
Fault-Tolerant Communication Protocol in Wireless Sensor-Actor Networks

Keiji Ozaki†, Satoshi Itaya†, Naohiro Hayashibara†, Tomoya Enokido††, Ashraf Uddin Ahmed†,
and Makoto Takizawa†

Tokyo Denki University†, Japan Risho University††, Japan
E-mail {kei, Itaya, haya, ashraf, taki}@takilab.k.dendai.ac.jp, eno@ris.ac.jp

Abstract

In a wireless sensor and actor network (WSAN), a group of sensors and actors are geographically distributed and linked by
wireless networks. Sensors gather information sensed for an event occurring in the physical world and send them to actors.
Actors can perform appropriate actions by making a decision on receipt of sensed information from sensors. Sensors are
low cost, low powered devices with limited energy, computation, and wireless communication capabilities. Sensors may not
only stop by fault but also suffer from arbitrary faults. Furthermore, wireless communication is less reliable due to noise and
shortage of power of sensors. Reliable real time communication among sensors and actors is in nature required in WSAN
applications. In order to realize the reliability and realtimeness, we newly propose a multi-actor/multi-sensor (MAS) model
where each sensor in an event area sends sensed information to multiple actors and each actor receives sensed information
from multiple sensors. Actors are required to causally and totally order sensed information and actions. In this paper, we
discuss how to realize reliable, causally/totally ordered delivery of sensed information and actions with realtime constraints.

ワイヤレスセンサ-アクタネットワークにおける耐障害通信プロトコル

尾崎敬史 † 板谷智史 † 林原尚浩 † 榎戸智也 †† Ashraf Uddin Ahmed† 滝沢誠 †

東京電機大学理工学部情報システム工学科 † 立正大学経営学部 ††

ワイヤレスセンサアクタネットワーク (WSAN)は、無線媒体で接続されたセンサとアクタから構成される。センサは
イベント情報を収集し、アクタに送信する。アクタはセンサからの情報を基に必要な動作を実世界に対して行う。セ
ンサは、低電力の安価な機器である。このため、センサは停止障害だけでなく、任意の障害を起こす。信頼性とリア
ルタイム性を向上させるために、多アクタ/多センサ (MAS)モデルを提案する。アクタにはセンサの観測情報と動作
の因果順序、全順序配送が求められる。本論文では、どのように信頼性を実現するか、また、どのようにセンサが観
測した情報と動作の順序づけ配送を行うかを議論する。

1. Introduction

A wireless sensor and actor network (WSAN) is a group
of sensors and actors linked by wireless medium to perform
distributed sensoring and acting tasks [1, 2, 13]. Sensors
gather information about physical world. Actors are capa-
ble of making a decision on actions and perform appropriate
actions for information gathered by sensors. WSAN is used
in microclimate control, home automation, environmental
monitoring, target tracking [1, 2]. There are many discus-
sions on how to reliably and efficiently broadcast messages
among sensors and actors [5, 13]. WSAN is one of the most
significant technologies to realize ubiquitous societies [18].

Sensors are low-cost, low-power devices which are
equipped with limited energy, computation, and wireless
communication capabilities. Sensors may stop, even mal-
function [11] due to the out-of-charge and fluctuation of
observed phenomena in the physical world. In addition, the
wireless communication between sensors and actors is less
reliable, i.e. messages may be lost due to noise. We dis-

cuss how to make WSAN tolerant of faults of sensors and
wireless communication links. If some event occurs in the
physical world, sensors gather physical phenomena of the
event occurring in an event area and send sensed informa-
tion to actors. In our approach, each sensor sends sensed
information to multiple actors and an actor receives sensed
informations on a same event from multiple sensors in or-
der to be tolerant of faults of sensors and wireless networks.
Even if some sensors are faulty and messages are lost in the
wireless link, each actor can receive proper sensed informa-
tion from the other proper sensors. If sensors are arbitrar-
ily faulty [11], an actor takes the majority-based decision
on sensed information from multiple sensors. If multiple
actors receive the same sensed information, the same ac-
tion may be performed multiple times by the actors even
if the action should be performed only once for the sensed
information. On receipt of sensed information from sen-
sors, an actor makes a decision on what action to be per-
formed. Here, actors cooperate with each other to make a

島貫
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

島貫
テキストボックス
2005－DPS－125（1）
2005－ EIP －  29（1）
　2005／11／14

島貫
テキストボックス
－1－



consensus on which actor performs what actions in what
order based on not only the sensed information but also a
history of events, i.e. actions and sensed information. In
distributed systems where multiple peer processes are co-
operating, the processes are required to be causally deliv-
ered to the processes [17, 4, 12, 10]. We discuss how to
order sensed information and actions in each actor. In ad-
dition, each event in the physical world is characterized by
properties like temperature and location. Different sensors
may collect properties of an event different from each other.
Here, we define quality of event (QoE) to be properties of
event. It depends on observed QoE of events how to or-
der events. We discuss how to order events and actions by
considering QoE of events.

