i
W
~

EERLE 2-4
4

The Application of a Lightweight Parser for Speech Understanding
Nigel WARD

Department of Mechano-Informatics,
Faculty of Engineering,
University of Tokyo

nigel@sanpo.t.u-tokyo.ac.jp

Fully integrated speech understanding has been hard to acheive, in part because of
the difficulty of building a syntactic mechanism able to support the computation of
feedback from the semantic levels to the word-spotting level. This paper describes
a syntax mechanism suitable for this. It embodies a new view of the role of syntax,
and exploits three innovations: “construction hypotheses”, “participatory profiles”,
and “timeline-based computation”. Experiments show that use of this parser does

allow the use of semantic feedback via syntax.

ERBEBOLDOBRENN—F—DEE

N.7—F
FRKEE LA IR T 22 3

MEHLEFREBUATARERLEI T2, N—F—2hv s bz, KBTI
EMEES, ME 7071 —, 4 L5540 80) E00BERICEN TN D/ —H—
EREL. N2 TSR, S YETHMEA~DOT 1 — FNy 7 OEH 4B 5,

1 Background

Since purely bottom-up speech recognition is gener-
ally impossible, it is important to exploit “higher-
level knowledge”. Thus there is currently much in-
terest in “tightly-coupled” architectures for speech
understanding (Seneff 1992; Jurafsky et ol 1994),
that is, architectures where semantic considerations
are fully exploited to aid low-level recognition. This
is of course a step towards the long-held goal of
building fully integrated speech systems.

The hope is that building such systems will al-
low more accurate and robust understanding. When
dealing with noisy inputs or spontaneous speech,
this will be even more necessary.

What we want, therefore, is a system that can,
given a partially recognized input, infer something
about the meaning, and then use that partial under-
standing to infer what other words are likely to be in
the input. What makes this hard is that this feed-
back should indicate not only what words are likely,
but also where they are likely to appear. This of
course requires reasoning about word position and
word order; therefore syntactic knowledge must be
employed.

This has been the bottleneck. While there
are many architectures which support the tightly-
coupled integration of knowledge from multiple
“knowledge sources”, blackboard architectures, for
example, there are currently no parser designs which
support this integration. :

(Of course, there do already exist some inte-
grated speech systems, but in these syntactic and
semantic processing is generally handled by a sin-
gle module. One example of this is parsers which
apply some approximate semantic knowledge, for
example, “agents tend to be animate”. Another
example is “meaning-driven parsers”, which apply
some fragmentary syntactic knowledge from the se-
mantic engine. Another is semantic grammars, that
is, grammars in which semantic constraints are en-
coded in the grammar. Yet another is the integra-
tion of knowledge for semantic disambiguation into
the HMM formalism. All these approaches do allow
some conceptual knowledge to be applied early, but
only certain types of conceptual knowledge. Look-
ing forward to the day when more general seman-
tic interpreters will be available, it seems better to
keep meaning and syntax independent. When this
is done, the parsing problem becomes central.)

I have been developing a syntactic mechanism
suitable for fully integrated speech understanding.
I call it a “lightweight parser”: “parser” because

it applies syntactic knowledge (although, unlike
most parsers, it does not output a parse tree), and
“lightweight” because invoking it is low-overhead
(compared with traditional parsers, which typically
run as a separate process {either invoked as a sub-
routine, or running as a co-routine accepting mes-
sages)). It is also “lightweight” in the sense that it
requires a minimum of computation and a minimum
of working memory.

This paper describes this parser and its use.
Section 2 discusses the role of syntax in speech
understanding problem, and section 3 presents a
lightweight parser. Sections 4 and 5 illustrate the
operation of the system, focusing on how hypothe-
ses are scored and on how the parser allows semantic
feedback. Section 6 points out some directions for
future work.

