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Abstract

A new method for automatically acquiring grammar fragments for understanding fluently spoken language is
proposed. The goal of this method is to generate a collection of grammar fragments each representing a set of
syntactically and semantically similar phrases. First phrases observed frequently in the training set are selected
as candidates. Each candidate phrase has three associated probability distributions: of succeeding contexts, of
preceding contexts, and of associated machine actions. The similarity between candidate phrases is measured
by applying the Kullback-Leibler distance to three probability distributions. Candidate phrases which are close
in all three distances are clustered into a grammar fragment. This approach detected 246 phrases in the test-set
that were not present in the training-set. Experimental results show that a 3% improvement in the call-type
classification performance has been achieved by introducing these fragments.

key words spoken understanding, preceding and succeeding contexts, Kullback-Leibler distance, phrase simi-
larity, phrase clustering
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1 Introduction

In stochastic language modeling the probability of a word
occurrence is generally calculated based on its frequency
obtained from training transcriptions. This approach can
be applicable to not only a word but also a phrase. In
fact, frequencies of some phrases are higher than that of
some words barely observed in a training set. It is there-
fore reasonable that a phrase can be regarded as a unit for
language modeling [Riccardi97] [Giachin95] [Masataki96].
The phrase-based N-gram makes it possible to estimate
the transition probability accurately between phrases ob-
served frequently in the training set. On the other hand,
other language models have been proposed based on the
word-class N-gram [Bellegarda96] [Farhat96] [Ward96]. In
this approach, all words in a training set are first clustered
into some word classes. Words having a similar tran-
sition probability are generally clustered into the same
word class. Because a word sequence is represented as a
sequence of word classes, this approach makes it possi-
ble to estimate the probability for a word transition not
observed in the training set.

These approaches however focus on succeeding words
or phrases only to minimize the branching factor or the
test set perplexity. Since analogous phrases have a simi-
lar distribution in not only the succeeding-word sequence
but also in the preceding-word sequence, the sjmilarity
of word sequences can be clustered more effectively by
referring to both of the succeeding and preceding word
sequences. Furthermore, an utterance accepted as input
of our call-router dialog system generally carries what the
user requested or the call-type [Gorin97]. Some phrases
carrying the analogous role in the dialog must have sim-
ilar associations with the call-types. Thus the word se-
quence similarity can be also computed by using such
associations between phrases and call-types [Wright97].
This paper proposes a new method for clustering phrases
into grammar fragments. This method focuses on not
only succeeding words but also on preceding words and
on the call-types associated to each utterance for gener-
ating grammar fragments comprising similar phrases.

2 A Spoken Dialog System
for A Call-Router

2.1 Call-type Classification

The goal of our dialog system for call-routing is to un-
derstand its input sufficiently to route the caller to an
appropriate destination in a telecommunications environ-
ment. There are 14 call-types and an other class as a
complement. Since in many situations the call-type can
not be exactly determined from a single input, dialog is
often necessary. Once the call-type has been successfully

negotiated and agreed upon, there is often a subsequent
form-filling dialog to complete the information necessary
to provide a service. The most important issue in this
kind of dialog is that it is not necessary to perfectly rec-
ognize and understand every word accurately. It has been
shown that the dialog system can determine the call-type
sufficiently if it can extract the some phrases strongly as-
sociated with a call-type.

2.2 Database

In order to enable experiments, a database of 10K spoken
transcriptions between customers and human agents were
generated as detailed in [Gorin97]. We focused on the first
customer utterance, responding to the greeting prompt
of “How may I help you?”. These utterances were end-
pointed, transcribed and labeled as to the call-type and
quality of the speech and channel. The transcriptions were
split into three subsets for training (8K), developing (1K)
and testing (1K) the acoustic and language models for
recognition and understanding. In the training set, there
are 3.6K words which define the vocabulary.

