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Tree Adjoining Grammar (TAG) is a useful grammatical tool to model RNA secondary structures
containing pseudoknots, but its time complexity for parsing is not small enough for the practical
use. Recently, Weinberg and Ruzzo proposed a method of approximating stochastic context free
grammar by stochastic regular grammar and applied it to faster genome annotation of non-coding
RNA families. This paper proposes a method for extending their idea to stochastic approximation
of TAGs by regular grammars. We will also report some preliminary experimental results on how
well we can filter out non candidate parts of genome sequences by using obtained approximate

regular grammars.

1 Introduction

Biological sequences contain both of stochastic
and structural information. Formal grammars are
quite useful tools for modeling, with high accuracy,
such stochastic and structural features of biologi-
cal sequences. Covariance Model([5][21]), CM for
short, is one of the most successful grammatical
model for RNA families, in which stochastic con-
text free grammar is used to model RNA primary
and secondary structures. This seminal grammat-
ical technique makes it possible to produce reliable
RNA databases({22]).

A secondary structure of an RNA sequence
w=ay--an(a; € {A,C,G,U}) is base pairing in-
formation between bases in w, which is described
as a finite set of integer pairs (4,7) with i and j
(1 << j < n) indicating +th and jth bases in w,
respectively. It is recognized as an important issue
to deal with secondary structure of a given RNA
sequence, since its structure has strong relation to
its biological function. However, one of the diffi-
culties in the CM approach is that it can not model
the secondary structure, called pseudoknot, which
commonly appear in various RNA molecules and
play various roles in biological functions([4]{13]).
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Fig. 1: The graphical representation of
pseudoknot.

‘When an RNA secondary structure containg
base pairs (4,7) and (2,7) such that ¢ < i’ < j < 7
or i < i< j <j,itis called a pseudoknot (see
Fig.1). Since the crossing dependency in a pseudo-
knot can not be represented by context free gram-
mars, in order to deal with pseudonot, it is neces-
sary to prepare a grammatical model whose gen-
erative capacity is beyond context freeness. There
are several candidate grammars proposed, includ-
ing Tree Adjoining Grammar (TAG) ([11]{25]),
RNA Pseudoknot Grammar([19]), Multiple Con-
text Free Grammar([9][10]), CFG based Parallel
Communicating Grammar([3]), etc.

A Tree Adjoining Grammar(TAG) is a gram-
matical device to generate a set of trees rather than
a set of strings, which was first proposed by Joshi
and Takahashi([8]). It is known that the string
languages generated by TAGs are between context
sensitiveness and context freeness, and can model

*Preliminary version of this paper appeared in Proc. of 1st international Conference on Language and Automata Theory

and Applications(LATA’2007).
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pseudoknotted structures.

Although TAG has enough computational ca-
pacity to precisely analyze pseudoknots, its time
complexity for parsing is not small enough for the
practical use. Recently, Weinberg and Ruzzo pro-
posed a method of approximating stochastic con-
text free grammar by stochastic regular grammar
and applied it to faster genome annotation of non-
coding RNA families using CM method([26]). The
idea is to use such an approximate stochastic reg-
ular grammar to filter total genome sequences and
find out candidate positions of the target fam-
ily. CM is applied only to such candidates, which
drastically reduces the total time of annotation of
ncRNA families. This paper extends their idea and
applied it to approximating stochastic tree gram-
mars by regular grammars. We will also report
some preliminary experimental results on how well
the obtained approximate regular grammars can
be used to filter out non candidate parts of genome
sequences.

The purpose of this paper is to show the effec-
tiveness of the proposed approximation method to
filter out non candidate positions of ncRNA fami-
lies in total genome sequences. The computational
experiment of the ncRNA family annotation by
TAG still requires much computation time. But,
the authors believe that the technique used in this
paper can also be extendedly used in the parsing
process of TAG itself. Thus, the results reported
in this paper is a challenging first step toward the
goal where we can efficiently and effectively use
TAG for the genome annotation with high accu-
racy.

