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Abstract. In this paper we describe the results of our experiment designed to find the relation 
between playing strength and game length. We used semi-random play as a model for players 
strength and made self-play experiments between computer programs of equal strength. We 
later discuss the plausible implications of our results to a broader group of classical games (i.e., 
chess-like games) 
  
 

1. Introduction 
 

This research is part of a general study on game informatics. It is based on the previous study [1] 
suggesting computer analysis as a mean for obtaining insight regarding general characteristics of 
games. 

 It is our observation that game designs are evolutionarily changing towards refinement of their 
entertaining impact. One important clue to a game’s entertainment is the game’s length. However, 
game length may not be the same for all players. In this paper we study the relation between 
playing strength and game length. 

 In order to model players of various strengths we have used semi-random self-play[2]. The 
exact definition as well as our seemingly counterintuitive results with Tic-tac-toe are presented and 
explained in Section 2. These results have encouraged us to slightly modify the original algorithm. 

Section 3 presents and discusses our results with our new variant of semi-random self-play that 
we denote as semi-random die-hard. Lastly, Section 4 is a discussion about some general 
implications of this research and its plausible future direction. 
 
2. Semi-Random Self-Play 
 
2.1 Definition 
 

We hereby reproduce the definition of [2]: 
  Definition Semi-random self-play is defined by the two following rules R1 and R2. 

R1:  Generate all possible moves and try a game-tree search to look ahead by a given search 
depth. If there is a winning move (by which the max player is able to reach a winning 
position), then choose it. 

R2: Remove losing moves (after which the min player is able to reach his winning position) 
from the list of candidates at a position considered. If the list is not empty, select a move 
among the list at random. Otherwise, select a move at random among all possible moves.  

 
We denote Pi  {i∈N| 0≤ i ≤9} the player which looks ahead to depth i. Thus Pi’s give a gradual 

difference of strength ranging from random play at P0 to perfect knowledge denoted as P9. 
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Figure 1: average game length in semi random self play
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2.2 Experimental Design 
 

We have performed experiments between equal strength players in two modes. In the first mode 
we let the game finish and recorded its length. In the second mode we have added an option to stop 
the game earlier by either a resign or by a draw proposal.  

For each category we have performed 10,000 repetitions and gathered statistical data. It is 
important to note that this algorithm does not use any heuristic evaluation but rather distinguishes 
only between 4 values: ‘win’, ‘lose’, ‘draw’ or ‘unknown’. 
 
2.3 Results and discussion  
   

In Table 1, the three right hand columns are a revision of the tests carried by [2]. The other 4 
columns are our new results. For each of the two modes (with stop, no stop) the left side column 
shows the average length of game and the right hand side column shows the standard deviation 
respectively. 

 
With Stop No Stop 

 Av 
(ply) 

S. 
Dev 

Av 
(ply) 

S. 
Dev 

Win 
Rate 

Draw 
Rate 

Lose 
Rate 

P0vsP0 7.62 1.31 7.62 1.30 58.11 13.08 28.81 
P1vsP1 5.97 1.14 6.03 1.25 68.89 4.41 26.70 
P2vsP2 6.31 0.86 8.30 0.86 30.72 52.08 17.20 
P3vsP3 5.57 0.58 7.86 0.90 52.64 29.82 17.54 
P4vsP4 4.33 0.86 7.62 1.70 30.75 54.42 14.83 
P5vsP5 3.35 0.50 6.42 1.73 67.43 26.89 5.68 
P6vsP6 3.00 0.00 9.00 0.00 0.00 100 0.00 
P7vsP7 2.00 0.00 9.00 0.00 0.00 100 0.00 
P8vsP8 1.00 0.00 9.00 0.00 0.00 100 0.00 
P9vsP9 0.00 0.00 9.00 0.00 0.00 100 0.00 

 

 

 
In the mode with stop 

option we see that the 
game length is highly 
shortened when moving 
from P0, a random player 
to P1, a weak player. That 
happens as simple 
winning positions are not 
missed by the P1 player. 
From P1 to P2 we see an 
increasing of the game 
length as the same early 
winning positions that 
were reached by P1 are 
now avoided. From P2 

 Table 1: Results of semi-random self-play experiments 
        Av = average length of game, S. Dev = standard deviation of length 
        Stop can occur by either a resign or a draw proposal. 
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to P9 players’ strength and their average game length are in inverse relation. 
 

