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In this paper, we describe automatic speech recognition system where features extracted from human speech 
production system in form of articulatory movements data are effectively integrated in the acoustic model for 
improved recognition performance. The system is based on the hybrid HMM/BN model, which allows for easy 
integration of different speech features by modeling probabilistic dependencies between them. In addition, 
features like articulatory movements, which are difficult or impossible to obtain during recognition, can be 
left hidden, in fact eliminating the need of their extraction. The system was evaluated in phoneme recognition 
task on small database consisting of three speakers’ data in speaker dependent and multi-speaker modes. In 
both cases, we obtained higher recognition rates compared to conventional, spectrum based HMM system 
with the same number of parameters. 

 
ハイブリッド HMM/BN モデルに基づいた調音特徴 

とスペクトル特徴の統合 
 

コンスタンティン マルコフ 1、党 建武 1,2,3、飯塚 陽介 2、中村 哲 1 

 
本研究では、我々は音声生成メカニズムにおける調音器官の動きを音声認識システムの音響特徴量に統合し、音声認識性能を改

善する方法について提案する。本方法は、ハイブリッド HMM/BN モデルに基づいており、確率的依存関係に基づいて異なる特徴

量を容易に統合することができる。さらに、この方法では、認識時に観測できない調音器官の動きの特徴を、観測しないまま隠

れ変数として音声認識を行うことができる。本方法を 3名の発話者からなるデータベースを用いて、特定話者モード、複数話者

モードで音声認識実験を行い評価した。その結果、両方の場合において、同一のパラメータ数を用いた場合の従来の HMM による

方法に比較して高い性能を得られることを明らかにした。 

 

 

1. Introduction 

Most of the current state-of-the-art speech recognition systems are based on the Hidden Markov Model 
(HMM) framework where speech is modeled as a sequence of disjoint non-overlapping units. While this 
approach has been most successful so far it does not take much into account the human speech production 
mechanism. It has been noted that “[the HMM] is a very inaccurate model of the speech production process” 
[1].  

To account for co-articulations, the common phenomena of speech production, in ASR, a number of models 
based on hidden dynamic models have been proposed [2-5].  Such models describe the physical process of 
speech production, and attempt to account for the co-articulations and transitions between neighboring frames 
and phones.  In [2], Deng considered the effects of articulatory movements on speech by modeling the dynamic 
properties using a quadratic motion equation, and applied the idea in speech recognition.  Hogden and Valdez 
proposed a method called MALCOM [3], that treated the articulation as continuous movements in a virtual 
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speech production space, and used the continuity of the articulation to compensate some discontinuities of 
acoustic parameters.  Gao et al. [4] tried to build a uniform model for both speech production and speech 
recognition via a combination of the Kalman filter and multi-layer perceptron networks. In [5], Erler and 
Freeman proposed HMM based Articulatory Feature Model (AFM) in which each state represents one point in 
the acticulatory space defined by several hidden articularoty features.  Common to all these approaches is that 
the acticulatory model and features are considered hidden.  This allows for eliminating the need of observed 
articulatory data, which is difficult to collect for training and, in practice, impossible to obtain for recognition. 

In contrast, our speech recognition system makes use of observed articulatory data, but only for the acoustic 
model training. During recognition, the system uses only acoustic data in form of the standard MFCC features. 
Such scenario is possible when the hybrid HMM/BN model [6] is applied. In this model, articulatory movement 
data and acoustic speech data are integrated at HMM state level using Bayesian Network (BN), which can 
model probabilistic dependency between them. The BN parameters are estimated using standard statistical 
algorithms using both articulatory and acoustic data. In recognition, however, articulatory data are assumed 
hidden and no observations are required. This allows to fully account for the speech production mechanism in a 
statistical model, so that the automatic parameter estimation can be retained and a practical system can be built.  

 

Articulatory data 

The articulatory data used in this study was  collected using the electromagnetic midsagittal articulographic 
(EMMA) system at NTT, Japan [7].  Figure 1 shows the placement scheme of the receive coils used in the 
experiment.  Four receive coils were placed on the tongue surface in the midsagittal plane, named T1 through 
T4, and one coil for each of the upper lip, lower lip, maxilla incisor, mandible incisor (LJ), and the velum, 
respectively.  The coordinate system is shown in the figure, where the maxilla incisor was chosen as origin. 
The acoustic signal and articulatory data were recorded simultaneously. The sampling rate was 250 Hz for the 
articulatory channels and 12 kHz for the acoustic channel. The data was collected from three adult male 
speakers each reading about 360 Japanese sentences at normal speech rate. 