In section 2, we will give definitions and no-
tations of tree adjoining grammars and describe
how we can model RNA secondary structures in-
cluding pseudoknots using TAGs. Inspired from
the results by Weinberg and Ruzzo, in section 3,
we will propose a method of approximating a given
stochastic tree adjoining grammar for RNA mod-
eling to a stochastic regular grammar. We will
also explain a method of tuning stochastic param-
eters. In section 4, some preliminary experimental
results are reported, in which we will show the ef-
fectiveness of the proposed method. In section 5,
we will show related works. Finally, section 6 gives
some concluding remarks.

2 Tree Adjoining Grammar for
RNA Secondary Structure

2.1 Tree Adjoining Grammar

A TAG is a grammatical device for generating
trees. Let us consider a tree labeled with sym-
bols in the alphabet V = N U X where N and X
are disjoint. Symbols in NV are called nonterminals,

and those in ¥ are called terminals. By 7y, we de-
note the set of trees whose internal and leaf nodes
are labeled by symbols in N and V, respectively.
A TAG G is defined by G = (V,C, A), where Vis
an alphabet, and C and A are finite subsets of Ty
such that every ¢t € C does not have a leaf node
with a label in N, every ¢t € A has exactly one leaf
node with a label in N. Elements of C and A are
called center trees and adjunct trees, respectively.
Elements of C'U A are called elementary trees. By
definition, the leaf node of an adjunct tree whose
label is nonterminal is determined uniquely and
is called a foot node. Furthermore, an additional
requirement for an adjunct tree is that the label
of the foot node should be equivalent to that of
the root node. The path from the root to the foot
node of an adjunct tree is called a spine. It is often
the case that some constraints are associated with
each node n of elementary trees. In this paper, we
will consider the following constraints:

1. Null Adjoining (NA): No adjunct trees can
be adjoined at n.

2. Obligating Adjoining (OA): a member of the
set A must be adjoined at n.

A node without NA constraint is said to be ac-
tive. These constraints play an important role in
defining the derivation process of tree grammars.
Let G = (V,C, A) be a TAG. An adjunct tree «
is adjoinable to a tree ; € 7y, if 71 has an active
internal node n whose label is the same as that of
the root node of . The operation to adjoin & on
n of 71 is defined by the following procedure:

Split: Split 71 at n into two trees so that n is con-
tained duplicatedly in both of the trees. Let
'y; be the tree consisting of the nodes (includ-
ing n) Wthh are located below the node n in
T1.. Let ’Y1 be the tree consisting of the nodes
(including n) which are not located below n.
The tree 'yl is called a subtree of 7 at n, and
'yl is called a supertree of ; at n (see Fig.2).

N

yon

A

Fig. 2: Split v; at n into 'yi and ’y;’.

Merge: Combine 'yi’ and « by identifying n of ’y;’
and the root node of «, and then combine
again the resultant tree and 'y; by identify-
ing the foot node of @ and the root node (i.e.
n) of v, (see Fig.3).
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Fig. 3: Merge 'y;, o, and 7;.

We write 1 g ¥2 if there is an adjunct tree
a € A which is adjoinable to v; and 72 is obtained
by adjoining o to ;. By F§, we denote the reflex-
ive and transitive closure of k5. We define:

7(G) = {t € 7v | to F§ t,t does not contain a
node with OA constraint and ty € C. }

LG)y={Y(t) eZ* |t eT(G)},

where Y{¢) is the yield of a tree ¢, which is defined
as the string consisting of labels of leaf nodes of ¢
ordered in depth-first and left-to-right.

2.2 TAGgna

In this paper, we will focus on a subclass of TAGs,
called TAGRn 4, which was proposed by one of the
authors in order to model RNA secondary struc-
tures including pseudoknots([11][25]). Although
the generative capacity of TAGgrna is strictly
weaker than that of TAGs*, it can model various
types of existing RNA secondary structures.

