2008 —BIO—13
200876727

BN LS SRS (15)

IPSJ SIG Technical Report

WTfENY Y 2AiRIZ KBTI —E R NZ — V|2

R SER 1, NS BEE 2, Ry SR S,
BIR FHF 4, WivE ek S
D EEKAE, 2 UMREE, 3 RIS,
L REKE BEHBRF

T LEEIND, HOBEFRRICEADIBETFERRLAZVEVIEENH L. 0L BEEFIINS
LBBT) LARFIEBIIBVTII— 2 BAEBTHIET IR NZ—ORELEZENLIELIEDS.
AFRTIE, T5—2B8LXFHEEND, HIRIDFEHBAXFINNE -V 2 ERIZEFIZET LTI
TV ZALRRETD. TIT—DHEPLBEBED/SZ—VFELRRY, ANXFINIRBENLENSZ—VE
FIBONRE 25, BEFETIING —VERMEOBELRELZRA L CTRNROBER/Z—> 2Ny Yok
Mepl ik, BERLFIFELERTS.

Neighborhood hashing for enumerating all frequent patterns
allowing errors

Hideki Hashimoto?!, Hirotaka Ono?, Takeaki Uno?,
Hideko Urushihara*, Mutsunori Yagiura®

! Kyoto University, 2 Kyushu University, 3 National Institute of Informatics
4 University of Tsukuba, 5 Nagoya University

We propose a practically fast algorithm that enumerates all m-length substring patterns appearing in
at least f sequences among a given set of string sequences, where at most k errors are allowed for each
appearance. The problem of enumerating such substring patterns is derived from the genome science,
where frequent substring patterns allowing errors are candidates of a gene related to a certain function.
From this context, some pattern should be enumerated even if it does not appear in any sequence, because
it may match a sufficient number of sequences by allowing errors. In order to prevent overlooking
such potential patterns, we propose a hash-based enumeration algorithm. The algorithm stores not
only a substring pattern appearing in a sequence but also its neighboring patterns. By using several
techniques/conditions to exclude non-frequent patterns, our algorithm achieves an efficient enumeration
of frequent substring patterns allowing errors.
1 Introduction often include experimental/biological errors. This
is a motivation to consider the problem of enumer-

We propose a practically fast algorithm that enu- ating frequent substring patterns allowing errors.

merates all fixed-length substring patterns appear-
ing in many of given string sequences allowing a
small size of errors.

In this paper, a pattern is considered to appear
in a sequence if the mismatch between the pattern
and a substring is at most k for a given parame-

In the field of genome science, identifying a gene
related to a certain function from a set of genome
sequences is a central issue but is computationally
expensive at the same time, because the gene usu-
ally has an enormous number of candidates. A rea-
sonable way to reduce the number of the candidates
is to restrict them to frequent patterns [1]. In gen-
eral, the term “frequent pattern” roughly means,
for a given data set, a pattern that matches many
members in the set. In the context of the gene iden-
tification, it is natural to consider that a substring
pattern (a candidate of the target gene) matches
data sequences (genome sequences) allowing a few
characters mismatching, because genome sequences

ter k. We consider the problem of enumerating all
m-length substring patterns appearing in at least
0 sequences among a given set of string sequences
S = {51,52,...,5,} where m and 6 are the input
parameters. It should be noted that some pattern
should be enumerated even if it does not appear
in any sequence, because it may match a sufficient
number of sequences by allowing errors. One way
to prevent overlooking such potential patterns is to
prepare counters for all potential patterns, but the
number of potential patterns can be quite large,
which causes several problems: It may require too
much memory, and the counting may be slow unless
a suitable data structure is adopted. Taking these

into account, we propose a counting-type algorithm
that utilizes a hash, which is a fundamental data
structure for storing unordered objects systemati-
cally. The algorithm stores not only a substring
pattern appearing in a sequence but also its neigh-
boring patterns.

Here, we briefly explain the ideas of our algo-
rithm for excluding as many non-frequent patterns
as possible. We use the principle that each appear-
ance of an m-length pattern allowing k errors must
have a substring that has a smaller error rate than
the average k/m. To apply the principle, our algo-
rithm first finds r-length substrings with small er-
ror rate, where r is smaller than m. We call such r-
length substrings seed substrings. It then constructs
(and store into the hash) m-length substring pat-
terns by expanding an r-length seed substring along
the sequences from the original position. Note that
patterns that do not appear in the sequence may
be constructed, because the expansion is done with
allowing k errors. We call this procedure neigh-
borhood expansion. In the neighborhood expansion
phase, we can exclude some patterns by two nec-
essary conditions for the frequent patterns allowing
k errors. Finally, the frequencies of the generated
m-length patterns are counted.