In the mode without stop we have wrongly anticipated more fluctuations of the game length in 
the middle range (P3-P5). Our anticipation was based on the following observation. When search 
depth increases from odd numbers to even numbers, more losing positions are avoided resulting 
theoretically in longer games. However, when search depth increases from even to odd more 
winning positions are found, resulting theoretically in shorter games. Therefore, the results of P3, 
P4 and P5 seemed suspicious at first look. They do not fluctuate nicely according to theory. 
Moreover, when we looked at actual play we observed that in some cases, playing strength 
decreased when search depth increased. 
 

Take a look at the two Tic-tac-toe 
positions illustrated in Figures 2 and 3.  

In the following two positions P0 and P1 
both select randomly any move on an empty 
square (a-f). In case of P1, that means 5/6 
probability the game will finish on the next 
move as P1 will definitely complete a line if 
it is possible. P2 and P3 have only one 
choice: ‘f’ in figure 2 and ‘a’ in figure 3. P4 
and P5 behave like P0 in this situation. Both 
select a random move among ‘a’ to ‘f’ 
resulting in a 5/6 probability the game will end on the next move.  The reason for this behavior can 
be found in the algorithm. P4 and P5 already recognize these positions as lost ones and according 
to the algorithm play randomly.   

Table 2 presents the rate of winning at a certain move number. The rate of winning on the 5th 
move is related to the probability that such positions like those presented in Figures 2 and 3 (that 
are not unique) are formed. We observe 
that P5 can already deliberately form 
such positions on the 3rd move if 
possible. The indifferent behavior (i.e., 
playing randomly) of this algorithm in 
losing positions has encouraged us to 
create and test the following variation. 
 
 
 
 
3. Semi-Random-Die-Hard                           
 
3.1 Definition  
 
Semi-random-die-hard self-play is defined by the three following rules R1-R3: 

R1:  Generate all possible moves and try a game-tree search to look ahead by a given search 
depth. If there is a winning move (by which the max player is able to reach a winning 
position), then choose it. 

R2: Remove losing moves (after which the min player is able to reach his winning position) 
from the list of candidates at a position considered. If the list is not empty, select a move 
among the list at random. 

R3: In losing positions, select a move that prolongs the game as much as possible. 
 

a b c 

d X E 

f O X 

A b O 

C d e 

X f X 

        Figure 3 Figure 2 

Move 
Pi 5th 6th 7th 8th 9th 

P0 9.48 8.94 26.49 19.87 22.14 
P1 47.86 21.71 17.55 4.99 3.48 
P2 0.00 0.00 26.23 17.20 4.49 
P3 0.00 0.00 48.03 17.54 4.61 
P4 21.38 12.00 7.00 2.83 2.37 
P5 54.52 4.63 12.35 1.05 0.56 

Table 2: Rate of winning in a certain move (ply) 
number 
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Figure 4: Search depth and game length with
semi-random-die-hard self-play                
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3.2 Tic-tac-toe results and discussion 
 

Table 3 shows the results of semi-random die-hard self-play experiment and Figure 4 illustrates 
them. With a stop option the algorithm behaves in the same way as the semi-random self-play 
algorithm and therefore those results were omitted from Table 3. 
It can be seen that the average game length fluctuates from P0 to P6 and then reaches stability. 
There is a correlation between search depth and game techniques. P2 for example recognizes naïve 
threats and defends against them. P5 is already capable of deliberately forming double threats. P6 
is a level that though it has no complete knowledge its performance is perfect. 

 
 
 
 
 
 
 
 
  
 
 
 
 

 
3.3 Results on a 4x4 board 
 

Tic-tac-toe’s theoretical outcome is a draw. We wanted to find out what is the relation between 
playing strength and game length in a game that has a non-draw theoretical outcome (i.e., win for 
one of the players). Tic-tac-toe is one game of a larger class of games called MNK-games [4] in 
which M by N boards are used and a player can win by putting K pieces in a raw. In a MNK 
perspective, Tic-tac-toe is a (3,3,3) MNK-game. We have chosen the (4,4,3) MNK-game as it’s 
theoretical outcome is “win for the first player”. 
 