A center tree of a TAGRy 4 should be of the
form represented in Fig.4 (a), where § € N and
A is an empty string. An active node is indi-
cated by the symbol *¥’. A center tree used in
a TAGgrn4 always has only two nodes root and
leaf. The root node is an active node and the la-
bel of the leaf node is always A. An adjunct tree of
a TAGgry 4 should be of the form represented in
Fig.4 (b) or Fig.4 (c), where e1, €2, €3,e4 € U {0}
and X, Y,Z (S N. If 61‘(,;:1,2)3’4) is ‘O’, €; is said
to be a blank node (the blank node indicates that
the node doesn’t exist.). We call an adjunct tree
of Fig.4 (b) a type-A adjunct tree which has the
root node, the foot node, one active node on the
spine, and four nodes (leaf or blank). In a type-A
adjunct tree, the root node has three child nodes.
These are located down left (the upper-left node
of the active node), just under (the active node on
the spine), and down right (the upper-right node of
the active node) of the root node respectively. The
active node also has three child nodes. These are
located down left, just under (the foot node), and
down right of the active node, respectively. We
call an adjunct tree of Fig.4 (c) a type-B adjunct
tree which has the root node, the foot node, and
two active nodes. One of two active nodes is on the

spine, and the other is located at either upper-left,
upper-right, down-left or down-right of the active
node on the spine. The latter active node has a
leaf node as a child, whose label is always A. In
this paper, the latter active node is called a branch
active node.

X X
AN X Pl %
dlie 4 R
! 1N, 2y /Y Y\ v &
1 & | A1 Do T
X a1 x xf 1,
@ ® x| | x
A A
)

{e-) [C)] (-3 {eve}

Fig. 4: Elemental trees of TAGgpn 4.

For "convenience of the discussion in the se-
quel, we introduce notations of elementary trees
of TAGgrn 4 as follows:

By [S* — A, we denote a center tree of
TAGgn 4 whose root label is § € N. By [X —
Y*(e1, ez, €3,€e4)], we denote a type-A adjunct tree
of TAGgrn 4 such that root label is X € N, active
node label is Y € N, the upper-left node label is
e1, the down-left is es, the down-right is eg, and
the upper-right is e4, respectively (eq,ez,e3,e4 €
SuU{e}). By IX — Y*(Z*, 0,0,0)], we denote a
type-B adjunct tree of TAGgy4, where X € N
is the label of the root, Y € N is the label of the
active node on the spine, and Z € N is the la-
bel of the branch active node. In this case, the
upper-left node is active, and down-left, down-
right, upper-right nodes are the blank node (see
Fig.4 (c-1)). Notations [X — Y™*(o,Z*,0,0)],
[X — Y*(o,0,Z%,0)], and [X — Y*(o,0,0,Z%)]
are introduced in a similar way (see Fig.4 (c-2),
Fig.4 (c-3), Fig.4 (c-4), respectively).

A TAGRrn 4 can be used to model an RNA sec-
ondary structure including pseudoknots. Asakawa
characterized the class of RNA secondary struc-
tures represented by TAGgrna. He proved that
T AGgn 4 pseudoknotted structure can be charac-
terized by a W-shaped structure (see Fig.5), where
base pairs are represented by dotted horizontal
lines. Almost all of the pseudoknot structures in
Rfam can be modeled by a TAGrya with some
exceptions.

Fig. 5: The graphical representation of a
W-shaped structure.

For instance, let us consider an RNA subse-
quence of w=AGACUU with a secondary struc-
ture {(1,5), (2,4), (3,6)}. The set of elementary

*In TAGRrN 4, an adjunct tree has at most one active node on its spine, which restricts the generative capacity of
TAGRN 4, as tree and string languages, compared to original TAG.
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trees to model this RNA is given by (c) [X} —
/\]7 (al) [Xl - Xg(Avaoao)L (042) [X2 g
X3(G,C,0,0)] and (a3) [Xz — X§(o, A,U,0)]. Its
derivation process is shown in Fig.6.

