FEFEN SR
IPSJ SIG Technical Report

W

[Invited Lecture]

The Maximum

2007—MPS—67
2007—BIO—11
2007,712,720

Clique Problem

and Its Applications
Etsuji TOMITA?

Abstract. We show some recent results in the Advanced Algorithms Research Laboratory at the University
of Electro-Communications on the maximum clique problem and its applications. These are parts of our
various work in the AARL at UEC with which the author is involved together with his colleagues and his

students.
1 The Maximum Clique Prob-
lem

Many problems can be formulated as graphs where a
graph consists of a set of vertices and a set of edges,
in which the vertices stand for objects in question
and the edges stand for some relations among the ob-
jects. A clique is a subgraph in which all vertices are
pairwise adjacent[6]. Hence, a clique represents a set
of objects in which every pair is related. In addi-
tion, a maximum clique of the direct product of two
graphs represents a maximum matching in the two
graphs{6]. Therefore, a maximum clique and maxi-
mal cliques play an important role and have received
considerable attention[11, 6].

However, the so called mazimum cligue problem
is considered to be very hard to solve, that is, it is
proved to be an NP-complete problem. Nevertheless,
many researchers including the author are engaged in
devising as fast algorithms as possible for finding a
maximum clique and generating all maximal cliques,
because of their importance in practice.

1.1 Fast Algorithms for Finding a
Maximum Clique

Recently, we presented a simple and fast branch-and-
bound algorithm MCQ[28] for finding a maximum
clique, and we improved it to get a new algorithm
MCR[30], primarily by introducing more appropri-
ate sorting of vertices at the beginning. MCR in turn
was improved to a more efficient algorithm MCR-
Re[31], by employing sophisticated approximate col-
oring and sorting of vertices. In addition, we have
improved MCR-Re to have an algorithm MCS (previ-
ously called MCSg) by localizing the memory usage in
order to make more effective use of cache memory([22].

A comparison of MCQ, MCR, and MCS is shown in
Table 1, where the branches correspond to the extent
of search spaces(28, 30] and w is the size of a max-

tDepartment of Information and Communication Engineer-
ing, and The Advanced Algorithms Research Laboratory, The
University of Electro-Communications, Tokyo 182-8585, Japan.
E-mail: tomita@ice.uec.ac.jp

imum clique in a given graph. Some computational
time comparisons with other algorithms are shown in
Tables 2 and 3. In Table 2, n is the number of ver-
tices and p the edge probability. The computer used
in these experiments is a Pentium4 3.6GHz CPU op-
erating on Linux{31]. It is confirmed that MCS is by
far the fastest among all the presently existing algo-
rithms for almost all cases.

We have also developed algorithms for weighted
graphs|27, 24].

1.2 Algorithms for Generating Maxi-
mal Cliques

In addition to finding a maximum clique, generating
all maximal cliques is required in many diverse appli-
cations such as clustering, data mining and others|6,
13]. We proposed an algorithm CLIQUES[29] for
generating all maximal cliques.

A part of its computational time comparisons with
other algorithms is shown in Table 4, where fcliques
is the number of maximal cliques. The computer used
in this experiment is a Pentium4 2.2GHz CPU oper-
ating on Linux[29]. CLIQUES is very fast and space
efficient.

Some variations of CLIQUES have also been
developed[14, 15].

1.3 Theoretical Analyses

We proved that the worst-case time complexity of
CLIQUES is O(3™/%) = 0(2%5%8") for an n—vertex
graph, and that is optimal with respect to n.

Steady improvements have been made to the
time complexity for finding a maximum clique
in an n-vertex graph in polynomial-space from
O(209-3337)26] to O(202887)[9] in the last almost 30
years. We have remarkably improved this complex-
ity to O(2°196697)[16] by an algorithm that is based
on CLIQUES[29, 20]. Our algorithm is also fast in
practice{20, 25]. Further theoretical analysis is in
progress.

(6)
(6)

