HH SmlamLE 41
(1994. 12. 15)

FRBHAT LR 7 — 7 MEREE & 2 0t
VAT LANDIBH
=S iR F3E
Hyh fEfE SUH— T LK
R
RIETER2EHR T 25 ATR B = BIEREE 50T

T 152 EH B ERX AMIL 2-12-1 T 619-02 AR ERFE ZE T s 2-2

li@cs.titech.ac.jp

S5 &L

KX TIE, BEERERE GLIR XNV V7 ERFERVEREFRZR Y AT 2~DI0HICD

WTHNS, RERRERICEITOHNEEREIC L5, FRESEEFE LR ZOHF LVERT VT
JALERETS.

HAREXHEFARaexH e LT, SRR 0EER%21T2 572, €512, SLR & canonical
LRIZX %, BEIIHESKEERB I AT LOMEORBERZIT 72,

ixF-7-F REETNV, —RIELRE, HHEE TR

A Method for Generating Phoneme-Context-Dependent LR Table
and its Applications in Continuous Speech Recognition System

Hui Li Toshiyuki Takezawa
Hozumi Tanaka Harald Singer

Teruaki Hayashi

Department of Computer Science ATR Interpreting Telecommunications
Tokyo Institute of Technology Research Laboratories

2-12-1 Ookayama Meguro-ku Tokyo 152 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02

Abstract

This paper describes a method of realizing phoneme-context-dependent GLR. parsing and
its applications in a continuous speech recognition system. A new algorithm for generating a
phoneme-context-dependent (allophonic) LR table on the basis of an allophone connection matrix
through constraints propagation is given.

For a Japanese phrase recognition task, the evaluations of recognition performance is given.

The performance of SLR and canonical LR(CLR) table for allophone-based speech recognition
system is also discussed.

X key words allophone model, GLR parser, constraints propagation, speech recognition

_1__

1 Introduction

In the phone-based speech recognition system, a GLR
parser has been successfully employed as a phoneme pre-
dictor, which provides efficient search of phones during
the process of speech recognition[3]. A GLR parser is
guided by an LR parsing table automatically created
from a set of context-free grammar(CFG) rules, and pro-
ceeds left-to-right without backtracking.

On the other hand, in continuous speech recogni-
tion, the performance of recognition systems has been
improved by using allophones as recognition units instead
of phones[2][4][7][8]. Allophone models (such as triphone
models) are context-dependent phone models that take
into consideration the left and right neighboring phones
to model the major coarticulatory effects in continuous
speech.

The combination of allophone models and a GLR
parser is desirable to achieve better performance in con-
tinuous speech recognition. One of the difficulties of inte-
grating GLR parser with an allophone-based recognition
system is how to solve the word juncture problem, be-
cause for the phones at word boundaries, their left or
right context depends on the preceding or succeeding
words.

There has been some approaches of realizing a
phoneme-context-dependent GLR parsing[2][6][7]. To
solve the word juncture problem, these methods either
need dynamic processing during the speech recognition
process, or have the problem of explosion in LR table
size.

In this paper, we will describe a method, called
CPM (constraints propagation method), for generating
an allophone-based LR table which can solve the word
juncture problem effectively.

The organization of this paper is as follows: Section
2 describes the method for generating an allophone-based
LR table. Section 3 discusses the two different type of
LR table (SLR table and canonical LR table) applied to
an allophone-based speech recognition system. Section
4 describes some improvements of CPM method. Sec-
tion 5 presents the GLR parsing algorithm based on the
allophone-based LR table generated by CPM. Section 6
provides some experiment results for a Japanese phrase
recognition task. Section 7 concludes with discussions.

2 Algorithm for generating an
allophone-based LR table

In this algorithm, by introducing a set of allophone
rules into a set of syntactic and lexical rules(CFG), an
allophone-based LR table is generated first, then this LR
table is modified by applying CPM.

We use a simple Japanese grammar with lexical rules
shown in Fig. 1 to illustrate the CPM algorithm of gen-
erating allophone-based LR table.