Pseudoknot structure /X‘ /Xz Xa
AGAcuu X A G | |
x Cxox

7/ 4 V4N
A | | !

{e) u X, C X2 A Xs u

(@)

X
/

Fig. 6: The derivation of w by TAGrn 4.

2.3 Automatic Construction of
Stochastic TAG

Takakura, et al, developed a system for gener-
ating stochastic TAG from multiple alignment
data of RNA sequences with secondary structure
information([23][24]). This system is based on
the algorithm developed by Asakawa which de-
cides whether or not a given secondary structure
can be modeled by a TAG([2]). By modifying
this algorithm and collecting stochastic informa-
tion of primary sequences in the alignment data,
Takakura developed an efficient system for gen-
erating stochastic TAG which models the given
alignment data. This system can generate stochas-
tic TAG in O(n?m), where n is the maximum
length of RNA sequence and m is the number of
RNA sequences in the given alignment datal.

Although we have not yet developed a learning
algorithm of stochastic TAG like that of stochas-
tic CFG in CM method, the simple implementa-
tion of collecting stochastic information from the
alignment data works fairy well for the unknown
data classification([23]). We will use Takakura’s
system for the experiments in section 4.

3 Approximating tree grammars

by regular grammars

3.1 Speed-up by Filtering

Although TAGgrn4’s can effectively model RNA
secondary structures including pseudoknots, its
time complexity for parsing is O(n®) (n is the
length of input string)([25]), which makes it hard

to apply TAGRrna’s to the search of functional
RNAs in large genome databases. In order to over-
come the difficulty, we will propose a method for
making a TAGgry 4 search efficient without loss
of its accuracy based on Weinberg’s idea. The
method constructs, from a stochastic TAGgy 4,
a stochastic regular grammar (SREG), which ap-
proximates the given TAG gy 4 and filters genome
databases. Stochastic parsing by TAGgrn 4 is ap-
plied only to candidates of functional RNAs which
pass through the filtering process by the SREG.
Since SREG parsing is much faster than TAGry 4
parsing, the good approximation of TAGgn4 by
SREG makes the database search much faster,
even if we consider the time of approximating
TAG RNA-

Let P(w | G) be the maximum probability of
all derivations of G which generate w. An approx-
imate SREG Greg for a TAG RN 4 Giag should sat-
isfy:

P(w | Greg) > P(w | Giag), (for any w) (1)

in order to guarantee that we do not loose any
candidate functional RNAs at the filtration stage.

‘We will describe the construction of an approx-
imate SREG for a TAGgrn 4 satisfying the above
constraint in two steps: '

1. Construct a regular grammar from a stochas-
tic TAG gy 4 without considering probabilis-
tic parameters.

2. Determine the probability of each produc-
tion rule of an SREG.

3.2 Regular Approximation of a
Stochastic TAGgn4

The approximation method proposed by Wein-
berg and Ruzzo([26]) is essentially the same as
that by Nederhof([14]). ‘Although it is possible to
apply CFG approximation methods by Harbusch
or Poller([6][16]) to a given TAG and then apply
Nederhof’s regular approximation to it, we will ex-
tendedly apply regular approximation technique
similar to Nederhof’s([14]) directly to TAGs for
its simplicity.

We introduce some technical terms before
showing the method of constructing an approxi-
mate SREG for a given TAGgrya. A node with
nonterminal symbol Z is said to be an initial node
if there exists no v € A such that v = [X —
Z*(a, b, c,d)] for some a,b,c,d € LU{o} and some
X € N with X # Z.

Let 8 be an adjunct tree. By UL(8) (DL(B),
DR(8), UR(f), respectively), we denote the sub-
string of Y(3) which is located at the upper-

tTheoretically, we can develop an algorithm which runs in time O(nm), but the current implementation is Q(n?m).
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left(UL) (down-left(DL), down-right(DR), upper-
right(UR), respectively) segment from the active
node in .