In section 2, we present a system model of WSAN. In
section 3, we discuss how to make sensors and sensor-actor
communicates fault-tolerant. In section 4, we discuss how
actors perform actions.

2. System Model

2.1. Sensors and actors

A wireless sensor and actor network (WSAN) is com-
posed of sensors, actors and actuation device objects inter-
connected with wireless medium [1, 2, 13]. A sensor gath-
ers information about the physical world and sends it to ac-
tors. An actor makes a decision on what actions to do and
then performs the actions on devices. Let S be a set of sen-
sors, A be a set of actors and O be a set of actuation device
objects in WSAN.

Phenomena in the physical world is changed at some
event. Each event is characterized in attributes like temper-
ature and location. Let Ω(e) show a set of attributes of an
event e. Ω(e) is named a scheme of an event e. An event e is
represented as a collection of values of attributes. For exam-
ple, 〈· · · , 15[◦C], N35◦69′11.74”E139◦22′19.33”, · · · 〉 is
an event of a schema 〈· · · , temperature, location, · · · 〉
where an event occurs in Hatoyama, Japan. Here, e.a shows
a value of an attribute a of an event e. If an event occurs in
some location of the physical world, sensors in some dis-
tance from the location gather values of the event. An event
area is a geographical unit of WSAN. Sensors gather phys-
ical phenomena of events occurring in an event area. Actu-
ation devices which act to the physical world like air con-
ditioners are modeled to be objects. Actuation of a device
is modeled to be execution of methods on the device object.
On receipt of a method, the method is performed on the
object. For example, cooler air is ventilated by the air con-
ditioner object ac on receipt of a method (turn) down. An
event area is a collection of device objects, sensors which
sense an event e, and actors which perform actions on ob-
jects.

A sensor s gathers information on phenomena, i.e. prop-
erties of an event e occurring in an event area. A sensor s

gathers information on an event e occurring in an event area.
A type of a sensor is a subset of the attributes, i.e. informa-
tion on which the sensor can gather. For example, a voice
sensor can gather voice information. Let Ω(s) be a type
of a sensor s, i.e. a collection of attributes. For example, a
temperature sensor t can gather information on temperature,
i.e. Ω(v) = {temperature}. e[s] shows information on an
event e which a sensor s gathers, i.e. values of attributes
of the event e. Multiple sensors sense a same event e in an
event area. For a pair of sensors s1 and s2 in an event area,
e[s1] = e[s2] may not hold due to sensor error, i.e. a sensor
s1 gathers information on an event e different from another
sensor s2 even if Ω(s1) = Ω(s2). Then, the sensor s sends
the sensed information e[s] of the event e to actors in the
event area. Figure 1 shows the relations of sensors, actors,
and objects.

event

sensed
information action(method)

physical
world

actuation device
object

actorsensor

s a

o

Figure 1. Sensor and actor.

2.2. Multi-actor/multi-sensor (MAS) model

In the single-actor (SA) model [1], all the sensors in an
event area send sensed information to one actor [Figure 2].
Here, the actor can be a single point of failure. On the other
hand, in the multi-actor (MA) model [1], each sensor sends
sensed information to one actor but some pair of sensors in
an event area may send sensed information e to different ac-
tors. In the SA and MA models, each sensor sends sensed
information to one actor. In our multi-actor/multi-sensor
(MAS) model, each sensor s sends sensed information to
multiple actors and each actor receives from multiple sen-
sors. Let Actor(s) be a set of actors to which a sensor s

sends sensed information. Let Sensor(a) show a set of sen-
sors which send sensed information to an actor a. For a pair
of sensors s1 and s2, every actor a in Actor(s1) ∩ Actor(s2)
receives sensed information from both the sensors s1 and
s2. Every sensor s in Actor(a1) ∩ Actor(a2) sends sensed
information to a pair of actors a1 and a2.