2 The Role of the Parser

This section considers how a parser should be inte-
grated with the other tasks in speech understanding.
Further discussion appears in (Ward 1993).
Traditionally, the parser’s input is one or a few
strings of words, namely, “sentence hypothesis”.
The problem with this is that it requires a separate
process to prune out word hypotheses or organize
them into sentence hypotheses. Doing so requires a
“language model”, and involves the premature reso-
lution of uncertainty, before higher-level knowledge
is fully applied. Therefore a parser should, instead,
work directly from the lattice of word hypotheses *.
Traditionally, the parser’s output is one (or a
few) full syntactic structures, each spanning the en-
tire input. These are then passed on the semantic
component, for transformation to logical form and
subsequent use in reasoning. Instead, a parser’s out-
put should be no more than a “set of clues” to a
semantic interpretation?. For any input there will
be many such clues, generally inconsistent, with as-

1This allows more effective integration for feedback
too. For example, even probabilistic parsers typically
can only rescore the n-best sentence hypotheses, not in-
dividual word hypotheses. That is, most do not actually
apply feedback in a way usable for guiding the recogni-
tion search (but see Jurafsky et al (1994).)

2For many natural language tasks, the problem is pri-
marily one of recognizing ‘frames’ or ‘situations’ of inter-
est (Martin 1989) and identifying relationships among
concepts (Bates et al. 1993). Building a semantic in-
terpreter for such tasks may, I suspect, be easier, not
harder, if it can work directly from clues, rather than
having to deal with full-sentence-sized logical forms.

sociated scores °.

Thus we can view speech understanding as being
basically the flow of information through a network
of lexical, syntactic, and conceptual hypotheses.
“Parsing” is simply the part of this computation
-which involves syntactic hypotheses. In particular,
given word hypotheses, the parser produces syntac-
tic hypotheses and conceptual hypotheses (clues).
The major part of its work is scoring these var-
ious hypotheses; that is, computing the evidence
for one hypothesis based on its supporting hypothe-
ses. This approach allows fine-grained communi-
cation between all components of the system; this
communication takes the form of evidence for var-
ious hypotheses. This is true for feedback as well;
if some reasoning using domain knowledge leads to
the rescoring of some conceptual hypothesis, the im-
plications for syntactic and lexical hypotheses are
easily computed; that is, their scores can be up-
dated easily by the parser. Thus the parser is truly
lightweight — it is available throughout the under-
standing process, with no overhead.

3 The Design of the Parser

Having now characterized abstractly what a
lightweight parser should do, it is time to discuss
how to build such a parser.

3.1 Construction Hypotheses

The parser will of course need to consider various
syntactic hypotheses. It is important that they be
simple and “independent”. In other words, the rep-
resentation of the parser’s current “theory” as to the
structure of the input should be factored into inde-
pendent syntactic hypotheses. This is important for
two reasoms. First, it allows painless parallel con-
sideration of large numbers of raw word hypothe-
ses. (The problem this avoids is that of a combi-
natorial explosion of the number of parses, which
is inevitable if a parser creates complex syntactic
hypotheses by coordinating, unifying, assembling,

By adopting this parser/interpreter interface there
is no special difficulty with ungrammatical, fragmentary,
or noisy inputs; the parser can simply extract as many
clues as possible, in the normal way. This avoids the
need for special processes (fallback algorithms) to han-
dle “ill-formed inputs”. That is, this approach treats
complex, incomplete inputs as the normal case. This
contrasts with approaches which assume that the nor-
mal input is an unambiguous string of words with only
one interpretation.

or linking the elements of a syntactic interpretation
into trees or other structures.) Second, it allows
each syntactic hypothesis to be directly and indi-
vidually related to the clues (that is, the elements
of a conceptual interpretation).

In my system, the syntactic hypotheses used are
“construction hypotheses” (Ward 1993).

The key idea is that it is possible to repre-
sent syntactic knowledge as an inventory of con-
structions, analogous to the representation of lexical
knowledge as an inventory of words. Each construc-
tion is a pairing of form and meaning. The form is a
sequence of constituents. Examples of constructions
are the Subject-Predicate Construction, the Tran-
sitive Construction, the Adjective-Noun Construc-
tion, and the Passive Construction. It seems that
constructions are a representational mechanism ad-
equate for writing complete grammars; and doing so
is the enterprise of “Construction Grammar” (Fill-
more 1988).

Adopting this view of grammar allows a parser
to use syntactic hypotheses of the form “constituent
X of comstruction Y was present over time span
Z”. Such “construction hypotheses” have the advan-
tages of being simple, being suited to consideration
in parallel, being easily scorable based on word hy-
pothesis scores, and relating directly to semantics.

A construction hypothesis can be spawned when
there is a good match between the constituents
of the construction and the hypothesized words in
some time range.