(1) S—=NP 4 P-oga
(2) N — ani(brother) (5) P—ni
(3) N — an e(sister)

Fig. 1 A simple Japanese grammar with lexical rules

2.1 Allophone connection matrix

The allophone connection matrix provides the con-
nectability between two adjacent allophones.

For example, assume that the context sets of allo-
phones “i1” for phone “” and “g2” for phone “g” are as
follows.

a

it:{ n i< g 2, g2:{ i ;g

We say “g2” can follow “i1” because the right con-
text of “i1” contains the phone “g” and the left con-
text of “g2” contains the phone “i”. A connection ma-
trix is expressed as an array of Connectfleft_allophone,
right_allophone], whose value is “1” (two allophones are
connectable) or “0” (two allophones are not connectable).

Fig. 2 shows an example of allophone connection ma-

trix.
RIGHT
alla2{nl|n2}il |i2 |el |e2|gl|e2] $
al 11 0
a2 010 1
L nl 1{0(0 |0
E |n2 110111
il 110 1{1§1
Fli 1{o0 0lo]1
el 111 1{0
T e2 00 1[0
g1]o|o0
g2]1]1

Fig. 2 An example of connection matrix

2.2 Initial allophone-based LR table

At first, for the lexical rules, we change the phones within
a word into the allophones according to the allophone
contexts. In Fig. 3, rule (2)’ to (5)’ corresponds to the
converged lexical rules of rule (2) to (5) in Fig. 1.

(1) S-NP (6) a—al (1ll)e— e2
(2 N—anli (7) a—a2 (12)g—gl
(3YN—an2e (8 i—il (13)g— g2
4P —-ga 9 i—i2 (14)n—nl
(5P —-ni (10)e — el (15)n — n2

Fig. 3 A set of syntactic, lexical and allophonic rules

To solve the word juncture problem, the allophone
rules is introduced into the set of syntactic and lexical
rules(CFG). Assume the following: {al, a2} for “a”, {il,
i2} for 4", {el, e2} for “e”, {gl, g2} for “g”, {n1, n2} for
“n”, a set of allophone rules can be produced. In Fig. 3,
rules (6) to (15) are allophone rules.

From the rule set in Fig. 3, an allophone-based
canonical LR table shown in Fig. 4 is generated.

_2__..

ACTION GOTO
state] ay a2 nl n2. i1 2 el e gl g2 $ a i e g nNP'S
0] sl s2(c) 4 5
1 6 16
2 r7(a) r7(a)
3 S s7
4 s11N\ s12 s8(c)w s9 10 13 14
5 (b) acc
6 s15 s16(b) 17
7 s18 s19(c) 20
8 Ir12(a) ri2(a)
9 |r13e) r13 ©
10 Is21(c) s22 @ 23
11 rl4 rl4(a)
12 rl5 rl5(a)
13 s24 s25(e) 26
14 rl
15 8 18(a) r8(d)|| r8
16 r9(c) r9(a) (@ (1'9(a) 9(c)
17 12 12(e) r2(dy} r2
18 r10(a) rl0 10(d)| r10
19 (e)[crll(a) rii(a) (d)[‘rll(a) rll(a)
20 r3(e) 13 r3(d) 3
21 r6(a)
22 17
23 4
24 8
25 9
26 5

Fig. 4 An allophone-based LR table from the rules in Fig. 3

2.3 Modifications of LR table

In the LR table in Fig. 4, the connectability informa-
tion represented in Fig. 2 is not included for the phones
at word boundaries. For example, for the beginning
phone ”a” of word ”a nl i”, the action "re7” with looka-
head symbol "nl” in state 2 allows the connection be-
tween "a2” and ”n1”, but this connection is illegal since
Connect[a2,h1]=0" as shown in Fig. 2. In order to incor-
porate the connection constraints into the LR table, we
modify the LR table on the basis of allophone connection
matrix through constraints propagation.