3 Fragment Distance

3.1 Phrase and Fragment

An arbitrary word sequence in the training transcriptions
is called a phrase. All phrases can be obtained by de-
composing the transcriptions into n-tuple word sequences.
Namely, each phrase is a substring of a sentence. The
number of words in a phrase is constrained to be three
or less in this experiment. The phrases having higher fre-
quency than some thresholds are selected as candidates.
The candidate phrases are regarded as units for generat-
ing the grammar fragments. Each grammar fragment is
acquired via clustering of candidate phrases based on their
similarity and is represented as a conventional finite-state
machine.

A Fragment grammar is generated by using the gram-
mar fragments. The fragment grammar furthermore de-
fines the association between phrase and call-type. Ex-
amples of the association with the call-type, the distance
calculation, and the phrase clustering algorithm are shown
using only phrases in Sections 3 and 4. We remark, how-
ever, these can generally be applied in a straightforward
manner to grammar fragments or sequences thereof.

3.2 Syntactic and Semantic
Associations of a Fragment

There are many standpoints for the linguistic terms syntaz
and semantics, so that we first clarify our usage of these
terms in this section. In this discussion, the syntactic
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association signifies the relationship between a grammar
fragment and phrases succeeding or preceding the frag-
ment. If the roles of fragments are similar to each other in
spoken dialog, then the distribution of these phrases will
be similar between the fragments. On the other hand, the
semantic association focuses on the association between
a fragment in spoken language and the call-type corre-
sponding to the speech. The distribution of call-types
for a fragment must be comparable to that for another
fragment, if the two fragments are to be clustered. The
semantic association is therefore the cross-channel associ-
ation between speech and call-types.

Syntactic Asscciation
Preceding phrases Succeeding phrases
cst ft) C(f*s#1)
181 "onmy” "please EOS" 78

121 "use my” C(ft)=962 "call EOS” 73
90 “make a” L -~ “number EOS” 45
82 "tomy” calling card "number is” 26

42 “using my” "call please” 24

calling_card 886
dial_for_ me 214
other 22
Call types \ how _to dial 19

billing_credit 15
Cle; f*) A e
Semantic Association

Figure 1: Syntactic and Semantic
Association of a Fragment

An example of the syntactic and semantic associations
of a fragment is illustrated in Figure 1. The symbol f
denotes a grammar fragment, p, s and c define preced-
ing or succeeding phrases and call-types respectively. In
Figure 1, f comprises only one phrase “calling card”. Suf-
fixes such as t and £ + 1 means order in sequence. Given
a phrase, fragment, call-type or combination thereof as
an argument, the function C( ) counts the frequency of
the argument in the training transcriptions. For instance,
C( ft stt1) denotes the frequency of the fragment f fol-
lowed by a phrase s. BOS and EOS denote Beginning-
Of-Sentence and End-Of-Sentence, respectively. Figure 1
shows that the fragment “calling card” was observed 962
times in the training transcriptions. The phrase “on my”,
for instance, preceded that fragment 181 times and “pum-
ber is” succeeded it 26 times. The call-type calling.card
was associated with the fragment 886 times, which is com-
paratively high frequency among the call-types. By count-
ing preceding and succeeding phrases, two syntactic prob-
ability distributions for each fragment are obtained. The
call-type probability distribution for each fragment is also
obtained by counting call-types assigned to transcriptions
in which the fragment is observed. This call-type proba-
bility distribution represents a semantic feature vector for
a fragment.

In order to generate syntactic probability distribu-
tions, a set of phrases which precedes or succeeds frag-
ments is generated first. In the following discussion, a
phrase that succeeds or precedes a fragment is called its
contezt. Though in our experiments the context consists
of single words, our algorithm can be applied to the longer
context so we describe the method in the general case.
Consequently the context can contain words and non-
terminal symbols corresponding to grammar fragments.
The number of words and non-terminal symbols in each
context is equalized for computation of syntactic proba-
bility distributions. A contexzt-frequency list S for all frag-
ments is then generated by storing all phrases of length
N, together with their frequencies. Using §, a unigram
probability distribution is generated. This unigram prob-
ability distribution is utilized for back-off smoothing the
syntactic probability distribution of each fragment. A set
of call-type frequencies is also obtained from training tran-
scriptions and can be utilized for smoothing the semantic
probability distribution.