In order to construct a regular approximation
of a TAGrna we will convert an adjunct tree 8
into four regular production rules each correspond-
ing to one of segments UL(J3), DL(8), DR(g),
UR(fB). For instance, consider a type-A adjunct
tree 3 denoted by {X — Y™*(a,b,¢,d)] (X,Y €
N, a,b,c,d € T U {o}). Production rules corre-
sponding to 8 are as follows:

XUL N G,YUL YDL — bXDL
XDR N CYDR, YUR - dXUR. (2)

However, these production rules are independent
and not connected to each other. We need to
construct special production rules which connect
these production rules. If the node denoted by X
is an initial node, we construct a special produc-
tion rule which connects DL and DR segments:
XPL — XPE, In this paper, we call this special
production rule a connecting production rule.

From the behavior of the adjoin operation, we
know that DL and DR segments of an initially ap-
plied adjunct tree are located consecutively in the
yield of a resultant tree. Thus, we only have to
construct a special production rule which connects
DL and DR segments according to the label of an
initial node.

Second, we show how to construct production
rules in the case of a type B adjunct tree. Let
B be a type B adjunct tree denoted by [X —
Y*(Z*,0,0,0)] (X,Y,Z € N). Production rules
corresponding to 3 are as follows:

XUL N ZUL ZUR s YUL
YDL o XDL XDR - YDR
YUR — XUR. (3)

Because the branch active node (in this case, the
node denoted by Z) is always an initial node,
we also construct a connecting production rule:
7ZDL _, DR

In cases of [X — Y*(o,Z%0,0)], [X —
Y*(o,0,2%,0)], [X — Y*(o,0,0,Z*)], production
rules are introduced in a similar way.

Third, we show how to construct special pro-
duction rules which connect UL and DL segments,
DR and UR segments respectively. UL and DL
segments, and DR and UR segments are separated
at the active node which was introduced at the fi-
nal step of the derivation. Thus, we only have to
construct special production rules according to the
label of such a terminating node X:

XUL . XDL XDR _ XUR.

Also, we call these special production rules con-
necting production rules.

3.3 Constraints on Stochastic Pa-
rameters

In our RNA secondary structure analysis system,
a Oth-order Hidden Markov model is used as a
random model to be compared with a stochastic
T AG rn 4 model, in order to judge whether a given
RNA sequence can be a member of the family. Let
P(w | Grand) be the probability of an RNA sub-
sequence w generated by a random model Grgpng.
Let P(w | Giag) be the probability of w generated
by a TAGrna Giag. We use a random model as
threshold, i.e., w belongs to an RNA family mod-
eled by Giqg, if the following inequality (4) holds:

P(w | Gtag) > P(w ' Grand)> (4)

In order to construct a stochastic regular gram-
mar Grey which approximates Giag, it is impor-
tant to assign probabilities so that (1) holds, since
P(w | Grang) > P(w | Greg) and (1) imply
P(w | Grana) > P(w | Gtag), which means that
the inequality P(w | Grana) > P(w | Greg) can be
used at the filtration stage.

In this subsection, we use the logarithm of the
probability instead of the probability itself. We

) will show how to construct probabilities of pro-

duction rules satisfying (1). Consider a type-A
adjunct tree 8 denoted by [X — Y*(a,b,¢c,d)] and
let Ly be the logarithm of the probability of 8.
According to our algorithm, we obtain the pro-
duction rules shown in (2) from 8. Let £, £5, £3
and. 24 be the logarithm of probabilities of these
production rules, respectively. In order to satisfy
(1), it suffices to use £1, 3, f3 and {4 satisfying
the following inequality constraint:

b+l + U3 +44> L.

The probability of connecting production rules is
always assigned to be 1.