With Stop No Stop 
 Av 

(ply) 
S. 
Dev 

Av 
(ply) 

S. 
Dev 

Win 
Rate 

Draw 
Rate 

Lose 
Rate 

P0vsP0 9.98 2.35 9.78 2.43 60.20 0.00 39.80 
P1vsP1 6.02 1.24 5.99 1.14 69.30 0.00 30.70 
P2vsP2 6.31 1.99 8.44 1.95 58.10 0.30 41.60 
P3vsP3 3.76 1.20 5.80 1.30 85.80 0.20 14.00 
P4vsP4 3.37 1.78 7.45 1.78 70.20 0.00 29.80 
P5vsP5 1.00 0.00 7.00 0.00 100.00 0.00 0.00 
P6vsP6 1.00 0.00 7.00 0.00 100.00 0.00 0.00 
P7vsP7 1.00 0.00 7.00 0.00 100.00 0.00 0.00 
P8vsP8 1.00 0.00 7.00 0.00 100.00 0.00 0.00 
P9vsP9 1.00 0.00 7.00 0.00 100.00 0.00 0.00 

 

No Stop 
 Av 

(ply) 
S. 
Dev 

P0vsP0 7.65 1.29 
P1vsP1 6.04 1.25 
P2vsP2 8.30 0.85 
P3vsP3 7.87 0.90 
P4vsP4 8.33 0.86 
P5vsP5 7.61 0.89 
P6vsP6 9.00 0.00 
P7vsP7 9.00 0.00 
P8vsP8 9.00 0.00 
P9vsP9 9.00 0.00 

Table 3: Results of semi-random die-hard 

Table 4: Results of semi-random die-hard self-play for 3 in a row on a 4x4 board.  
              Av = average length of game, S. Dev = standard deviation of length      
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Figure 5: Search depth and game length with semi-
random-die-hard self-play  results in (4,4,3) game             
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Figure 5 illustrates the results 
presented in Table 4. We can see 
that with a no-stop option the 
average game length fluctuates 
and gradually converges to the 
length of a minimal principal 
variation (which may not be 
unique). The same fluctuations 
occur in the case of a stop option, 
but the average game length is a 
decreasing function of the 
playing strength. Because this 
game’s theoretical outcome is a 
“win for the first player”, the first 
player always plays the first 
move, after that his opponent 
may resign depending on his strength. 
 

Take a notice on the difference between the no-stop lines in Figure 4 and Figure 5. Before 
reaching a constant level both lines fluctuate. However, in Figure 5 fluctuations are very clear in 
comparison. This difference can be explained by the relatively very low rate of draws in the (4,4,3) 
game. 
 
4. General Discussions 
 
4.1 The relation between playing strength and game length 
 

No matter how strong the players play, the position balance gets upset sooner or later. Tying 
(i.e., draw) is the only exception. Although every game may start out evenly in the beginning, at 
certain point, the position balance is upset. We call this point the “game equilibrium”. The 
equilibrium point can be approximated by the number of moves required to end a game, i.e., the 
game length. We conjecture that such equilibrium depends on the playing strength. Moreover, the 
statistics on the average number of possible moves and game length, obtained from master games 
in classical games such as chess, shogi and Go, will converge at a certain value. Therefore, when 
the group of players is fixed, the statistic on the game length obtained from their games might be 
unique to each game.   

Note that different kinds of seesaw may occur during a game. Weak players tend to miss strong 
moves when playing each other, thus a game is well balanced. On the other hand, good players 
tend to play optimal moves, and so the seesaw of a game is preserved longer. Our experiments 
with Tic-tac-toe show that under the condition of no stop (resign or draw proposal), the game 
length is a decreasing function of playing strength at some weak levels (P0-P1), whereas it is 
basically an increasing function of playing strength at some strong levels (P1-P6).  Under the 
condition of stop, it is a decreasing function of playing strength at every level except P2. In the 
future, we plan to study the scope and applicability of this theory to more complicated games.  
 
4.2 The limit of human capacity 
 

The players at some level somewhere between P4 and P5 in our experiments with Tic-tac-toe 
may correspond to masters in classical games like chess.  This means that the game length may 
suggest the limit of human capacity of game playing skill. Iida et al. [3] pointed out that refined 
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games such as chess, shogi and Go, which have a long history, take a close value of the root square 
of the average possible moves over the game length.  
 