Three probability distributions for each grammar frag-
ment are obtained by using preceding and succeeding con-
text frequencies, and call-type frequency. The bigram
probability distributions focusing on succeeding and pre-
ceding contexts are denoted in Equations (1) and (2), re-
spectively.

C’( f} s2+1 ) C( fgt' wi"’lw?’z .. .w;ZNc )

p(siE) =

C(fj) C(fj)

(1)

t—1) ety _ c(st™t 1) _ C(wf-Nc,..wial gt
(s, |fj)— 67 = eA)

)

In both Equations (1) and (2), s; denotes the i-th con-
text stored in the context frequency list S, f; is the j-th
grammar fragment in the fragment grammar, w; denotes
the k-th word in the context s;, N. (N, > 1) is the num-
ber of items referred to as the context. Suffix such as ¢,
t+ 1 and t — 1 denotes order in sequence of word, con-
text, or fragment. The function C( ) counts frequency of
a sequence in the training transcriptions as described in
3.2.

The context si™! and si™' are equivalent to word se-
quences w{"'lw;'*'z . -wf\',tm and wi“m ven wiz_lwil,
respectively. The larger the parameter IV is set, the more
the variety in context can be theoretically observed, be-
cause these Equations refers to not word but context. In
practice, however, these probability distributions become
sparse when the parameter N, is large. Therefore, the pa-
rameter N, generally should be determined based on the
size of the training transcriptions. These two probabil-
ity distributions represent syntactic feature vectors of the
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grammar fragments. On the other hand, the probability
distribution focusing on semantic associations can be ob-
tained from the call-type frequencies. Equation (3) shows
a probability distribution based on call-type frequencies.
The symbol ¢; denotes one of the call-types in this task
and C(¢; f; ) is the frequency of the call-type c; associated
with the phrase f;.

_C(ei fy)

=) ®

(el f7)

3.3 Kullback-Leibler Distance

The Kullback-Leibler distance is one of the most popular
distances for measuring similarity between two probabil-
ity distributions. Because of the logarithmic term in the
Kullback-Leibler distance, the probabilities in Equations
(1) and (2), and (3) must be positive. Therefore, back-
off smoothing is applied in advance to each probability
distribution by using a unigram probability distribution.
The context frequency list S described in Section 3.2 and
the set of call-type frequencies are utilized to make the
context and the call-type unigram probability distribu-
tions, respectively. Equation (4) shows the definition of
the Kullback-Leibler distance between fragments f; and
fa exploiting the succeeding context probability distribu-
tions.

A t+1) et
N S; b
BsiTHFE) - log g( 1)

GRTI

dy(fi fa) =,

Vs; €S

where § is the context frequency list described in Sec-
tion 3.2. The symbol s; is one of the context stored
into the context frequency list. Symbols $(si*?|f}) and
P(si1|f}) are the smoothed probability distributions for
the fragment f; and fa, respectively. A distance based on
the preceding context probability distributions can also
be measured in the same manner. Equation (5) defines
the distance based on preceding context probability dis-
tributions.

2(siHA)

PrEaTI

dp(f1 f2) = Y B(sif]) -log

Vs; €S

where p(si7t|f¢) and H(si™!|ff) are smoothed prede-
cessor probability distributions for the fragments f; and
fa, respectively. Equation (6) defines the distance based
on call-type probability distributions. In Equation (6),
¢; is one of the call-types belonging to the call-type set
C. p(eilf1) and p(c;|f2) are smoothed probability distri-
butions for the call-type c; associated with fragments f;
and f,, respectively.

_ ey 1o Dlelf1)

de(f1 f2) vgop(q|f1> log 227

In general, the Kullback-Leibler distance is a asym-

metric measure. Namely, the distance from f; to fp is

not equal to that from f; to f;. We therefore symmetrize

the Kullback-Leibler measure by defining each type of dis-

tance as the average of two distances measured from both

fragments. Thus the fragment distances shown in Equa-
tions (7), (8) and (9) are used in fragment clustering.