Table 1: Comparison of MCQ, MCR, and MCS

Graph CPU time [sec] branches x107°
Narme w MCQ | MCR | MCS MCQ MCR MCS
brock4002 | 29 748 742 297 116,224 116,328 | 33,513
brock4004 | 33 680 639 248 118,855 114,925 | 30,855
MANN_a27 | 126 2.61 254 | 0.78 38 38 9
MANN_a45 | 345 2,775 | 3,090 281 2,852 2,952 225
p-hat300-3 | 36 17 11 3 2,473 1,546 235
p_hat500-3 | 50 2,805 | 1,788 150 237,077 | 138,300 | 7,923
phat700-3 | 62 | 122,264 | 68,187 | 2,392 | 7,046,183 | 3,733,665 | 88,168
p-hat1000-2 | 46 2,764 | 2,434 221 221,797 | 197,147 | 12,618
san200.0.9.3 | 44 10.59 0.16 | 0.06 1,182 22 6
5and00.0.9_1 | 100 32.8 34 0.1 708 74 2
sanr200.0.9 | 42 322 289 41 42,865 40470 | 3,471
Table 2: CPU time [sec] for random graphs
Graph dfmax MCS New COCR
n | p | w [11] (Ours) [18] [19]
0.6 | 11-13 0.0041 0.0016 0.0022 0.092
0.7 | 1416 0.018 0.0036 0.0067 0.12
100 0.8 | 19-21 014 | ® 0.0078 0.065 0.15
0.9 | 29-32 3.67 | x 0.013 0.66 0.20
0.95 | 39-48 23.74 | % 0.0028 0.20
0.98 | 56-68 26.54 | Jok* 0.00087
0.7 | 16-18 036 | e 0.047 0.33
0.8 23 6.88 | © 0.23 0.75
150 0.9 | 36-39 1,058.96 1.01 1.16
0.95 | 50-59 || 37,436.79 | k% 0.35
0.98 | 73-85 > 10° | Yokk 0.0061
0.5 | 11-12 0.038 0.015 0.020 0.25
0.6 14 029 o 0.072 0.17 0.52
0.7 | 1819 385 | 0 0.41 3.02 1.65
200 0.8 | 24-27 192.68 4.48 147.29 8.69
0.9 | 40-44 > 10° 73.62 0 36.79
0.95 | 5866 >10° | kk%x 58.83
0.98 | 90-103 > 10° | Yook 0.21
05 | 1213 0.36 0.13 0.20 1.13
0.6 | 1516 488 | o 0.99 3.50 4.98
300 0.7 | 19-21 144.11 | * 12.00 121.02
0.8 | 2829 || 26,235.96 | % 393.57
0.9 49 > 10° 79,628.80
05 | 1314 899 | o 2.79 7.25 17.43
500 0.6 17 24229 | o 40.70 183.28
0.7 | 22-23 || 24,998.42 | * 1,538.74
0.75 26 >10° | o 20,403.68
0.3 | 910 1.98 1.15 1.64
Looo | 04 12 33.28 13.25 23.19
’ 0.5 15 1,107.70 | © 290.03
0.6 20 >10° | e 13,554.05
5,000 | 0.1 7 6.29 3.32
10,000 | 0.1 7-8 137.05 | © 59.55
15,000 | 0.1 8 79257 | o 326.78

Entries indicated by %k, %, ® and O represent those that are more
than or equal to 1000, 10, 5, and 2 times faster than all the others
confirmed within the time limits in the same row, respectively.

Table 3: CPU time [sec] for DIMACS benchmark graphs

Graph
Name " dfmax MCS New x + DF | COCR | MIPO Target/5
[11] (Ours) [18] 18} [19] (5] [21]
brock200_1 21 1453 | % 0.86 1212 68.70 69.80
brock200.4 17 0.90 0.14 0.22 6.04 0.91 3.60
brock400_1 27 || 22,051 | * 693 >10,640 >4,320
brock400_2 29 || 13,519 | * 297 >10,640 | >415 >4,320
brock400_3 31 || 14,795 | * 468 >10,640 >4,320
brock400_4 33 || 10,633 | * 248 >10,640 | >415 >4,320
brock800.1 23 >10° | * 9,347 >10,640
brock800_2 24 || >10° | % 8,368 >10,640 | >415
brock800.3 25 || 91,031 | X 5,755 >10,640
brock800_4 26 || 78,737 | * 3,997 >10,640 | >415
c-fat500-10 126 || > 10° 0.026 0.016 0.015
bamming8-4 16 1.85 0.20 0.19 451 1.00 20.13
hamming10-2 | 512 || >10° | o 0.19 0.56 3.81
johnsonl6-2-4 | 8 0.75 0.14 0.060 5.88 * 0.0017
MANNa27 | 126 || >10° | o 0.78 >2,232 7,647 2.75
MANN_a45 345 || >10% | &k 281 >10,640
p_hat300-2 25 063 | * 0.018 0.22 2.23 0.61
p-hat300-3 36 780 | © 2.55 633 5.39
p-hat500-1 9 0.051 0.030 0.065 0.44 0.20
p_hat500-2 36 133 | %% 0.74 95.71 151 >4,320
p_hat500-3 50 >10° | A& 150 >10,640 >4,320
p_hat700-1 1 0.20 0.10 0.15 1.98 2.74 1.40
p-hat700-2 44 5,300 | o 5.60 1,542 | 25.44 >4,320
p_hat700-3 62 >10° | % 2,392 >10,640 | >415 >4,320
p_hat1000-1 10 105 | o 0.49 1.30 12.14
p_hat1000-2 46 >10° | ok 221 >10,640
$an200.0.9_1 70 > 10° 0.22 0.060 46.27 0.050 4.60
san200.0.9.2 | 60 > 10° 0.41 0.96 1,427 o 0.5 65.60
5an200.0.9.3 | 44 || 42,643 | %k 0.063 144 15.15 >4,320
sand00.0.5_1 13 433 0.020 | © 0.0067 4.98 85.44 0.80
san400.0.7_1 40 >10° | % 0.54 >2,232 315 24.40
sand00.0.7.2 | 30 >10° | %% 0.13 113 118 505 113.20
$and00.0.7_3 22 >10° | %k 1.44 456 >4,320
$an400.0.9.1 | 100 || > 10% | %kx 0.12 5,335 >4,320
san1000 15 > 10° 217 | % 0.11 2,249
sanr200_0.9 42 || 86,954 | *kkx 41 >10,640
sanr400_0.5 13 212 | O 0.72 1.48 17.06
gen200.p0.944 | 44 |[48,262 | © 0.47 1.88 13.01
gen200_p0.9.55 | 55 9,281 1.23 096 | ® 0.19
gend00_p0.9.55 | 55 >10° | % 58,502
Ci25.9 34 5005 | ® 0.060 0.56 46.6
C250.9 44 > 10% | *ok 3,257