A construction hypothesis which spans a certain
time range can be used for interpreting that part
of the input. To give just one example, suppose
that: A. there is a hypothesized occurrence of the
Subject-Predicate Construction for which the first
constituent spans the time span from the 10th to
the 22nd frame, and B. an occurrence of the word
“John” is hypothesized in the time span from the
11th to the 19th frame. From this, since the time
spans overlap, there is evidence for john being the
subject. This then is used to compute the clues to
pass on to the semantic interpreter.

Conversely, for feedback, semantic rescoring of
such a clue directly causes rescoring of the associ-
ated construction hypothesis (or hypotheses).

In that it makes syntactic hypotheses parallel,
scored, and independent, this approach combines
the best points from chart parsing, probabilistic
parsing, and partial parsing (Ward 1993).

task-related

hypotheses
semantic
interpreter
presence linkage rofile ;‘;‘;‘Oa&t;es
hypotheses hypotheses ypotheses (clues)
parser
construction
hypotheses
word /
hypotheses
recognizer
ﬁhoneme
ypotheses

Figure 1: Hypothesis types and their relations. The arrows represent forward evidential relations.

Feedback pathways are not shown.

3.2 Participatory Profiles for

Meaning Representing

For ease of feedback, it helps if the semantic inter-
preter and syntactic mechanism use the same rep-
resentation mechanisms, as much as possible.

The system accordingly uses “participatory pro-
files” (Ward 1992; Ward 1994) instead of Fillmorean
deep cases, In brief, the idea is to decompose cases
into vectors over “case features”. For example, the
semantics of the first constituent of the Subject-
Predicate Construction is not “agent” but the par-
ticipatory profile (.6 topic), (.4 volitional), (.3 ac-
tive), (.5 responsible), (-.2 affected) The ev-
idence is smoothed; for example, (.6 topic) also
counts as (weaker) evidence for (.5 topic).

This obviates the need for a case-slot mapping.
Moreover, it makes it easy for many construction
hypotheses to independently contribute clues to an
interpretation; these clues can be combined numer-
ically.

Thus, I propose that the clues (that is, the sim-
ple conceptual hypotheses which the parser scores)
are of three types: 1. presence information, e.g,
“this input involves john”, “this involves a benefi-
cial action”,.2. linkage-information, e.g. “in this
input john is related to kiss”, and 3. relational in-
formation, e.g. “john is active in this input”. Note
that, this inventory decomposes traditional case re-
lations, such as “john is the agent of kiss”, into one

clue of type 2 and several clues of type 3.
Figure 1 summarizes these points.

3.3 Timeline-Based Computation

As mentioned above, the system relies on “overlap-
ping time spans” for computing hypotheses scores.
This is done primarily for the sake of simplicity. The
problem it avoids is that of binding words to the
constituents of constructions.

The technique used in this system can be called
“computing with timelines”. For example, if there
is the hypothesis that “the part of the input from
framell thru framel8 corresponds to direct-object”,
then there is evidence for (affected .8), and this ev-
idence is stored on positions 11 thru 18 of the (af-
fected .8) timelines. If there is also the hypothesis
that “the word “John” appeared from framel(thru
frame 16”7, then, by using the information on the
timeline, the evidence regarding the degree of af-
fectedness of John can be easily computed.

Evidence from many construction hypotheses
(etc) is summed onto each timeline. As there is only
a small number of timelines, much fewer than the
number of hypotheses of various types, this tech-
nique is relatively fast.

®

10f 20f

30f

40f

50f 60f 70:

BATMAN-FM- 063

BATMAN-FM- 0.67

ATTACKED-FM- 0. 59

RESCUED-FM-SENTENCE2-4 1.00
RESCUED-FM- Q.04

R RESCUED-FM- (.90
BATMAN-FN- 0.86 . :

MAN-FM- 8,82
RESCUED-FM- . 0.65
FISH-FM- .64 : :

- - JOKER-FH-SENTE}
ATTACKED-FM-SEN:

4@ [chd: Construction Hypotheses

4] FSH:—FM— 0.56

(25 39) 2.905

of 10f 20f 30£ 40f 50f 60£ 70:
position score . . . : . . : .
SUBJ-PREDC (NOUN WERB) : .
(4 2544) 3.916 - - - : :
(17 25 44) 3.854 - . L L .
(10 25 44) 3.770 :
(4 2538y 3.585. . ; : :
(17 25 38) 3.523 : . . : :
(4 25 53) 3.517 . o : . : - :
{4 25 30) 3.504 - . . : :
(17 25 53) 3.455 - — - :
(17 25 30) 3.442 - — . : .
(10 25 38) 3.439 - L. : :
TR&NSITIVEC (VERB. NOUN) : .
(25 54 1) 3.230 - - - . S .
(49 54 61) 3.108 - : : - .
(25 42 61) 3.100 - . : o
(25 54 70) 3.013 : .
(25 54 76) 3.001 . —
(42 54 61) 2.983 ; - M .
2 - .

Figure 2: The output of the word spotter. The numbers are the scores of the word hypotheses

and the horizontal lines show their time spans.

Figure 3: Some construction hypotheses. The

The dotted lines mark off 200 ms intervals.

horizontal line segments show the time spans of

the constituents. Note the independence (indeed, inconsistency) of these construction hypotheses.
For example, according to the best ranked Subject-Predicate hypotheses the verb ends at frame44,

but according to the best Transitive hypothesis

4 The System

I have implemented a speech understanding system,
consisting of about 1000 lines of C and 4000 lines

, the verb ends at frame54.

of Lisp. It runs on a Sun SparcStation. Speech
is input using a good microphone and the built-in
8Hz A/D converter. A simple template-matching
word-spotter produces a lattice of word hypothe-

@ o Features (timelines, showing degrees wi most evidence)

0f 10f 20£

30£ 40f S0f 60£ T0f

| VOLITIONAL

d ACTIVE

d AFFECTED

l RESPONSIBLE - 3

® [Word Timelines (summed hypotheses) 211

10£ 20£

30f 40£ S0 60£ 70£

Figure 4: The participatory profiles hypothesized at each timepoint. This was computed from the
construction hypotheses (Figure 3). For example, the high value for affected towards the right
is due to two factors. The first is the that direct objects are typically affected, combined with
the presence of a some fairly highly ranked transitivec hypotheses whose second constituents (the
direct object) span this region. The second is the lack of significant countervailing evidence from

Subject-Predicate hypotheses.

Figure 5: The distribution of evidence over time, for each word. This was computed from the
word hypotheses (Figure 2) by summing, for each timepoint, the scores of all hypotheses for that

word.

ses, each consisting of word name, start point, end
point, and score. This spotter finds words in contin-
uous speech, slowly, with low accuracy. The parser
operates as discussed above.

From the clues output by the parser, a simple

semantic interpreter applies knowledge about good
and evil to come up with an interpretation suitable
for an emotional response. For example, it knows
that those responsible for rescues are good-guys, so
if, for a given input, the parser gives high scores to

Figure 6: Summary of the computed profiles for
words. These are computed by, for each word
and each feature, integrating over time the prod-
uct of the feature score (Figure 4) and the word
score (Figure 5). For example, the high value for
affected (the ‘AF’ column) for “man” is due to
the fact that the bulk of the evidence for man is
in the timespan where affected is highly scored.

the clues the-mayor-is-responsible and the-rescue-
concept-is-present, then the interpreter will give a
high score to the conceptual hypothesis the-mayor-
is-acting-as-a-good-guy. The semantic interpreter
also has some basic knowledge about personalities;
for example, it knows that batman is generally a
good-guy. 1t can then use such facts to rescore clues,
and thus provide feedback to the parser and even-
tually the word spotter.

Since the semantics of this domain are rather
trivial, there is also the facilty for human interven-
tion, to provide additional semantic feedback — a
window interface enables the developer to adjust the
scores of the various conceptual hypotheses and ob-
serve how the effects propagate through the system.
(This will be the focus of the video).

5 Example
Figures 2-9 illustrate how the system works. Thein-

put was “Batman rescued the mayor”, spoken fairly
sloppily.

-1.0-.8 -.6 -4 -2 .0 .2 .4 .6 .8 1.0

evidence for varying deqrees of AFFECTED-ness

Figure 7: the detailed breakdown of evidence
for man being affected, to various degrees. The
peak value falls at the degree .8; which is why
.8 is the value for AF shown in Figure 6.