Each sensor broadcasts a message of sensed information.
An area where each sensor can deliver a message with wire-
less medium is referred to as broadcast cell. Durresi et al.
[5] discuss how to distribute sensors in a sensor/actor area
so that every event to occur can be sensed by some number
of sensors.

島貫
テキストボックス
－2－



MA model

event area

SA model

Figure 2. SA and MA models.

event area

:actor

:sensor

:device object

:sensed information

:action

Figure 3. Multi-actor/multi-sensor (MAS)
model

2.3. Object-based actions

An actor performs appropriate actions through some ac-
tuation devices in an event area on receipt of sensed infor-
mation from sensors. An actuation device is modeled to be
an object in this paper. An action is modeled to be the ex-
ecution of a method on an object. On receipt of a method
issued by an actor, the method is performed on an actua-
tion device object. An object is composed of subobjects. A
method issued to an object invokes methods on the subo-
jects. Thus, methods are invoked in a nested manner.

Let op(s) show result obtained by performing a method
op on a state s of the world. Here, let op1 and op2 be a pair
of methods of an object o. Let op1◦op2 show a serial execu-
tion of methods op1 and op2 on an object o. Let op1 ‖ op2

denote a parallel execution of methods op1 and op2 on an
object o. A method op1 is equivalent with another method
op2 (op1 ≡ op2) if the result obtained by performing the
method op1 is the same as op2. φ shows a null method
which does nothing on the object o. There are following
relations among a pair of methods op1 and op2 of an object
o:

1. op1 and op2 conflict with one another iff op1 ◦ op2(s)
6= op2 ◦ op1(s) for some state s, i.e. the result obtained
by performing the methods op1 and op2 depends on
the computation order. op1 ◦ op2 6≡ op2 ◦ op1.

2. op1 and op2 are compatible iff op1 ◦ op2(s) = op2 ◦
op1(s) for every state s, i.e. op1 ◦ op2 ≡ op2 ◦ op1.

3. op2 absorbs op1 iff op1◦op2(s) = op2(s) for every state
s, i.e. op1 ◦ op2 ≡ op2.

4. op1 is compensated by op2 iff op1◦op2(s) = s for every
state s, i.e. op1 ◦ op2 ≡ φ. Here, op2 is referred to a
compensating method of op1, denoted by õp1.

5. op1 is idempotent if op1(s) = op1 ◦ op1(s) for every
state s, i.e. op1 ≡ op1 ◦ op1 ◦ · · · ◦ op1.

Suppose an air-conditioner object ac supports methods,
on, off, up, down, and temp. The air-conditioner object ac

is turned on, off, up, and down by the methods, on, off, up,
and down, respectively. In addition, the current temperature
is obtained by a temp method. The method temp conflicts
with all the other methods. A pair of the methods on and off
conflict with one another while the methods up and down
are compatible. The method off absorbs the other methods
temp, on, up, and down. The methods on and off are idem-
potent. The method up can be compensated by down and
vice versa. The effects done by methods performed are re-
moved by compensating methods of the method. In a printer
object prt, a method print-out is not compensatable. If a
missile is launched, it cannot be compensated. Yasuzawa
et al. [19] discuss compensating methods in object-based
systems where objects are hierarchically structured.

An actor may issue a sequence of methods to objects.
For example, a door object is required to be locked after
closed. Thus, some multiple methods are required to be
sequentially performed in a sequence specified. Suppose a
lock method is issued before a door is closed. Here, suppose
the door cannot be locked due to some trouble. In one case,
it is all right because the door is closed. In another one, all
the actions performed have to be undone. That is, the door
object is opened again. In the later case, a subsequence of
close and lock methods should be atomically performed. A
sequence of methods to be atomically performed is referred
to as transaction [7]. A transaction is required to be undone
if some method in the transaction cannot be successfully
performed. Suppose a transaction issues a method up to
the air-conditioner object ac and is performed. Here, the
transaction is required to be aborted. In order to abort the
transaction, a compensating method down of up is issued
to the air-conditioner object ac. A method like print-out
cannot be compensated. Hence, transactions cannot issue
uncompenasatable methods.