Entries indicated

by %k, k%, %, ® and O represent those that are more than or equal to 1000, 100, 10,
5, and 2 times faster than all the others confirmed within the time limits in the same row, respectively.

Table 4: CPU time [sec] for random graphs

Graph CLIQUES AMC AMC*
Name | fcliques [29] [13} [13]
r1000.1 118,325 0.2 143.1 19.4
r1000.2 | 1,183,584 2 4,486 830
r3000.1 | 2,945211 11 | >86,400 5,905
r5000.1 | 18,483,855 87 | >86,400 | >86,400

2 Applications

The above algorithms and their extensions are being
successfully applied to many problems. These include
the followings:

o Clustering[33],

¢ Bioinformatics[2}, [3], [4], [7], [1],
o Image processing[10],

o Design of quantum circuits[17],

& Design of DNA and RNA sequences for biomolec-
ular computation[12], [23].

Parallel processing is also under study[32] in order
to solve large practical problems.

Acknowledgment

The author would like to express his gratitude to his
colleagues and students for their collaborative studies.
This research was partially supported by Grants-in-
Aid for Scientific Research Nos. 13680435, 16300001,
19500010, and others from the MEXT, Japan.

References

[1] T. Akutsu, M. Hayashida, D. K. C. Bahadur, E. Tomita,
J. Suzuki, K. Horimoto. Dynamic programming and clique
based approaches for protein threading with profiles and
constraints. IEICE Trans., E89-A: 1215-1222, 2006.

D. K. C. Bahadur, T. Akutsu, E. Tomita, T. Seki, A. Fu-

jiyama. Point matching under non-uniform distortions and

protein side chain packing based on an eflicient maximum

clique algorithm. Genome Inform., 13: 143-152, 2002.

{3] D. K. C. Bahadur, E. Tomita, J. Suzuki, K. Horimoto, T.
Akutsu. Protein side-chain packing problem: A maximum
edge-weight clique algorithmic approach. J. Bioinform.
Comput. Biology, 3: 103-126, 2005.

[4] D. K. C. Bahadur, E. Tomita, J. Suzuki, K. Horimoto,

T. Akutsu. Protein threading with profiles and distance

constraints using clique based algorithms. J. Bioinform.

Comput. Biology, 4: 19-42, 2006.

E. Balas, S. Ceria, G. Cornuéjols, G. Pataki. Polyhedral

methods for the maximum clique problem. In [11]: 11-28,

1996.

[6] I. M. Bomze, M. Budinich, P. M. Pardalos, M. Pelillo.
The maximum clique problem,. In: D. -Z Du, P. M.
Pardalos(Eds.). Handbook of Comb. Optim., Suppl. vol. A,
Kluwer Acad. Publ.: 1-74, 1999.

[7} J. B. Brown, D. K. C. Bahadur, E. Tomita, T. Akutsu.
Multiple methods for protein side chain packing using max-
imum weight cliques. Genome Inform., 17: 3-12, 2006.

[2

5

8

T. Fahle. Simple and fast: Improving a branch-and-bound
algorithm for maximum clique. ESA 2002, LNCS 2461:
485498, 2002.

[9] F. V. Fomin, F. Grandoni, D. Kratsch. Measure and
conquer: A simple O(29-23%") independent set algorithm.
Proc. SODA 2006: 18-25, 2006.

[10] K. Hotta, E. Tomita, H. Takahashi. A view-invariant hu-
man face detection method based on maximum cliques.
Trans. IPSJ, 44, SIG14(TOM9): 57-70, 2003.