2.3.1 Connection check

At first, we use connection matrix to remove the illegal
actions in LR table in Fig. 4 in a similar way as in [9].

(a). Remove the illegal reduce actions of
allophone rules

For example, “rel4”(lookahead “i2”) in state 11
should be removed because “nl1” (RHS of rule 14) and
“i2” are not connectable(Connect[nl,i2] = 0).

(b). Remove the illegal shift actions whose
predecessors are shift actions

For example, consider “sh16”(lookahead “2”) in
state 6, which is transferred from “sh6”(lookahead “nl”)
in state 3, since “nl” and “2” are not connectable,
“sh16” in state 6 should be removed.

2.3.2 Constraints propagation

Secondly, we remove all other illegal actions in Fig. 4
through constraints propagation.

(c). Remove the empty states and the shift
actions that lead to the empty states

An empty state is defined as a state whose all actions
have already been removed, or all the preceding actions
of this state have been removed. The shift actions that
lead to the empty state should be removed. For example,
state 8 is an empty state, so “sh8”(lookahead “gl”) in
state 4 should be removed. ’

(d). Remove the reduce actions that lead
to removed shift actions

Consider “re8”(lookahead “gl”) in state 15, the

parser will transfer to state 17 after “re8”. In state 17,
the next action is “re2”(lookahead “gl”), after “re2”,
the parser will transfer to state 4, but in this state,
“sh8” (lookahead “gl”) has already been removed by the
step (c). Thus, “re8” with lookahead “gl” (in state 15)
and “re2” with lookahead “gl” (in state 17) should be
removed too.

(e). Remove the actions whose all predecessors
are removed actions

Consider “re3” (lookahead “nl”) in state 20, this ac-
tion is transferred from a goto action after “re10” (looka-
head “nl”) in state 18 or a goto action after “rell”
(lookahead “nl1”) in state 19 . Since “rel0” in state 18
and “rell” in state 19 (lookahead “nl”) have been re-
moved by step(a), re3 (lookahead “nl”) in state 20 should
be removed.

The algorithm will repeat this constraints propaga-
tion (step(c)-(e)) until no more actions are removed, and
then compress the LR table to reduce the table size.

In Fig. 4, the actions that were marked (a), (b), (c),
(d), (e) mean they were removed by step(a), (b), (c), (d)
and (e), respectively.

3 Incorporation of connection
constraints into the generation
process of LR table

As explained above, we introduced the allophone rules
into a set of syntactic and lexical rules and generated an
initial allophone-based LR table first, then removed all
the illegal actions and states on the basis of allophone
connection matrix through constraints propagation. Al-
though this method has the advantage of enabling us us-
ing already existing LR table generation method to get
the initial LR table, the states and actions of initial LR
table often explode as the number of CFG rules and al-
lophone models increases.

In order to rectify this situation, we can incorpo-
rate the connection constraints(step(a) and (b) in Section
2.3.1) into the LR table generation process by removing
the illegal items that violate connection constraints for
each set of items.

N-—anl-i,gl/g2
N—anl-i,nl/n2
i— il gl/g2

i— -il,nl/n2
i—-i2,gl/g2

i— -i2,0l1/n2

i1 i2

i—i2.,gl/g2

i—i2-,n1/n2

Fig. 5 Part sets of items of LR table in Fig 4

i—il-, gl/g2
i—il-, nl/n2 @

For example, consider the sets of items I, I;5 and
I4(Fig. 5), which corresponds to the state 6, 15 and 16
of LR table in Fig. 4, respectively.

o The following items of Ig
i—-i2, gl/g2
i— -2, nl/n2
are due to the closure "N — a nl - i”, but according
to the connection matrix in Fig. 2, Connect[nl, 2]
= 0, so the above four items should be be removed,
which corresponds to step(b) of CPM. Since the
above four items were removed, the set of items ;4
will vanish automatically.

e According to Fig. 2, Connect[il, n2] = 0, so the
following item of I
i— il -, n2
can be removed, this corresponds to step(a) of CPM.