A similar problem has been studied in the
context of pattern mining from large databases.
Uchida, Asai and Arimura [3] proposed a pattern-
growth type enumeration algorithm that enumer-
ates frequent patterns of all lengths allowing errors
measured by the edit distance (insertion, deletion
and exchange) from string sequences. In contrast
to our problem, frequent patterns with any length
are considered while ours considers patterns with a
fixed length m. Moreover, in their problem, the er-
ror measure is defined as the edit distance instead
of the number of mismatched characters between
strings in our problem.

2 Problem

Let S = {S1,852,...,5,} be a set of sequences.
Each sequence S is a string whose alphabet set is &
(e.g., £ = {A,T,G,C}). Let p[i,] be a substring
of string p that starts at position 7 and ends at po-
sition j of p. We abbreviate p[i,i] as p[i]. Let |p|
denote the length of string p. For given strings p
and ¢ with the same length (i.e., |p| = |g|), we say
that p matches ¢ allowing k errors if the number of
mismatched characters between p and ¢ is at most
k (ie., |{i | pli] # qli]}| < k). The objective is
to enumerate all m-length patterns appearing in at
least 8 sequences of S allowing k errors.

3 r-length seed substrings

In this section, we discuss the properties of a fre-
quent pattern allowing errors and how to utilize
them in our algorithm.

Suppose that a pattern p of size m appears in
a sequence S; with at most k errors. We con-
sider the partition of p into r-length blocks. Let
s = ||p|/r| and let p*,p?, ..., p° be the first s blocks
of p; ie., p' = p[L,7],p* = plr + 1,27),...,p° =
pl(s—1)r+1,sr]. Then we note the following prop-
erty.

Property 3.1 If a pattern p of size m appears in
a sequence allowing k errors, there exists a block p*
that contains at most |k/s] errors.

Otherwise, each block contains more than |k/s| er-
rors, p contains (|k/s] +1)s > (k/s)s = k errors in
total, and it is a contradiction. Furthermore, if p
appears in at least 6 sequences of S allowing k er-
rors, then, each appearance at the 8 sequences has a
block allowing | k/s] errors and hence, the following
property holds.

Property 3.2 If p appears in at least 0 sequences
of S allowing k errors, there exists a block p* that
appears in at least [8/s] sequences allowing |k/s|
errors.

Let & = |k/s]. If s is sufficiently small, it is possi-
ble to enumerate all r-length patters appearing in S
allowing « errors since the total number of patterns
is O (X7 18N (s, (DIZ19)-

Our algorithm first enumerates all r-length pat-
ters appearing in S allowing k errors, and patterns
appearing in at least [6/s] sequences among them
are considered as candidates of p#. We call these
r-length patterns seed substrings. The seed sub-
strings and their appearance positions in sequences
are stored in a hash data structure. In the exper-
iments, we set r to be the maximum that satisfies
k<1

For each r-length seed substring, our algorithm
considers the cases that the candidate is p* for
p = 1,...,s. If a seed substring is p* of a fre-
quent pattern p, p also appears in at least [6/s] se-
quences of the corresponding appearing positions of
the seed substring. The algorithm conversely enu-
merates such m-length patterns as candidates of a
frequent pattern p. We call this step the neighbor-
hood expansion of the seed substring. The details
are described in Section 4.

4 Neighborhood expansion for
an r-length seed substring

In this section, as described in Section 3, we con-
sider the neighborhood expansion of an r-length
seed substring for the case that the seed substring
is p*, i.e., the problem of enumerating m-length
strings that match [6/s] strings allowing k errors
from different sequences of the set of m-length
strings.

Let v = [6/s] and let {T}*} be the set of m-
length substrings of S;, where p* appears as the
uth block of each T}* allowing s errors, and T}*
corresponds to the uth appearance in S;. Let L
denote the number of elements in {T}*}. In the fol-
lowing, we propose two necessary conditions, which
we call the 0-degree and 1-degree conditions, for
that there exists a pattern that matches v strings
allowing & errors from different sequences. Only
if the necessary conditions are satisfied, for each
T}, the possible neighboring strings that match T}*
allowing k errors are generated. The number of
neighboring strings for an r-length seed substring

is O(Le—o (7)[I°LD).

4.1 The 0-degree condition

The 0-degree condition is derived from the total
number of each character at each position for the
strings T}*. Let

Fo,ia) =4 3w T =a
0, otherwise.
For any pattern p, the ith characters of

S FO(l,4,pli]) sequences exactly match pli].
Then, from the total number of exact match char-
acters for v strings,

m n
. 0/7 -+ > _
;:1 min {l/, max I_E 1 F°(1,1, a)} > (m—k)v

must hold. We call this inequality the 0-degree con-
dition. It can be tested in O(mL) time.

4.2 The 1-degree condition

The 1-degree condition is derived from the total
number of character pairs at each position for the
strings T}

Let

otherwise.