3. Fault-Tolerant Sensors

3.1. Types of faults

Sensors are low-cost, low-energy devices with limited
energy, computation, and wireless communication capabil-
ities. A sensor may stop by the shortage of the power sup-
ply, e.g. out of charge of the battery. A pair of sensors may
collect different information for the same event due to sen-
sor errors. That is, e[si] 6= e[sj] for some pair of sensors
si and sj in an event area. Even if e[si] 6= e[sj], e[si] and

島貫
テキストボックス
－3－



e[sj] are equivalent with respect to the quality of event QoE
(e[si] ≡ e[sj]) if QoE of sensed information e[si] and e[sj]
are considered to be the same from the application point of
view. For example, some sensor s1 shows 15◦C (e[s1] =
〈15〉) and another sensor s2 shows 16◦C (e[s2] = 〈16〉). If
an application does not care the difference of 5◦C, e[s1]
and e[s2] are considered to be the same, i.e. e[s1] ≡ e[s2].
Thus, sensors not only stop by fault but also show arbitrary
fault, i.e. Byzantine fault [11].

The wireless communication link with a sensor is not
reliable. That is, messages sent by sensors to actors may be
lost and damaged.

We assume actors are communicating with each other by
using highly reliable links like wire links. Actors are higher-
cost devices with enough energy and computation capabil-
ity. Actors are reasonably assumed to only stop by fault in
this paper. In addition, we also assume device objects are
reliable and communication links among actors and objects
are reliable.

In summary, we make the following assumptions on
faults to occur in WSAN:

1. A sensor may be arbitrarily faulty, i.e. suffer from
Byzantine fault. That is, a sensor may not send a mes-
sage, may send a different value from other sensors to
actors for a some event, and may send a message even
if an event does not occur.

2. An actor may only suffer from stop fault.
3. Actuation device objects are reliable. In reality, device

objects may suffer from arbitrary fault. We make this
assumption in this paper for simplicity.

4. Omission faults occur in the communication between
sensors and actors, i.e. messages may be lost.

5. Actors reliably communicate with each other. Actors
also reliably communicate with actuation device ob-
jects.

We discuss how to increase the reliability of sensors and
sensor-actor communication.

3.2. Fault-tolerant sensors

For each event e occurring in an event area, multiple
sensors gather the information of the event e. Then, sen-
sors send sensed information to actors. Sensors might be
arbitrarily faulty. That is, a sensor may not send sensed
information and may send incorrect information to actors.
We assume that the maximum number of faulty sensors is
bounded to be f1 in each event area. We assume every ac-
tor is proper as long as the actor is operational. That is,
an actor may only suffer from stop fault. We assume every
proper sensor sends the same value of sensed information
for an event e to actors. On the other hand, a faulty sensor
may not send any value, may send a value different from the

proper sensor, or may send a value even if no event occurs.
Here, let ti[e] show global time when a sensor si senses

an event e in an event area. We assume that for every pair
of sensors si and sj in an event area, |ti[e] - tj[e]| ≤ ε1. Let
si[e] be global time when an actor as receives a message
of an event e from a sensor si. Here, we assume |rsi[e]
- rsj [e]| ≤ ε2 if an actor as receives messages of sensed
information of an event e from a pair of proper sensors si

and sj . ε2 is given by the maximum difference of delay and
ε1. Suppose an actor as receives sensed information si[e]
of an event e from a sensor si at time ti. If |ti − tj | ≤ ε2,
the sensor as is referred to as simultaneously receive si[e]
and sj[e]. If each actor a receives sensed information from
more than 2f1 + 1 sensors, at most f1 sensors are faulty
and at least f1 + 1 sensors are proper. Hence, the actor a

takes the majority value of the sensed information from the
sensors [Figure 4]. A sensor gathers information of an event
for each time unit.

s1

a

sm
m>2f1+1_

Figure 4. An actor which receives sensed in-
formation from (2f1 + 1) sensors

4. Actors

4.1. Multiple instances of an action

On receipt of sensed information of an event e, an actor
a makes a decision on what methods to be performed and
then performs the methods on actuation device objects in an
event area. In the multi-actor/multi-sensor (MAS) model,
multiple actors a1, · · · , am receive sensed information of
an event e from multiple sensors in the event area. Sup-
pose that a method op is to be performed on an object o in
the event area for an event e. If each actor ai performs the
method op, the method op is m(≥ 1) times performed on
the object o. Here, the state of the object o may get incon-
sistent. For example, suppose each of two actors a1 and
a2 receives sensed information of an event e on the tem-
perature, each of the actors a1 and a2 makes a decision on
cooling the air with 2◦C degree. Then, each of the actors a1

and a2 issues a method up (2) to the air-conditioner object
ac. The temperature is increased by 4◦C because the object
ac receives a pair of up (2) methods. Here, the method up

should be performed only once on the air-conditioner ob-
ject ac for each event e even if multiple actors receive the

島貫
テキストボックス
－4－



sensed information of the event e from sensors.
Next, suppose each of the actors a1 and a2 issues a

method temp. Here, the state of the air-conditioner object
ac is not changed. Thus, multiple actors can multiple times
issue an idempotent method like temp to an object.