By the above two steps, three sets of items in Fig. 5
will decrease to two sets of items as shown in Fig. 6.

N—anl-i,gl/g2
N —anl-i,nl/n2
i— -l gl/g2

i—-il,nl

il

i—il-,gl/g2

i—il-,nl @

Fig. 6 Item sets after connection check

The size of initial allophone-based LR table can be
reduced greatly through this processing.

4 SLR and Canonical LR Table

In this section, we would like to discuss the types of LR
tables. Until now all methods about phoneme-context-
dependent GLR parsing[2][6][7] have used the SLR or
LALR table.

Compared with the canonical LR table, the SLR and
LALR table can not provide us precise phoneme predic-
tions because the SLR and LALR table have fewer states
due to merging several states in an LR table [1], and
merging several states brings many actions in a state that
produces many predictions.

Consider the simple grammar shown in Fig. 7.

(1) <s> — <koko> <ni> <hon> <ga> <aru>
(2) <s> — <hon> <da>
(3) <koko> —koko
(4) <hon>-—=hoN
(5) <ni>—oni
(6) <ga>—ga
(7) <aru>—aru
(8) <desu> —da
Fig. 7 An example grammar with lexical rules

According to this grammar, there are only two
correct sentences “h o N / d a (£7)” and
“koko/ni/hoN/ga/aru (I ZiCEKIH5) .

state ACTION GOTO
k h o N g d |<koko> <hon>
0 sl s3 2 4
3 s9
8 83 \ 14
9 s16
15 4 r4

Fig. 8 Part of SLR table from Fig 7

ACTION GOTO
stalefk h o N g d]<koko> <hon>|
0 |sl si 2 4

3 s9

8 sl4 \ 15
9 516

14 s19

16 r4

19 s23

23 4

Fig. 9 Part of CLR table from Fig 7

The part of SLR table and canonical LR table gen-
erated from Fig. 7 are shown in Fig. 8 and Fig. 9, respec-
tively.

In this example, the SLR table merged two states
(state 16 and state 23 in Fig. 9) of the canonical LR
table into one state (state 15 in Fig. 8). This merge will
bring useless phone predictions in speech recognition.

For example, if the correct sentence is “h o N / d a”,
using the SLR table, we have a path:

d/re4
h A—°2 5N | /red
©) ® s

In state 15, an useless prediction “g” occurred.
But if using the CLR table, the path is:

@ @ d/ret
The useless prediction “g” did not occur.

In particular, for the phoneme-context-dependent
LR parser, this useless prediction may affect the context

G—2 N
3) ad);

_5h

of the preceding and succeeding phones. In the above ex-
ample, for “N” of “h o N / d a”, using SLR table, we will
get two triplets “o/N/d” and “o/N/g”, where “o/N/g”
is an useless triplet, but using CLR table, “0/N/g” does
not occur.

Generally, the canonical LR table has more states
than the SLR or LALR table.

To compare the size of LR table, two ATR phrase
grammar shown in Table 1 have been used.

Table 1: Size and perplexity of grammar

Grammar mset_phrase | eset_phrase
Rules 979 2813
Vocabulary 456 1588
Perplexity(phone) 2.66 3.43

Table 2 shows a comparison of table size between
SLR and CLR table.

Table 2: Table size of SLR and CLR table

Grammar | mset_phrase eset_phrase

Table type | SLR [CLR | SLR | CLR
states | 2171 [2317 | 6556 | 7411 |
shifts [1825 [1920 [5967 [6578 |

gotos | 691 | 700 | 1409 | 1463 |
predictions | 2.44 [2.36 [3.14 [2.97 |

l
|
[reduces | 3474 | 3564 | 14628 | 15428 |
l
|

Compared with the SLR table, the number of states
of CLR table increased by 6.7% (mset.phrase) and 13%
(eset_phrase), but the average phone predictions for each
state decreased. This will result in the precise phone
prediction for speech recognition. We will discuss the
performance of these two type of LR table applied in
allophone-based speech recognition in Section 6.