[11] D. S. Johnson, M. A. Trick (Eds.). Cliques, Coloring, and

Satisfiability, DIMACS Series in DMTCS, vol.26, Amer.

Math. Soc.: 1996.

[12] S. Kobayashi, T. Kondo, K. Okuda, E. Tomita. Extract-
ing globally structure free sequences by local structure free-
ness. Proc. DNA 9: 206, 2003.

[13] K. Makino, T. Uno. New algorithms for enumerating all
maximal cliques. SWAT 2004, LNCS 3111: 260-272, 2004.

{14] T. Nakagawa, E. Tomita. An efficient algorithm for gen-
erating large maximal cliques. Tech. Rep. IPSJ SIG, 2006-
MPS-57: 49-52, 2005.

[15] T. Nakagawa, E. Tomita. An algorithm for generating all
maximal bipartite cliques based on CLIQUES that gener-
ates all maximal cliques. Tech. Rep. IPSJ SIG, 2006-MPS-
62: 73-76, 2006.

[16] H. Nakanishi, E. Tomita. An O(20196697)_time and
polynomial-space algorithm for finding a maximum clique
Tech. Rep. IPSJ SIG, 2007-AL-115: 17-24, 2007.

[17] Y. Nakui, T. Nishino, E. Tomita, T. Nakamura. On the
minimization of the quantum circuit depth based on a max-
imum clique with maximum vertex weight. Tech. Rep.
RIMS, 1325, Kyoto Univ.: 45-50, 2003.

{18] P. R. J. Ostergard. A fast algorithm for the maximum
clique problem. Disc. Appl. Math., 120: 197-207, 2002.
[19] E. C. Sewell. A branch and bound algorithm for the sta-
bility number of a sparse graph. INFORMS J. Comput.,

10: 438-447, 1998.

{20] M. Shindo, E. Tomita. A simple algorithm for finding a
maximum clique and its worst-case time complexity. Syst.
Comput. in Japan, 21: 1-13, 1990.

[21] V. Stix. Target-oriented branch and bound method for
global optimization. J. Global Optim., 26: 261-277, 2003.

{22] Y. Sutani, T. Higashi, E. Tomita, S. Takahashi. H.
Nakatani. A faster branch-and-bound algorithm for find-
ing a maximum clique. Tech. Rep. IPSJ SIG, 2006-AL-108:
79-86, 2006.

[23] Y. Sutani, E. Tomita, S. Kobayashi. A branch-and-bound
algorithm for finding a maximum clique in a uniform hy-
pergraph. Tech. Rep. IPSJ SIG, 2007-MPS-66: 111-114,
2007.

[24] J. Suzuki, E. Tomita, T. Seki. An algorithm for finding a
maximum clique with maximum edge-weight and compu-
tational experiments. Tech. Rep. IPSJ SIG, 2002-MPS-42:
45-48, 2002.

[25] T. Tamada, E. Tomita, H. Nakanishi. Experimental
evaluations of algorithms with known theoretical time-
complexity for finding a maximum clique. Tech. Rep. IPSJ
SIG, 2007-MPS-67, 2007.

{26] R. E. Tarjan, A.E. Trojanowski. Finding a maximum in-
dependent set. SIAM J. Comput., 6: 537-546, 1977.

{27] E. Tomita, Y. Wakai, K. Imamatsu. An efficient algorithm
for finding a maximum weight clique and its experimental
evaluations. Tech. Rep. IPSJ SIG, 1999-MPS-26: 33-36,
1999.

[28] E. Tomita, T. Seki. An efficient branch-and-bound algo-
rithm for finding a maximum clique. DMTCS 2008, LNCS
2781: 278-289, 2003.

[29] E. Tomita, A. Tanaka, H. Takahashi. The worst-case time
complexity for generating all maximal cliques and compu-
tational experiments. (Invited paper for the special issue
on COCOON 2004). Theoret. Comput. Sci., 363: 28-42,
2006.

[30] E. Tomita, T. Kameda. An efficient branch-and-bound al-
gorithm for finding a maximum clique with computational
experiments. J. Global Optim., 37: 95-111, 2007.

{31] E. Tomita, Y. Sutani, T. Higashi. A more efficient al-
gorithm for finding a maximum clique with an improved
approximate coloring. Proc. PDPTA 2007 719-725, 2007.

[32] S. Urabe, E. Tomita. NetMCQ: A distribtted exact max-
imum clique solver. Tech. Rep. IPSJ SIG, 2007-MPS-67,
2007.

[33] C. Yonemori, T. Matsunaga, E. Tomita. An analysis of
enterprise communities by cliques. Tech. Rep. IPSJ SIG,
2007-MPS-67, 2007.