Next, we consider a type-B adjunct tree v de-
noted by [X — Y*(Z* o0,0,0)]. Let Ly be the
logarithm of the probability of v. We obtain the
production rules shown in (3) from . In a similar
manner as in the case of type-A adjunct tree, the
problem is reduced to the one to find ¢, £, £7, £
and 4y satisfying:

ls + s+ €7 + £g + Ly > Lo,

where 05, fg, 07, fg and ¢y correspond to
the logarithm of the probabilities of XVL —
ZVL .., YUR _ XUR respectively. We con-
struct a set of inequality constraints for all adjunct
trees and denote it by CN.
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3.4 Improving Stochastic Parame-
ters

In this subsection, we will show a method to im-
prove the filtering efficiency. The probabilistic pa-
rameters satisfying the set CN of constraints al-
ways meet the filtration condition (1). However,
we aim to remove candidates that can not be a
member of the family modeled by Gto, as many
as possible. Following the works by Weinberg and
Ruzzo, we will propose a method for tuning prob-
abilistic parameters based on nonlinear program-
ming to meet such a requirement.

Parameter tuning method proposed in this sub-
section uses two grammar models, Giog and Grang
bellow, in order to improve the approximation ac-
curacy of an SREG obtained from Giqy as in the
previous subsection. Thus, it is different from
Kullback-Leibler distance minimization approach
([15)).

We use Grqng 2s a random model for whole
genome sequences (Oth order HMM based on
a,g,c,u frequencies). We define the objective func-
tion OB as follows:

OB= Y

WEL(Greg)

PT(’LU | G,,.eg)PT’(’LU | Grand):

where Pr(w | G) is the probability of w generated
by G. By minimizing OB subject to the set CN of
constraints, the number of candidate RNAs might
be reduced.

We can use dynamic programming method for
computing OB and its time complexity is O(n). In
order to solve this minimization problem, we use a
nonlinear optimization solver CFSQP([12]) In con-
clusion, we can improve stochastic parameters by
solving the following minimization problem:
Minimize:

OB = ZwEL(G,eg) Pr(w | Greg)Pr(w | Grana)-
Subject to:
set of constraints in CN.

4 Experimental Results

The purpose of this paper is to show the effective-
ness of the proposed approximation method for an-
notating RNA family in genome sequences. In this
section, we will show some experimental results on
how such approximation grammars can be used to
reduce drastically the candidate positions of the
RNA families. -

The procedure of each experiment is given as
follows:
data from the

1. Get alignment Rfam

database([22]).

2. Generate a TAGgrya G1 that models
RNA family by the system developed by
Takakura([23]).

3. Generate an SREG G4 approximating G; by
the proposed method, whose time complex-
ity for building an SREG is O(n), where n is
the size of G;.

4. Tune probabilistic parameters of G3 by using
nonlinear programming method, for which
we use a solver CFSQP([12]).

5. Filter RNA sequences by using the SREG
G, whose time complexity is O(Im?), where
[ is the length of total genome sequence, and
m is the size of G.

6. Check how much portion of candidate posi-
tions are remained.

The purpose of these experiments is to show
efficiency and accuracy of our method, not to find
new members of target RNA families. We used six
RNA families including pseudoknots for this ex-
periment:Corona_FSE, Corona_pk3, Euntero_oriR,
HDV rybozyme, Tombus_ 31V, Tymo_tRNA-like.

In order to emphasize on the importance of
tuning stochastic parameters, and show the effec-
tiveness of the method proposed in subsection 3.4,
for a given stochastic TAG, we generated two ap-
proximation grammars, one of which has stochas-
tic parameters after optimization, and the other
has parameters without optimization.¥ We show
one of experimental results (see Fig.7).

optinized
not aptinized mmos

8§ & 2

»
8

Frequency of candidate positions

8 8 2 8 o

©

) ) ™ ) 108
Standardized position of genome sequence

Fig. 7 HDV _ribozyme.

The horizontal axis represents standardized po-
sition of RNA sequence in a RNA family, where
1 and 100 correspond to the start and the end
of the sequence. More precisely, for an RNA se-
quence of length n, the horizontal value 4 shows
the sequence segment approximately from the base
((z—1)-n)/100 to the base (i-n)/100. The corre-
sponding vertical value shows the number of posi-
tions in that segment found to be the candidates
after the filtration.