5 Parsing Algorithm

As phoneme context has been compiled in the LR ta-
ble in advance, the GLR parsing algorithm is principally
the same as Tomita’s GLR parsing algorithm. There is
only slight change about GLR parsing algorithm with the
allophone-based LR table generated by CPM. According
to the modified LR table in Fig. 4, we can construct the
parsing tree shown in Fig. 10

In state 15, for the end phone “i” of word “a nl
i”, the lookahead symbols of the allophone reduce action
“re8”(i — i1) are “g2” and “nl1”. After carrying out this
reduce action, the parser transfers to state 17. In state
17, the reduce action “re2”(N — a nl i) with the same
lookahead symbols “g2” and “nl” is carried out, and goto
state 4. However, in state 4, there are three shift actions
with lookahead “g2”, “n1” and “n2”. Since “n2” can not
succeed “i1”, for the word “a nl i”, sh12 is illegal. But
we can not delete this action from the LR table, because
after “re3” (N — a n2 e), the parser will transfer to this
state too, and “n2” can succeed “el”.

@_ja_l,ﬂ]_@) [n1/n2,re6]

[a,goto] — [n1.sh] - [il,sh] @ [82/n1,re8]

Lgoto [82/n1,re2]

[n2,sh] = [el;sh] @) [82/n2;rel(]

€,80t0| 55 [g2/n2,re3]

[N,goto]

®[g2,sh9]
&)
nl,shll
n2,sh12

Fig. 10 Parsing tree for LR table in Fig. 4

To avoid this useless allophone prediction, we have
to modify the GLR parsing algorithm slightly. For the
reduce action with allophone rule, its lookahead symbols
should be stored and carried to the new state after re-
duce, and at the new state, only those actions which ap-
plicable for the stored lookahead symbols are carried out.

In the above example, if the path is “a nl i”, the
lookahead symbols “g2” and “nl” of action “re8” (i — il)
in state 15 will be carried to state 17, and then to state 4.
In state 4, only sh9 with lookahead “g2” and shll with
lookahead “n1” are carried out.

The parsing algorithm for allophone prediction is
summiarized below:

[LR Parsing Algorithm:]

As same as [3][6], a data structure (named cell) with
information about one possible parse is used. The fol-
lowing information is kept in the cell:

e LR stack, with information for parsing control.

¢ Prediction allophone set P, which includes the next
allophones the parser will predict, is used to remove
the ambiguity of allophone predictions when the ac-
tions are transferred from a goto action.

e Probability array, which includes end point candi-
dates and their probabilities.

1. Initialization
Create a new cell C, push the LR initial state 0 on
the top of LR stack of C.

2. Ramification of cells

Construct a set.

S = {(C,s,a,z) | C,a,z(C is a cell &C is not
accepted & s is the top state of C & ACTION[s,a}=x
&z # error.)}

For each element (C,s,a,z) € S, do the following.
If set S is empty, parser is completed.

3. If x = “shift s/,

o if state s is transferred from a shift action, verify the
existence of allophone “a”, and let the prediction
allophone set P be an empty set.

o if state s is transferred from a goto action and the
input “a” is included in the prediction set P, verify
the existence of allophone “a”, otherwise the cell C
is abandoned.

4. If x = “reduce n”,

e if rule n is an allophone rule, do this reduce action,
and add the allophone “a” into P.

o if rule n is not an allophone rule, but “a” is included
in P, do this reduce action. Otherwise, the cell C is
abandoned.

5. If x = accept and the probability of cell C exceeds a
certain threshold, cell C is accepted.
Otherwise, cell C is abandoned.

6. Return to 2.

6 Speech Recognition Experi-
ments

6.1 Speech Data

The recognition experiments were carried out using 345
phrases uttered by one professional announcer (MAU in
the ATR database).