Presence Scores

@

"rescued" NN
. "Batman"]
11.65 "attacked" mEG——m
9.43 "Joker" I
8.87 "fish" ——
8.24 “"man" ——
7.02 "Mayor" —
3.19 "ate" |
1.62 "the" | |
1. "a" 1

Figure 8: The computed “presence scores” for
each word. These were obtained by summing,
for each word, the scores of all its hypotheses
(Figure 2).

Figures 6 and 8 constitute the set of clues (link-
ages are not yet implemented). From these, the
semantic interpreter arrives at the interpretation
shown in Figure 9. If these scores are adjusted, as a
result of semantic interpretation or intervention by
the experimenter, the scores for upstream hypothe-
ses are recomputed; this feedback is basically just
the inverse of the process illustrated above.

For example, based on the knowledge that the
Joker is generally not a good-guy, since this nput
involves a rescue, the score for the hypothesis joker-
is-responsible will be decreased. Then, since there
is evidence for responsibility for words appearing in
the region from framel3 to frame24 (see Figure 4),
there is evidence against any hypotheses which place

Batman B
Joker é E ™
Hayor 3= 1 E
. H H
fish i E E

Figure 9: The semantic roles inferred from the
participatory profile (Figure 6) and word pres-
ence (Figure 8) hypotheses. For example, the
high score for Batman on the good-guy scale is
largely due to the application of the knowledge
that those responsible for rescues are good-guys.

the word “Joker” in that time region.

As another example, based on the knowledge
that Batman is likely to be a good-guy, since this
input involves a rescue, it is likely that he is voli-
tional. Given that the evidence for the word Bat-
man appearing is clustered around frames 13 to 24,
the system concludes that there is top-down evi-
dence for placements of the Subject-Predicate con-
struction where the first constituent falls in that re-
gion (for example, the top hypothesis in Figure 3),
because English subjects are typically volitional.

6 Open Questions

This system has demonstrated that use of a
lightweight parser allows the application of semantic
feedback for speech understanding. Many questions
remain.

For one, it has not yet been show whether tight
coupling is advantageous. Using this system, I plan
to examine this, by measuring the advantage, if any,
of providing semantic feedback to the word spotter,
rather than than simply using it to rescore the n-
best sentence hypotheses.

The details of the algorithms for lightweight
parsing, in particular, for the computation of the
scores for various hypothesis, need more work.

It is also not clear whether this particular ap-
proach to lightweight parsing will scale up. Spe-
cific concerns include: For larger vocabularies, will
it still be okay to just sum up scores with a time-
line (rather than assembling coalitions of compati-
ble hypotheses)? For larger lattices and more con-
structions, will the synergy among construction hy-
potheses turn into cacophony? How can the various
weights and probabilities involved with construction
hypotheses be learned?

References

Bates, Madeline, Robert Bobrow, et al. (1993). The
BBN/Harc Spoken Language Understanding
System. In 1998 IEEE ICASSP, pp. 1I-111-
114.

Fillmore, Charles J. (1988). The Mechanisms of
“Construction Grammar”. In Berkeley Lin-
guistics Society, Proceedings of the Fourteenth
Annual Meeting, pp. 35-55.

Jurafsky, Daniel, Chuck Wooters, et al. (1994).
Integrating Experimental Models of Syntax,
Phonology, and Accent/Dialect in a a Speech
Recognizer. In AAAI Workshop on the Inte-
gration of Natural Language and Speech Pro-
cessing.

Martin, Charles E. (1989). Case-based Parsing. In
Christopher K. Riesbeck & Roger C. Schank,
editors, Inside Case-based Reasoning, pp. 319—
352. Lawrence Erlbaum Associates.

Seneff, Stephanie (1992). TINA: A Natural Lan-
guage System for Spoken Language Applica-
tions. Computational Linguistics, 18(1):61-86.

Ward, Nigel (1992). An Alternative to Deep Case
for Representing Relational Information. In
Proceedings 14th COLING.

Ward, Nigel (1993). On the Role of Syntax in
Speech Understanding. In Proceedings of the
International Workshop on Speech Processing,
pp. 7-12. also Gijutsu Hokoku SP93-76, IE-
ICE, Tokyo, 1993.

Ward, Nigel (1994).
Generator. Ablex.

A Connectionist Language