 
 

 
 

Figure 1: The placement of the reserve coils in the EMA experiment, and the coordinate system used in this study.  
The gray circles show the observation points in the target vector. 

 

To confirm validity of the articulatory data for the speech recognition task, we conducted a preliminary 
experiment using the acoustic data and the articulatory data alone as well as both of them together. The 
articulatory data obtained from the eight observation points are time-varying vectors with 16 components 
accounting for both the x- and y-coordinates. Thus, our articulatory feature vectors were 48 dimensional 
(including first and second order coefficients). Using these features we trained 27 monophone 3-state 
left-to-right HMMs from 900 (3x300) utterances and the rest 180 utterances were used as test data. The same 
experimental setup was applied with the acoustic data alone. The feature vectors in this case were 16 MFCC 
coefficients (including C0) and their delta and delta-deltas. In the third case, acoustic and articulatory 
parameters were combined by replacing the delta-delta coefficients of the acoustic feature vectors with the static 
articulatory coefficients. Table 1 shows the phoneme recognition accuracy for these three cases using HMMs 
with different number of mixtures per state.  
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Table 1:  Phoneme recognition accuracy obtained in three cases: acoustic data alone, articulatory data alone, and 
combination of both. 

Mixture # Artic. Data Acost. Data Acoust.+ Artic. Data 

3 74.70 80.77 83.92 

4 75.01 81.34 84.12 

5 75.80 81.81 84.76 

8 76.28 82.53 85.64 

12 78.42 84.04 86.82 

16 79.09 81.93 84.68 

 
The results suggest that articulatory data is not as good as the acoustic data, but when combined together, clear 
performance gain is observed.  This fact indicates that articulatory data posses some additional information 
which is useful for speech recognition. Since the articulatory data is not easy to be obtained, the remaining 
question is how to utilize the available limited data.  

The hybrid HMM/BN model 

One possible answer is to use the hybrid HMM/BN acoustic model [6], which we briefly describe in this 
section. 

This model is essentially a combination of  the Hidden Markov Model and  Bayesian Network, where the 
temporal characteristics of speech signal are modeled by HMM state transitions, while HMM state probability 
density is modeled by the Bayesian Network.  The structure of the HMM/BN model is shown in Figure 2. 

q1 q2
q3

State Bayesian Network

 

Figure 2: The hybrid HMM/BN model structure. 

This model is described by two sets of probabilities: HMM transition probabilities P(qj|qi) and joint probability 
distribution of the Bayesian Network P(X1,…,Xk), where Xi, i=1,…,K are the BN variables. The BN joint 
probability density function (PDF) can be factorized as: 

∏
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where Pa(Xi) denotes the parents of variable Xi. 
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Figure 3: Simple state BN structure. Q is the HMM state variable, X – speech observation variable and Y –some 
additional variable. 
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Figure 3 shows an example of a simple state BN structure with three variables. By circle we denote 
continuous variables, and the squares are used for discrete ones.  Therefore, Q and Y are discrete and X is 
continuous.  The arcs  represent dependencies between parent and child nodes which can be modeled by 
Conditional Probability Tables (CPT) if the child is discrete or by Gaussian  pdf if the child is continuous.  

State output probability for the BN of Fig. 3 can be calculated from the joint PDF in a closed form. 
According to Eq. 1: 

 
)(*)|(*),|(),,( QPQYPQYXPQYXP =               (2) 

 
If  all the BN variables are observable, then state output  probability is just P(X|Y,Q) which is one of the 

BN parameters.  However, much more interesting for our task is the case when the additional variable Y is 
hidden. Then, we are looking for P(X|Q): 
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One can see that this expression is actually equivalent to the conventional mixture of Gaussians expression if 
simply treating the term of P(Y=y|Q) as a mixture weight coefficient for the Gaussian P(X|Y=y,Q). After this 
treatment, the HMM/BN state output calculation becomes  the same as of the standard HMM.  Thus, the 
existing HMM decoders can work with the HMM/BN model without any modification.   

Training of the hybrid HMM/BN model is based on the Viterbi algorithm and consists of following steps: 
1・Initialization: Set initial model parameters randomly or using bootstrap HMM model. 
2・Viterbi alignment: Obtain time aligned state segmentation of the training data. 
3・BN training: Train BN using state labeled training data.  
4・HMM transition probabilities updating: Update HMM transition probabilities using standard 

forward-backward algorithm. 
5・Convergence check: Stop, if convergence criterion (training data likelihood increase or preset number of 

iterations) is met, otherwise go to step 2.  
Training of the state BN at step 3 above is done using standard statistical methods. For small networks, when 

all variables are observable during training, simple ML parameter estimation can be applied. If some of the 
variables are hidden, then conventional EM algorithm can be used. 