Following the examples, we classify methods supported
by objects. There are following types of methods:

1. Change method.
2. Non-change method.

By a change type of method op, state of an event area is
changed, i.e. op(s) 6= s for some state s. The method up is a
change type. On the other hand, the state is not changed by
a non-change method, i.e. op(s) = s for every state s. The
method temp is a non-change method. For each event e, a
change type method op can be performed only once even if
multiple instances of the method op are issued by multiple
actors. A non-change method can be performed multiple
times on an object, i.e. idempotent.

There are following ways to realize the unique execution
of a change method on an object:

1. Actor-side solution.
2. Object-side solution.

In the actor-side solution, only one method is issued to
an object from multiple actors. In one way, the actors co-
operate with each other to make a consensus on what action
to issue the method. It takes time to exchange messages
among the actors, e.g. three rounds if the two-phase com-
mitment protocol [15] is taken.

In the object-side solution, an object o takes a method op

only once even if each of multiple actors sends the method
to the object. Each of the actors issues a method op to an
object o. Here, each instance of the method op to be taken
for an event should be uniquely identified. On receipt of
a method op, an object o checks the identifier id of an in-
stance of the method op. If the method id had not been
performed on the object o, the method op is performed on
the object o. Then, the identifier id is recorded in the log.
If the identifier id of the method op is found in the log, the
method op is not performed since another instance of the
method op is performed already on the object o. In WSAN,
realtime communication is in nature required. We take the
object-side solution by giving the unique identifier to each
method. Each instance opi of a method issued by an ac-
tor si is identified in a pair of method type op and time ti

when si receive an event. Here, a pair of identifiers 〈opi, ti〉
and 〈opj , tj〉 of instances opi and opj , respectively, are tem-
porarily equivalent (opi

∼= opj) iff |ti − tj | ≤ ε.

4.2. Synchronization of multiple actors

Next, suppose a pair of events e1 and e2 occur in an event
area. An actor a1 receives sensed information of the event

e1 and another actor a2 receives sensed information of the
event e2. A pair of methods op1 and op2 are to be performed
on an object o1 for the events e1 and e2, respectively. A pair
of methods op1 and op2 are to be performed on an object o2

for the events e1 and e2, respectively. A pair of the methods
op11 and op21 are performed on the object o1 and a pair of
the methods op12 and op22 are performed on the object o2.
Here, suppose a pair of methods op11 and op21 conflict on
the object o1 as well as a pair of the methods op12 and op22

conflict on the object o2. The serializability [3] is required,
i.e. op11 is performed on the object o1 before op21 iff op12

is performed on o2 before op22.

a1 a2

op11

o2o1

op21

op12

op22

Figure 5. Serializability

In order to realize the serializability, objects are locked
in one way [3, 6]. A method op waits if an object is locked
by another method conflicting with the method op. In an-
other way, method requests are timestamped in each action
[3]. Here, every pair of conflicting methods are performed
in the time-stamp order. Actuation device objects are classi-
fied into a pair of types: synchronous and non-synchronous
object. A synchronous object supports some synchroniza-
tion mechanisms. A synchronous object is a locking type if
lock and unlock methods are supported. Another type (L)
is TO (timestamp ordering) one. In order to prevent dead-
locks, we take TO objects. Each object takes methods from
multiple actors and conflicting methods are performed in
the timestamp order.

A non-synchronous object does not support any synchro-
nization mechanism. An actuation device object normally
does not support any synchronization mechanism like lock-
ing and time-stamp ordering one. Methods are performed
on a non-synchronous object in a receipt sequence of the
methods. Hence, actors are required to issue synchronously
conflicting methods with each other.

4.3. Ordered delivery of sensing and action mes-
sages

A sensor s senses an event e and sends sensed informa-
tion e[s] to actors in Actor(s). An actor a receives sensed
information e[s] of an event e from a sensor s in Sensor(e).
[Definition] If an actor a receives sensed information e1[s1]
before e2[s2], e1[s1] precedes e2[s2] in the actor a ( e1[s1]
→a e2[s2] ).