4.3 The relation between the outcome of games and fairness 
 

Competitive games are designed as to conclude who is best. To establish their goal they are 
refined over time as to improve fairness. In most classical board games (such as chess, Go, Othello, 
and Tic-tac-toe) the first player has a big advantage. There are some mechanisms for balancing 
this advantage and achieving fairness. The most fundamental of these mechanisms is having a 
theoretical draw outcome. Tic-tac-toe is a good example. However, we can see from the results of 
our experiment that it only achieves fairness for perfect players, i.e., players P6-P9 in our 
experiment. For other levels of play, the first and second players cannot maintain fairness in the 
sense of winning percentage. Namely, The first player has a big advantage. Tic-tac-toe can have a 
draw only at the last possible move (9th ply). It may support the relation between the playing 
strength and game length depicted in Figure 1 and 4. For a game for which the ultimate outcome is 
draw, the game length might be an increasing function of playing strength when it is played until 
the very end of the game (i.e. no resigning or draw proposal). For games that have a theoretical 
outcome other than draw, (viz. win for either player) it is hypothesized that as playing skill 
increases a game’s average length will converge to the length of a shortest principle variation.  

 
Consider the more general relation between the outcome of games and fairness. Take for 

example the chess-like games: chess, Chinese chess and Shogi.  In chess and Chinese chess, for 
some standard level players, 30% to 40% of all games end up in a draw. This statistics increases as 
the playing strength becomes higher.   In the two games where draws occur frequently, unless a 
winning player has a large enough advantage gap, the game usually ends up in a draw. Therefore, 
the ability of widening small advantages is very important. In games with frequent draws, the 
equilibrium is often upset early on in the game. Hence, the first player is more likely to have an 
advantage. On the other hand, games for which equilibrium can easily becomes upset early in the 
game, maintain fairness by adopting draws, as well as increasing their chance of occurrence.  

 
In fact, statistics show that in master games of chess and Chinese chess, there is a slightly 

higher probability of draws than in similar Japanese chess games.  This indicates that in chess and 
Chinese chess, despite the significant advantages that the first player has, the games maintain their 
fairness by having the possibility of draw.   

Draw is like a gift to the second player (handicap to the first player) who does not have the 
initiative of the game [4]. However, if the advantage at the beginning of the game is too great to 
the point that even a draw is not possible, then this “gift” is meaningless. Other games use other 
kind of gifts (handicap) to the second (first) player in order to maintain fairness. The kind of gifts 
range from simple, like Komi (points given to the second player) in Go, to more complicated ones, 
like the opening procedure of Renju. These mechanisms refine the balance of the game thus 
allowing and prolonging the seesaw of the game.  
    
5. Conclusions 
 

In order to find the relation between players’ strength and their average game length we have 
conducted self-play experiments with two different algorithms. We have used the original semi-
random self-play [2] and a modified version, namely, semi-random die-hard, to simulate play 
between players of equal strength. For each level of play 10,000 matches where conducted in two 
modes: one in which stopping of the game by either a resign or a draw proposal is allowed, and 
another in which play must continue until a concrete outcome was reached (i.e., win, draw, lose). 
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Our results with Tic-tac-toe show that with a stop option the relation between average game 
length and playing strength is a decreasing function except for some weak level (viz. P2). In the 
case that play has to continue until a concrete outcome was reached, the two algorithms behave 
differently. The original semi-random self-play algorithm [2] plays randomly in losing positions 
and so shows a seemingly pathological behavior, namely, a deeper search renders a shorter game 
(i.e., P5’s average game length is shorter than that of P2). The modified version, namely, semi-
random die-hard, avoids losing for as much as it can. With this algorithm, the average game length 
is an increasing seesaw function of the playing skill. The average game length clearly fluctuates 
between odd and even search depths until it reaches perfect play (P6-P9). 

We have conducted another experiment to check the relation between game length and playing 
skill in a game that have a non-draw theoretical outcome. We used 3 in a raw game on a 4x4 board 
with the semi-random die-hard algorithm. In the no-stop mode the average game length is a 
seesaw function that converges to the length of a minimal principal variation. In the mode with 
stopping (by either resign or draw proposal) the average game length is a decreasing seesaw 
function of the playing strength.  

It is still an open question to what scope can these results be generalized. As well, do other 
games have a different relationship between playing strength and their average game length? 
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