_ ds(f fa) + ds(fa fr)

(6)

Ds(fl fz) = 3 (7)
Dy(fi fo) = dp(f1 o) %2— do(f2 f1) ©
De(fi f2) = de(f1 fa) 42- de(fz f1) ©

4 Grammar Fragment Clustering

The basic idea for grammar fragment clustering is that the
fragments having a comparatively small distance from a
reference fra,gmerit are regarded as being similar and are
clustered into the same grammar fragment. In this study,
however, three distances based on preceding contexts, on
succeeding contexts and on call-types are obtained be-
tween fragments. Therefore the fragments of which all
distances are small are clustered together. At first all
candidate phrases described in 3.1 are generated from the
training transcriptions. Then each candidate phrase forms
a grammar fragment as the initial set of grammar frag-
ments. Namely each grammar fragment consists of one
candidate phrase at the first stage. The following proce-
dure in the fragment clustering algorithm is described as
follows.

The frequency of each grammar fragment is obtained
by summing candidate phrase frequencies. Grammar frag-
ment fo having the highest frequency and consisting of one
phrase is selected as the reference fragment. All fragments
are sorted in the order of fragment distances measured
from fo. The fragment distance lists based on preceding
contexts, on succeeding contexts, and on call-types are
sorted independently. Thus three fragment lists in order
of distance are obtained as the result of the sorting. In
each fragment list, the subset of fragment for clustering is
determined based on the maximum difference in distance
between successive fragments in that list. For instance,
in the fragment list based on the distance on succeeding
contexts, the number of candidate fragments N,(fo) is
determined by:

N.(fo) = argmax { Ds(fo fix1) — D:(fo fi) } (10)

1<i< N
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Table 1: An Example of Fragment Clustering with reference “charge it to”

Preceding Context Succeeding Context Call-type
Rank | Phrase D,(fof;) | Phrase D,(fof:) | Phrase D fofs)
11 charge 1t 0.01 charge this to 0.53 charge it - 0.01
2 { bill it to 0.47 it charged to  0.55 it to my 0.02
3| bill it 0.48 this call on 0.55 and charge it 0.03
4 | put it on 0.67 trying to use  0.55 and bill it 0.04
5 | have it 0.84 put this on 0.59 bill it to 0.08
6.| put it 1.03 this on 0.63 it to 0.09
7 | charge 1.35 put it on 0.66 call and bill 0.09
8 | I keep getting 1.44 call using 0.67 and have 0.10
9 | then I 1.64 charge to 0.68 ball 4t 0.10
10 | T calling card ~ 1.81 bill it to 0.71 charged to my  0.10
17 | I can’t seem 2.42 like to use 0.88 to my 0.17
18 | they said 2.52 N, | using 0.88 charge to 0.18
19 [ charge to 3.04 it on 0.91 to bill 0.21 N,
20 | he 3.07 use 0.94 ike to bill 0.27
21 | I didn’t 3.23 billed to 1.10 have it 0.29
22 | reverse 3.26 it billed to 1.16 it charged to 0.29
23 | I can’t get 3.29 call with 1.38 billed to my 0.30
24 | for some reason 3.30 ball this to 1.91 a call and 0.31
25 | see if 3.31 charge to 235 it charged 0.31
26 | every time 3.36 on 2.79 N, | billed to 0.32
27 | I got 3.48 give you 4.02 phone call and  0.34
28 | I can’t 3.55 number to 4.69 to charge 0.37

where, f; and fi,, are rank ordered fragments with re-
spect to the distance on succeeding context. Dy(fo fit1)
and D,(fo f;) are the distance from. reference fre.x.gment “hi operator”
fo to fragment fiy; and f;, respectively. The distance “yes please”
D,(fo f;) monotonically increases with i. N, is the max- “p?