The experiments show that SREGs with op-
timized parameters performs much better than
those with non-optimized parameters, which
shows the effectiveness of the proposed method

*Non optimized parameters are obtained by finding feasible solutions (satisfying CN) using the software CFSQP.
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in subsection 3.4. The filtering ratios with opti-
mized SREGs show that the proposed method can
have potential ability to drastically reduce the to-
tal time for annotating ncRNA families.

5 Related Works

There are so many algorithms proposed for pre-
dicting RNA secondary structures including pseu-
doknots for a given linear RNA sequence by
Akutsu([1]), Rivas([19]), Reeder([17]), Ren([18]),
Ruan([20]), Uemura([25]), etc. Although these
standard prediction algorithms provide the basis
for the analysis of given RNA sequences, they can
not be directly used to find the location of a tar-
get RNA family in a complete genome sequence,
which is the coverage of this paper.

The most related is by Weinberg and Ruzzo,
who proposed a method of approximating stochas-
tic context free grammar by stochastic regular
grammar and applied it to faster genome anno-
tation of non-coding RNA families([26][27]). Al-
though CM method is quite effective for mod-
eling and predicting RNA families, it can not
model pseudoknotted structures. This work ex-
tends Weinberg and Ruzzo’s approach to the case
of stochastic TAGs by which we can model pseu-
doknots.

Weinberg and Ruzzo’s method has two steps.
In the first step, they apply regular approxima-
tion method to stochastic TAGs. Second, they
improve stochastic parameters. The approxima-
tion method in the first step proposed by them
is almost equivalent to Nederhof’s method ([14]).
Nederhof proposed approximation of CFG by REG
based on Recursive Transition Network. Further-
more, we know that there are some works on ap-
proximating TAGs by CFGs([6][16]). Based on
these works and Nederhof’s works, we can ap-
proximate a given TAG by a CFG, and then ap-
proximate the obtained CFG by a REG. But, in
the current paper, we apply regular approximation
technique similar to Nederhof’s method directly to
TAGs for its simplicity.

In the second step, we improve stochastic pa-
rameters. The tuning method in the second step is
different from Nederhof’s method([15]). Nederhof
proposed a method for training finite automaton
on SCFG so that Kullback-Leibler distance be-
tween them could be minimal. But, we do not
use Kullback-Leibler distance for tuning probabil-
ity parameters, since its direct application might
loose some candidate locations of an RNA fam-
ily which can be found by TAGrn4. We use two
grammar models Greg and Grang and apply non-
linear programming method in order to optimize
parameters of Gr., with the guarantee that we
do not loose such locations found by TAGgrna-

It might be a theoretically interesting future re-
search topic to extend Kullback-Leibler distance
minimization method so that it might not loose
candidate locations which can be found by the tar-
get grammar.

6 Conclusions and Future Works

Inspired from the work by Weinberg and
Ruzzo([26](27]), we developed a method for ap-
proximating a given stochastic tree adjoining
grammar to stochastic regular grammar and ap-
plied it to faster genome annotation of ncRNA
families. Parameter tuning based on an optimiza-
tion technique is applied in order to improve the fil-
tering efficiency. Preliminary experimental results
were reported and the effectiveness of the proposed
method was verified by these experiments.
Although we succeeded in filtering out non can-
didate positions of RNA families effectively, the
parsing time efficiency of TAG itself is still com-
putationally heavy for the practical use. In actu-
ality, such parsing time inefficiency is currently a
big research obstacle against the attempt of ap-
plying these mildly context sensitive grammars to
RNA structure modeling. But, after the expe-
rience of these experiments, the authors believe
that this kind of grammar approximation method
would be quite effective also for the efficient pars-
ing itself. We are now developing such an approx-
imation method for stochastic TAG parsing.
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