島貫
テキストボックス
－5－



[Definition] If a sensor s senses e1[s1] before e2[s1], e1[s1]
precedes e2[s1] in the sensor s ( e1[s1] →s e2[s1] ).

We assume that every actor a is equiped with a GPS time
server. Every event e is timestamped with real time in an
actor. By the timestamp, events are ordered [9].

5. Concluding Remarks

In this paper, we discussed how to make a wireless sen-
sor and actor network (WSAN) fault-tolerant and how to
order messages. Sensors are less reliable and may be ar-
bitrarily faulty, due to low-energy, low cost devices. We
proposed multi-actor/multi-sensor (MAS) model to realize
the fault-tolerant WSAN.

Acknowledgment

This research is partially supported by Research Insti-
tute for Science and Technology [Q05J-04] and Frontier Re-
search and Department Center [16-J-6], Tokyo Denki Uni-
versity.

References

[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor
and actor networks: research challenges. Ad Hoc Net-
works journal (Elsevier), 2:351–367, 2004.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless sensor networks: a survey. Com-
puter Networks journal (Elsevier), 38:393–422, 2002.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[4] K. Birman, A. Schiper, and P. Stephenson.
Lightweight causal and atomic group multicast.
ACM Transactions on Computer Systems, 9(3):272–
314, 1991.

[5] A. Durresi and V. Paruchuri. Geometric broadcast
protocol for heterogeneous sensor networks. Proc.
of 19th IEEE International Conf. on Advanced In-
formation Networking and Applications (AINA2005),
1:343–348, 2005.

[6] K. P. Eswaren, J. N. Gray, R. Lode, and I. L. Traiger.
The Notion of Consistency and Predicate Locks in
Database Systems. Communications of the ACM,
19(11):624–637, 1976.

[7] J. Gray and A. Reuter. Transaction Processing : Con-
cepts and Techniques. Morgan Kaufmann, 1993.

[8] N. Hayashibara, X. Défago, R. Yared, and
T. Katayama. The ϕ accural failure detector.
Proc. of the 23rd IEEE International Symposium on
Reliable Distributed Systems (SRDS-23), 1:68–78,
2004.

[9] S. Kawanami, T. Nishimura, T. Enokido, and M. Tak-
izawa. A Scalable Group Communication Protocol
with Global Clock. In Proc. of AINA-2005 Interna-
tional Workshop on Ubiquitous Smart Worlds (USW
2005), volume 2, pages 625–630, 2005.

[10] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Comm. ACM, 21(7):558–565,
1978.

[11] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. ACM Transactions on Program-
ming Languages and Systems, 4(3):382–401, 1982.

[12] F. Mattern. Virtual time and global states of distributed
systems. Parallel and Distributed Algorithms, pages
215–226, 1989.

[13] T. Melodia, D. Pompili, V. C. Gungor, and I. F. Aky-
ildiz. A distributed coordination framework for wire-
less sensor and actor networks. Proceedings of the 6th
ACM international symposium on Mobile ad hoc net-
working and computing, 1:99–110, 2005.

[14] V. Paruchuri, A. Durresi, and L. Barolli. Energy
aware routing protocol for heterogeneous wireless
sensor networks. Proc. of 16th International Work-
shop on Detabase and Expert Systems Applications
(DEXA2005), pages 133–137, 2005.

[15] D. Skeen and M. Stonebraker. A Formal Model of
Crash Recovery in Distributed Systems. IEEE Trans.
Software Engineering, 9(3), 1983.

[16] A. K. Somani and N. H. Vaidya. Understanding fault
tolerance and reliability. IEEE Computer, 30:45–50,
1997.

[17] T. Tachikawa, H. Higaki, and M. Takizawa. Group
communication protocol for realtime applications.
Proc. of the 18th IEEE International Conf. on Dis-
tributed Computing Systems(ICDCS-18), pages 40–
47, 1998.

[18] M. Weiser. Hot topics: Ubiquitous computing. IEEE
Computer, pages 71–72, 1993.

[19] S. Yasuzawa, M. Takizawa, and T. Ouchi. Resolution
of Parallel Deadlock by Partial Abortion. Proc. of the
1st International Symposium on Computer Communi-
cations (ISCOM), pages 708–711, 1991.

島貫
テキストボックス
－6－