1
F'(1,4,5,a,b) = {0’

For any pattern p, characters p[i] and p[j]
exactly match the corresponding characters of
S FY(1,4,pli], pj]) sequences. Let o be a per-
mutation of size m and o(i) be the ith element of
o. It is easy to see that

m
E min

i=1

1] 1 —
{u, ﬁg;F (l,3,0(1),a, b)} > (m—2k)v

must hold for any o. We call this inequality the 1-
degree condition. The problem of finding a ¢ which
minimizes the left-hand side can be formulated as
the assignment problem, where the cost of assigning
itojis

n
N 1 ..
¢(i,j) = min {y, max ;_1 F'(l,1,5, a,b)}A

The assignment problem can be solved effi-
ciently [2]. The computation time for preparing all
c(4,7) is O(("3) L) time.

5 Computational experiments

We conducted computational experiments to eval-
uate the proposed algorithm. The algorithm was
coded in C and run on a PC (Xeon, 2.8 GHz, 1 GB
memory). We used first 1100 characters from each
100 genome sequences (i.e., n = 100, |S;| = 1100)
and ¥ = {A, T, G, C,N} where “N” means an un-
known amino acid code in FASTA format.

We compared our results with that of Uchida,
Asaj and Arimura [3]. Their algorithm enumerates
all patterns of any length which appear in at least
0 sequences allowing k edit distances. It can be
applied to our problem by setting the insertion and
deletion costs to a large value. Since their algorithm
is a pattern-growth type enumeration, it cannot be
applied directly to the enumeration with fixed m.

Table 1 shows our computational results for sev-
eral settings of m and k with fixed § = 90. Column
Ngyce (resp., Npj) denotes the number of times
when the necessary condition cuts, i.e., the O-degree
and 1-degree conditions, succeed (resp., fail). Col-
umn Nposi denotes the number of r-length seed sub-
strings which generate an m-length candidate pat-
tern in Section 4. Such a subpattern always satisfies
any necessary conditions including the 0-degree and
1-degree conditions, and Npesi < Npay holds. In the
experiments, the neighborhood expansions are not
executed when k < 1, because we set k < 1. In such
cases, marks “-” are shown in the columns of Ngycc,
Nrtait and Nposi. Column P, denotes the number

if Ju, T[i] = a and TPl = b of generated m-length patterns and column Ppeq

denotes the number of frequent patterns.

Table 2 shows the results of Uchida, Asai and
Arimura [3] with # = 90 where the experiments
were conducted in our environment. Column mmayx
denotes the maximum length of frequent patterns.

From the experimental results, we can observe,
for a given length m, our algorithm can enumer-
ate all m-length frequent patterns much faster than
that of Uchida, Asai and Arimura [3].

Table 1: Our results for several settings

m k Nsucc Nfail Nposi Pgen Pfreq time(s)
12 0 - - - 3 3 0.39
12 1 - - - 413 413 12.59
12 2 2908 7566 2305 260,420 23,737 897.27
12 3 930 9544 4619 4,077,770 775,558 10437.22
20 0 - - - 0 0 0.50
20 1 - - - 7 7 29.80
20 2 6636 6410 1690 84,706 1285 436.87
20 3 4354 8692 2612 2,121,061 91,093 8737.76
28 0 - - - 0 0 0.58
28 1 - - - 0 0 52.03
28 2 2164 3110 304 9658 0 215.60
28 3 1291 3983 1178 451,322 16 4269.34

Table 2: Computational results of Uchida, Asai and Arimura [3]

time(s)

k Mmax
0 13
1 20
2 25
3 29

4.45
140.04
3477.97
70100.74

6 Conclusion

In this paper, we proposed an algorithm that enu-
merates all m-length substring patterns appearing
in at least 6 sequences allowing k errors from a given
set of string sequences S. Our hash-based enumera-
tion algorithm achieves an efficient enumeration by
using several techniques/conditions to exclude non-
frequent patterns. The experimental results show
that our algorithm runs practically fast for a rea-
sonable size of examples.

Acknowledgment

The authors would like to thank Hiroki Arimura for
providing us with their source code [3].

References

(1] N. Kobayashi, M. Marin, Y. Tanaka, and
H. Urushihara. On the development of an
analysis system for upstream sequences in dic-
tyostelium discoideum genome. Computer Soft-
ware, 22(3):167-172, 2005.

B. Korte and J. Vygen. Combinatorial Opti-
mization: Theory and Algorithms. Springer, 3
edition, 2005.

Y. Uchida, T. Asai, and H. Arimura. Discover-
ing frequent approximate episodes in large se-
quence databases (in Japanese). In Proceed-
ings of the 15th Data Engineering Workshop
(DEWS2004), 2004.