The speech was sampled at 12 kHZ, quantized to 16
bits, preemphasized by (1 — 0.9827!), and windowed us-
ing a 20 msec Hamming window with a 5 msec shift, 34
coefficients which consists of log-power, delta log-power,
16-channel cepstrum coefficients, 16-channel delta cep-
strum coefficients were used as the feature parameters,
a diagonal-covariance single Gaussian distribution was
used as an output probability density distribution of each
state. Isolated 2620 Japanese words (even words of ATR
5240-word database) were used for training data. Al-
lophone model (called HMnet) is generated by a SSS
algorithm[6]. The number of states for the HMnet are
200, 400 and 600, which corresponds to 283, 1026 and
1759 allophones, respectively.

6.2 Grammar

A phrase grammar for international conference secretar-
ial service (eset_phrase in Table 1) is used to the speech
recognition experiments.

6.3 Recognition Results

The proposed allophone-based GLR parsing approach
was evaluated by the recognition rates, CPU time, aver-
age allophone verifications and average accepted phrase
candidates.

— 6 —

Table 3: Recognition rates

allophone | Table beam=>50 beam=100 beam = 250
number | type [top1 [top5 |top1]top5 [top1 [top5
[26 | [82.90 [90.43 [85.51 [94.20 [87.83 [97.10 |

283 SLR | 83.48 | 90.72 | 85.80 | 95.07 | 87.83 | 97.10

CLR | 84.06 | 91.30 | 86.09 | 95.65 | 87.83 | 97.39

1026 SLR | 88.12 | 95.07 | 90.72 | 97.68 | 91.01 | 99.13

CLR | 88.70 | 95.94 | 90.72 | 98.26 | 91.01 | 99.13

1759 SLR | 86.96 | 94.49 | 89.28 | 97.68 | 89.28 | 98.84

CLR | 87.54 | 95.36 | 89.28 | 97.68 | 89.28 | 98.84
6.3.1 Recognition rates Table 4: Average phonetic verifications

The recognition rates are listed in Table 3 for 283, allophone | table beam width

1026 and 1759 allophone models. For the comparison, number | type [50 | 100 | 250
the recognition rates for phoneme-context-independent SLR | 2552 | 4315 | 9639
model(26 phones) is given too. 283 CLR | 2444 | 4105 | 9126
It. is easy to see tha'? when beam widt}'x 'is small, SLR | 2054 | 3654 | 8134
CTallll.OI?lcda:l LtR te:zlet gtll\lles Csll_t%hzl}{, laetffer recognition .ratesl:. 1026 CILR 11993 13536 | 7840
lopl}folrlxle lpfligisctiois thean the SaLI;3 tgeg'las moe preese SLR | 1880 | 3381 | 7567
) 1759 CLR | 1839 | 3286 | 7334

6.3.2 CPU time

The average CPU time (measured on an HP735 machine)
for each phrase utterance is shown in Fig. 11. For the
comparison, the CPU time of GLR parsing method real-
ized in parser level[6] is shown too.

our method ~o—
parser level realization -+--

14000 |~

12000

10000

8000

CPU Time (ms/phrase)

6000

4000

2000 L L L
50 100 150 200
Beam Width

250

Fig. 11 Average CPU time for each utterance
Since the phoneme context is compiled into the LR
table in advance, less CPU time is required with our
method.

6.3.3 Average allophonic verifications

The average allophone verifications for each utterance are
listed in Table 4.

From Table 4, compared with the SLR table, CLR
table needs less verifications.

6.3.4 Average accepted phrase candidates

The average accepted phrase candidates for each utter-
ance are listed in Table 5.

Table 5: Average accepted phrase candidates

allophone | table beam width
number | type | 50 | 100 | 250
283 SLR | 73 | 152 | 386
CLR | 88 | 181 | 454
1026 SLR | 63 | 133 | 340
CLR | 81 | 165 | 417
1759 SLR | 60 | 128 | 330
CLR | 78 | 160 | 406

From Table 5, compared with the SLR table, CLR
table gives more accepted phrase candidates for the same
beam width.