Table 2: Example of Grammar Fragments
< 000 >

“yes good morning”
“yes ma’am”  “yes hi”

“yeah”  “yes”  “yes operator”

imum number of fragments to be compared. The number < 001 >

of candidate fragments based on the distance focusing on “a”  “aa”

preceding contexts Np(fo) and call-types N.(fo) can also < 002>

be determined by using distances Dp(fo f;) and Dc(fo fi)- O‘ggake ? _ “place”
< >

Following these determinations, the maximum number of

“@, 2 N » ‘ ”
candidates among three types of distance is determined “;p;zztlzrulkgﬂhke «f m;ef”wanfp d lile”
by: <004 >
“make this”  “place a”  “make a”
< 005 >
N(fo) = max { Np(fo), Ns(fo), Ne(fo) } (11) “have” “need” “want” “would like”
< 012 >
All fragments, whose rank order in each fragment list ” O“lc?(’zling card” _ “credit card”

is less than N(fo), are selected as the candidates of simi-
lar fragments. Fragments listed within the ranking N'(fo)
among all three types of candidate list are syntactically
and semantically similar to the reference fragment fo.
Such fragments are merged into the reference fragment
fo. Equation (12) shows the criterion of fragment classi-
fication based on fragment distance order.

fo={fil Op(f:i) SN(fo) &
Os(f:) S N(fo) &

“collect phone call”  “collect call”

“collect call please”

< 015>
“want to make”
“like to make”

“Iike to place”

< 028 >
“home phone”  “home number”
“home phone number”

< 038 >

“charge it to”  “bill it to”  “charge to”

where fj denotes the new grammar fragment gener-

O.(F:) < N(fo)} (12) ated by this merging. Op(fi), Os(f:), and Oc(f;) are the
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ranked order focusing on preceding and succeeding con-
texts, and call-types, respectively. If there is a fragment
similar to the reference fragment, reference fragment fo
is updated by clustering similar fragments. The cluster-
ing algorithm is iterated over the updated fragment set.
If the grammar fragment fj is not augmented, fo is re-
ferred to as one of the candidates when another fragment
is selected as the reference in this iteration.

Table 1 shows an example of fragment clustering. In
this example, the reference fragment contains “charge it
to” only. All distances were measured from this refer-
ence fragment. Two fragments “bill it to” and “charge
to” were merged into the reference fragment. In the frag-
ment list on Table 1 focusing on the preceding context,
for instance, the maximum difference in the distance de-
termined the number of candidate fragments N,{ “charge
it to”) = 18. The maximum number of candidates among
three types of distance N( “charge it t0”) = 26 based on
the equation (11). The reference fragment “charge it to”
and other two fragments “bill it to” and “charge to”,
which were listed within the ranking N '(“charge it to”)
= 26, were merged into the reference fragment to form
the fragment grammar.

Table 2 shows an example of the fragment grammar
generated through the algorithm with the following pa-
rameter values. The number of words in a phrase was
constrained up to three. Each phrase observed 30 times or
more in the training transcription was selected as a candi-
date to participate in the clustering. The maximum num-
ber of candidate fragments was N,,, = 80. The fragment
clustering algorithm yielded a total of 288 phrases in 111
grammar fragments. The average number of phrases in a
grammar fragment was 2.59 ( = 288 / 111 ). A grammar
fragment named < 000 > consists of 9 phrases as shown in
Figure 2. This fragment contains the maximum number
of phrases. The fragment demonstrates that several kind
of greeting phrases, which are generally observed in spon-
taneous speech dialogs, were clustered by our algorithm.

