and K" =k — k' — 1.

The 7 that minimizes this value is the position
of the (k' + 1)-th hinge. Let the position be p.
To compute it, we need O{kn?) time and O(n)
space.

Similarly, we can next compute the position
of the (|k'/2] + 1)-th hinge by computing the
RMSDh*') between P{1..p — 1] and Q[1..p — 1]
in O(k'p?) time and O(p) space. Similarly, we
can also compute the position of the (&' + 1 +
| k" /2])-th hinge by computing the RMSDh(*")
between P{p+1,n] and Q[p+1,n] in O(k"(n—
p)?) time and O(n—p) space. Notice that k'p?+
k"(n—p)? < kn?/2, and kn?+-kn?/2+kn?/22+

. < 2kn?. Tt means that we can compute all
the hinge positions in O(kn2) time and O(n)
space by repeating the above until we obtain
all of them.

“Once we get the I, we can immediately com-
pute the RMSDh®) value, as was described before, i.e.,
RMSDR® (P, Q) = (Ins/n)3.



5 Experimental Results

In this section, we test the proposed mea-
sures against the proteins shown in Table 1.
They include 3 pairs of flexible proteins
(AK, HIV, and LDH), a pair of rigid pro-
teins (AT), and a pair of non-related pro-
teins (MR). In the experiments, we compare
these protein structures without counsidering
gaps (i.e. we do not use any alignment pro-
grams before comparing them). Table 2 shows
the RMSD/RMSDh/RMSDh(*) values for each
protein set, for which we describe more details
below.

5.1 Adenosylcobinamide kinase

The adenosylcobinamide
kinase [Thompson et al. 1998] is known to be
a flexible protein with shearing movement. Ac-
cording to our experiment, the RMSDh value
is a little smaller than the RMSD value, and it
seems still a large value (more than 2.4A).5 The
hinge position that corresponds to the RMSDh
value is between #52 and #53 atoms, but we
consider that we should not take it seriously
because the RMSDh value is not so small.

The RMSDL® drops far beyond the
RMSDh, and is less than 1A. It implies
that there seems to be at least two hinges
in this protein. The hinge positions ob-
tained in the RMSDh(®) computation are 34-
35 (i.e., between #34 and #35 C, atoms)
and 51-52. The hinge position 34-35 is
also reported in [Nigham et al. 2007] and
[Thompson et al. 1998], while the other hinge
could be a new discovery.

5.2 HIV-1 protease

The HIV-1 protease [Perryman et al. 2004] is
the major drug target against the AIDS (ac-
quired immunodeficiency syndrome). It is also
a flexible protein and its flexibility is said to
affect the effectiveness of drugs. In this exper-
iment, the RMSDE®) drops when k = 2, for
which the corresponding hinge positions are 44-
45 and 56-57. Our result does not contradict
literature [Jacobs et al. 2001}, which reports a

5In case of rigid proteins, we often claim two struc-
tures are similar to each other only when the RMSD
between them is smaller than or around 1.0A. More-
over, the RMSDh/ RMSDL®) values are always smaller
than or equal to the RMSD.

highly flexible region from the 34th residue to
the 55th residue.

5.3 Lactate dehydrogenase (LDH)

The lactate dehy-
drogenase (LDH) [Gerstein et al. 1991} is also
known to be a flexible protein. It moves very
dynamically, i.e., more than 10A. The exper-
iment shows that the RMSDh*) value drops
down when & = 2, but it is still over 1A.
When k = 3, it goes down under 1A. When
k = 2, the corresponding hinge positions are
97-98 and 109-110. Both of the two hinge
positions are the same as those reported in
[Gerstein et al. 1991]. When k = 3, the corre-
sponding rigid regions are 97-98, 109-110, and
324-325. In this case, two of the hinges are the
same as those obtained when k& = 2, and an ad-
ditional hinge is found at 324-325. This hinge
is reported in literature [Nigham et al. 2007].

5.4 Other experiments

In experiment AT, we computed the RMSD/
RMSDh/RMSDh(*) values for two indepen-
dently determined structures of the same pro-
tein in the same state. Note that the same set
is used in [Nigham et al. 2007 for a test on a
pair of almost-the-same proteins. Of course all
the values are very small, including the RMSD
value. We consider that we do not have to com-
pute RMSDh/RMSDh(*) values if the RMSD
is very small like in this case. In contrary,
we compared two totally different structures
in experiment MR (where a myoglobin and a
rhodopsin is compared). In this case, all the
values are far larger than those in any other
experiments. These experiments show that our
measure is effective for discriminating flexible
proteins from other normal rigid proteins.

5.5 Computation time

Table 3 shows the time for computing the
RMSDh*) values and corresponding hinge po-
sitions for all k (1 < k£ < m), using a single 3.2
GHz Pentium D processor with 2 GB memory.
It shows that the computation time is very rea-
sonable (less than a second), even though the
computation time is O(n3) (as k = n —1 in
these experiments).



Table 1: Protein structures used in our experiments.

Set Proteins PDB IDs #residues
AK | Adenosylcobinamide kinase 1CBU(B),1C9K(B) 180
HIV || HIV-1 protease 1LFG, 1LFH 97
LDH | Lactate dehydrogenase (LDH) 1LDM, 6LDH 329
AT Asparatate transcarbamoylase 1RAB(A), 1IRAC(A) 310
MR || Myoglobin / Rhodopsin (residues:1-154) | 101M, 1AYR(A) 154

Table 2: Computation of RMSD/RMSDh/RMSDh(¥),

Set | RMSD | RMSDh | RMSDh'® | RMSDh® | RMSDh(®¥ | RMSDL(®)
AK 3.1092 | 2.4417 0.9772 0.7470 0.5386 0.4755
HIV 1.2451 1.1064 0.7267 0.6483 0.5795 0.5359
LDH || 1.7886 | 1.6160 1.1436 0.8902 0.7234 0.6496
AT 0.1714 { 0.1672 0.1555 0.1508 0.1430 0.1380
MR | 19.3841 | 15.9145 | 13.4793 10.7877 9.3194 8.3340

Table 3: Time (sec) for computing RMSDh(*)
forall k (1 <k <n).

AK HIV | LDH AT MR
Time || 0.219 | 0.047 | 0.640 | 0.610 | 0.156
6 Conclusions and Future

Work

We proposed two new measures for comparing
two flexible proteins, which can be very effi-
ciently computed. The first measure, RMSDh,
can be computed in linear time, while the
other measure, RMSDh(*) can be computed in
O(kn?) time, where k is the maximum number
of hinges, and n is the length of the structures.
Moreover, we can detect the hinge positions
while we compute the measures. Both of the
measures are tested on actual flexible proteins
to show the correctness of our measures.

To compute the RMSDL*) value, we need
to set appropriate k, but we do not know the
actual number of hinges in advance in many
cases. For the number, we can use the k£ where
the RMSDh(*) value drops, or the value drops
below some threshold (say 1A), as we did in
section 5. But it remains as an open problem
how to predict the appropriate k& more the-
oretically and/or efficiently. Moreover, some
flexible proteins have large flexible domains.
Our measure considers only small flexible do-

mains, and some more flexible measure might
be desired for structures with larger flexible do-
mains.

Our algorithms suppose that we know the
correspondence between residues of two pro-
teins in advance, but we do not in many
cases. Thus, we should develop as future work
a flexible structure alignment algorithm that
finds the residue correspondence minimizing
the RMSDh/RMSDh(*).
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