7 Conclusions

In this paper, we have described a phoneme-context-
dependent GLR parsing method. First, we introduce a
set of allophone rules into a set of syntactic and lexical
rules from given allophone models, and construct an ini-
tial canonical LR table, then modify the initial LR table
on the basis of an allophone connection matrix through
constraints propagation. With this modified allophone-
based LR table, only slight change is needed for the GLR
parsing algorithm used generally. It was found that CLR
table can provide us more precise allophone predictions
than SLR table. The proposed method was evaluated by
the continuous speech recognition experiments for a task
of Japanese phrase recognition with 1225 CFG rules and
1588 words.

One problem about our method is that generat-
ing an allophone-based LR table is time-consuming for
a large grammar compared with the phoneme-context-
independent case.

The future work will include the following:

¢ Evaluation of CPM algorithm with sentence recog-
nition.

¢ Application to stochastic CFG grammar.

Acknowledgments

The authors wish to thank Dr. Yamazaki, the president
of ATR Interpreting Telecommunications Research Lab-
oratories for giving us this research opportunity. The
authors are also grateful to all the members of ATR-ITL
and Tanaka & Tokunaka Laboratory, Tokyo Institute of
Technology for their constant help and encouragement.

We are especially grateful to Dr.Suresh(Tokyo Insti-
tute of Technology) for supplying us the Prolog program
of generating canonical LR table.

References

[1] Aho,A.V., Sethi,R. and Ullman,J.D. Compilers:
Principles, Techniques, and Tools. Massachusetts,
Addison-Wesley, 1986.

[2] Ttou,K., Hayamizu,S. and Tanaka,H. Continuous
Speech Recognition by Context Dependent Phonetic
HMM and an Efficient Algorithm for Finding N-best
Sentence Hypotheses. ICASSP92, pp. 21-24, 1992

[3] Kita,K., Kawabata, T. and Saitou,H. HMM Contin-
uwous Speech Recognition Using Predictive LR Pars-
ing. ICASSP89, 1989

4

Lee,K.F. Automatic Speech Recognition: The Devel-
opment of the SPHINX System. Kluwer Academic
Publishers, Norwell, MA, 1989

[5] Li,H., Takezawa,T., Singer,H., Hayashi,T. and
Tanaka,H. An Efficient Phoneme-Context-
Dependent LR Table and its Applications in Contin-
uous Speech Recognition. &% (%), pp.125-126,
1994

Nagai,A., Takami,J., Sagayama,S. The SSS-LR
Continuous Speech Recognition System: Integrat-
ing SSS-derived Allophone Models and a Phoneme-
Context-Dependent LR Parse. 1§35, SP92-33,
1992

6

[7]

Nagai,A., Sagayama,S., Kita,K. and Kikuchi,H.
Three Different LR Parsing Algorithms for
Phoneme-Context-Dependent HMM Based Contin-
uous Speech Recognition. IEICE Trans. Inf. & Syst.,
vol. E76-D, No.1, pp.29-37, January, 1993

[8] Schwartz,R., Chow,Y., Kimball,O., Roucos,S. Kras-
ner,M. and Makhoul,J. Context Dependent Model-
ing for Acoustic Phonetic Recognition of Continuous

Speech. ICASSP85, 1985

[9

Tanaka,H., Tokunaga,T. and Aizawa,M. Integration
of Morphological and Syntactic Analysis Based on
LR Parsing Algorithm. International Workshop on
Parsing Technologies, Tilburg, pp.101-109, 1993

[10] Tanaka,H., Li,H. and Tokunaga,T. Incorporation of
Phoneme-Context-Dependence into LR table through
Constraints Propagation Method. Proc. of AAAI-94
Workshop on the Integration of Natural Language
and Speech Processing, Seattle, pp.15-22, 1994

[11] Tomita,M. Efficient Parsing for Natural Language:
A Fast Algorithm for Practical systems. Kluwer Aca-
demic Publishers, pp.201, 1986