Some phrases in the fragment can be partially replaced
into another grammar fragment. Namely, by using the
fragment having a higher fragment frequency than that of
a target fragment, the fragment is parsed and some words
in the fragment can be replaced by a non-terminal symbol
representing another fragment. A phrase “want to make”
in the fragment < 015 > in Figure 2, for instance, can be
decomposed into “want”, “to”, and “make”. The words
“want” and “make” are one of the phrases in the frag-
ment < 005 > and < 002 >, respectively. Therefore, the
phrase “want to make” can be represented as “< 005 > to
< 002 >”. As a consequence of this parsing, the fragment
grammar acquires the ability to represent not only phrases
given as input but also word sequences not observed in the
training transcriptions. Figure 3 shows an example of the

grammar fragment generalization by parsing fragments.
In this example, the phrases in the fragment < 015 > are
generalized by using the fragments < 002 > and < 005 >.
Three phrases in the fragment < 015 > can be repre-
sented as “< 005 > fo < 002 >” and “like to < 002 >".
These non-terminal symbols in fragment < 015 > are ex-
panded into phrases such as “need to place” and “would
like to place”. As a consequence of this generalization,
fragment < 015 > has acquired additional seven phrases
such as “want to place”, “would like to make”, and “have
to place”.

The generalization of grammar fragments is performed
in order of the grammar fragment frequency. A parser
replaces word sequence of each phrase into non-terminal
symbol that represents the grammar fragment in which
the phrase belongs. When a set of grammar fragments has
been created, the frequency of each fragment is obtained
by summing the frequencies of the phrases represented by
that fragment. By applying the grammar fragment gen-
eralization, 495 phrases are created in 85 grammar frag-
ments. This reveals that the average number of phrases
in a fragment = 5.82 ( 495 / 85 ) was increased by this
generalization.

Table 3: An example of Grammar Fragment

Generalization
a. Several Grammar Fragments

< 002>

“make” “place”
< 005>

“ha,ue)’ I‘need”

“want” “would like”
< 0I5 >

“want to make”  “like to place”

“like to make”

b. Grammar Fragment created
from other Fragments

< 015 >

“< 005 > to < 002 >” “like to < 002 >7”

word sequences matching
this grammar fragment
“want to place”  “would like to place”
“need to place”  “have to place”
“want to make” ‘“would like to make”
“need to make”  “have to make”
“like to place” “like to make”

For call-type classification, salient grammar fragments
are automatically generated from the parsed training
transcriptions and associated call-types [Gorin97]. Each
salient grammar fragment comprises a call-type of the
highest association score and a corresponding sequence
that comprises conventional words and non-terminal sym-
bols for grammar fragments. Figure 2 shows examples of
the salient grammar fragment. The fragment grammar en-
ables the salient grammar fragments to represent several
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kinds of word sequences having both syntactic and seman-
tic similarity. In the call-type classification process, the
ASR output is first parsed by using the fragment grammar
and the salient grammar fragments are extracted from the
parsed output. A call-type classifier determines 1st and
2nd most likely call-types for each utterance by using the
association between salient grammar fragments and call-
types. The call-type classification performance is evalu-
ated by a scorer by using call-type assigned to each test-set
utterances.

]

l 1.00 THIRD_NUMBER  "<038> my <028> please”

A A AP

<038> "my” <028> "please”
"charge it to” "home phone number”
"bill it to” "home number”
“"charge to” "home phone”

l 0.93 CALLING CARD  "<003> toput it” l

S - N = N - N

<003> "to” "put
"operator I'd like”
"I want”
"l would like”
1 like”
"I'd like”

” "

i

"

L 0.92 . COLLECT "<013> to this number” '

SN~ NG~ N - N

<013> "to” "this” "number”
"collect phone call”
“collect call please”
"collect call”

Figure 2: An Example of
Salient Grammar Fragments

5 Experiment

The engine used for speech recognition is the AT&T Wat-
son recognizer [Sharp97]. The speech recognition pro-
cess is performed using the Variable N-gram Stochas-
tic Automaton ( VNSA ) [Riccardi96] as the language
model. The acoustic model for the process was trained
with a database of telephone-quality spontaneous utter-
ances. The training transcription contains 7,844 sentences
while the test transcription comprises 1,000 sentences. For
grammar fragment acquisition, the number of words in a
phrase was constrained to be three or less in this exper-
iment. Each phrase observed 30 times or more in the
training transcription was selected as a candidate to par-
ticipate in the clustering. In total 1,108 candidate phrases
were obtained. Context length N, for computing the dis-
tances between two fragments was set to one. In all, 3,582

context phrases are used for creating the syntactic prob-
ability distributions. The maximum number of candidate
fragments, N,,, was 80.

In the call-type classification, there are two important
performance measures. The first measure is the false re-
Jjection rate, where a call is falsely rejected or classified
as the call-type other. Since such calls are transferred to
a human operator, this measure corresponds to a missed
opportunity for automation. The second measure is the
probability of correct classification. Errors in this measure
lead to mis-understanding that must be resolved by a dia-
log manager[Boyce96] [Abellad7]. Figure 3 illustrates the
probability of correct classification versus the false rejec-
tion rate. As a baseline for comparison, the performance
without the fragment grammar is also shown in this figure.
The curves are generated by varying a salience threshold
[Goring5a).

100
95
£
= 90
g
8 S
2 85 i %
& A
P
2 WA ——
g X; / -
=75
E
S 2 l‘:; Fragment Grammar, Rank2 VvV ___|
= Baseline, Rank2 A
Fragment Grammar, Rank 1 0O
85 Baseline, Rank1 ¢
i | i i
60 i I j i
0 10 20 30 40 50 60 70

False Rejection Rate (%)

Figure 3: Call-type Classification Performance

The call-type classification performance is significantly
improved by the fragment grammar. This improvement is
because the salient grammar fragments used in the call-
type classifier now accept various phrases that are syn-
tactically and semantically similar to the originals pro-
viding generality. From this experiment result, we can
conclude that by generalizing grammar fragments, unob-
served phrases are obtained without deteriorating the call-
type classification performance.

A example of variety of phrases accepted by a salient
grammar fragment is illustrated in Figure 4. The fragment
“BOS < 017 > < 004 > < 013 > ” shown in Figure 4 has
an association with the call-type “COLLECT” with an as-
sociation score of 0.97. The fragment classes “< 017 >”,
“< 004 >”, and “< 013 >” used in this salient gram-
mar fragment can be expanded into phrases and other
fragment grammars. A grammar fragment “< 017 >”,
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for instance is expanded into two path, “< 003 >" or “I
< 005 >”. In consequence of this expansion, the salient
fragment network fully expanded is obtained as shown in
the third of Figure 4. This phrase network accepts a total
of 126 types of phrases. It is remarkably worthwhile not-
ing that some phrases represented by this salient grammar
fragment such as “BOS I like to make a collect phone call”
are not observed in the training tra,nscriptions'. In all, 246
unseen salient phrases have been discovered by clustering
and generalizing the fragment grammar.

A A A"

BOS <017> <004> <013>
[ a] Salient Grammar Fragment ( not Expanded )

<003>

<001>

“collect call please

"to"  <002>
T <005>

"this” ~ "collect call”

"collect phone call”

[ b] Salient Grammar Fragment ( Partially Expanded )

"operator I'd like”

”[ want”
"I would like” -
Tlike* . 2,
“Pdlike” ~make” "84 rcollect call please

t0”- “place” "ipis”
oy “have”

"need”
d "want”

“would like"

"collect call”

BOS

“collect phone call”

[ ¢ ] Salient Grammar Fragment { Fully Expanded )

Figure 4: Example of Phrases Accepted by
a Salient Grammar Fragment

6 Conclusion

‘We have described a new method for automatically acquir-
ing grammar fragments for understanding fluently spoken
language. Grammar fragments representing a set of syn-
tactically and semantically similar phrases were generated
by using three probability distributions: of succeeding
words, of preceding words, and of associated call-types.
The similarity between phrases was measured by apply-
ing the Kullback-Leibler distance to these three proba-
bility distributions. Phrases being close in all three dis-
tances were clustered into a grammar fragment. By pars-
ing phrases in grammar fragments, the fragment gram-
mar detected 246 phrases in the test-set that were not

present in the training set. This result revealed that un-
seen phrases have been automatically discovered by our
new method. The experimental results show that a 3%
improvement in the call-type classification performance
was achieved by introducing the grammar fragments.
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