 

2. Integration of the articulatory data 

In the previous section we showed how an additional data is used together with the speech observations by 
employing the hybrid HMM/BN model. Obviously, the articulatory  data can be represented by the additional 
variable Y. The BN of Fig.3, however, requires this additional  variable to be discrete. Discretization of the 
continuous articulatory vectors can be done using standard VQ technique, but at the expense of  loosing some 
resolution accuracy. VQ labels of the articulatory data  are, in fact, observations of the additional articulatory 
variable. Thus, all BN variables are observable for training and the estimation of Gaussian parameters for 
P(X|Y,Q) can be done through ML algorithm. Weights P(Y|Q) are obtained from label counts. During 
recognition, articulatory observations are not necessary if HMM/BN state output probability is obtained from Eq. 
3 because articulatory variable is hidden. 

3. Experiments 

In this section, we describe our experimental conditions and report results obtained using speaker dependent 
and multi-speaker acoustic models.  

Common to both cases is the speech and articulatory data processing. Speech front-end was same as the one 
used in the preliminary experiment we described in Section 2. 12kHz sampled speech wave-forms were framed 
at 8ms rate with 20ms long Ham-ming window. Feature vector consisted of 16 MFCC coefficients with their 
delta and delta-deltas. The baseline acoustic only system has 27 phoneme HMMs with 3 states and various 
number of mixtures and was trained using the HTK toolkit. Since articulatory data were recorded 
simultaneously and sampled at 250 Hz (which is equivalent to 4 ms frame rate), we used every other articulatory 
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vector corresponding to one frame of speech. As it is required  by our HMM/BN model, articulatory features 
were quantized using VQ codebooks with sizes ranging from 4 to 128 and trained on the same data. Prior to the 
vector quantization, articulatory data dimension was reduced from 16 to 4 using PCA analysis technique with a 
loss of no more than 20% of the information. VQ labels of the quantized articularory vectors were used as 
training data for the BN articularory variable. 

3.1. Speaker dependent model results 

From each of the three speakers training data (300 utterances) we trained several HMM/BN models using 
articulatory VQ codebooks with different sizes. Ideally, the size of the codebook would determine the number of 
Gaussians per state. However, since the amount of data aligned to different states and having different 
articulatory labels varies significantly, Gaussians were trained only when this amount of data exceeded 
empirically set threshold. Thus, different states had different number of mixtures and we use the average 
mixture per state to describe the model complexity.  

Figure 4 shows phoneme recognition results for three speakers for both HMM/BN and baseline HMM 
models.  Although mixture numbers in the figure are integers, actual average mixture number of the HMM/BN 
is within 10% of those numbers. The test data were the same as those used in the preliminary experiment of  
Section 2 and consisted of  60 utterances per speaker. 
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Figure 4: Phoneme recognition accuracies using the acoustic data alone (light-color bars) both acoustic and 
articulatory data (dark-color bars) for three speakers. 

 

The basic tendency of the results is that the accuracy of HMM/BN is higher than that of HMM.  Especially, 
the accuracy got worse for HMM with 16 mixtures, but there was almost no degradation for the HMM/BN. The 
recognition accuracy for Speaker 3 is always lower than that from the others, but it shows the same tendency.  
This experiment reveals two facts: one is that the speech production mechanism is helpful for ASR; and the 
other is that the HMM/BN model is capable of combining additional information in an ASR system. 
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3.2. Multi-speaker model results 

One multi-speaker HMM/BN model was trained using the training data from all the speakers (900 utterances). 
Figure 5 shows the average accuracy over the three speakers for this model (squares) and the baseline acoustic 
features only HMM (diamonds) in the same phoneme recognition task. Also, shown in this figure is the result 
obtained in Section 2 using combined acoustic and articulatory feature vectors (triangles).  For the 
multi-speaker case, HMM/BN also performs better than the baseline HMM.  However, replacement of partial 
acoustic parameters by articulatory data in MFCC vectors shows the highest accuracy.  This means that there is 
more potential for utilizing the articulatory data in ASR. 
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Figure 5: Multi-speaker model results. The diamond line shows baseline HMM results, the square line - HMM/BN, 
and the triangle line – HMM with combined of acoustic and articulatory feature vectors (from Section 2).   

4. Conclusion 
This study confirmed that articulatory data have some useful information to speech recognition, which is not 
included in speech sounds.  The HMM/BN model was employed to combine the articulatory data and the 
experimental results showed its superiority over the conventional HMM in almost all cases.  This study 
demonstrates a way to apply the speech production mechanism in an ASR system.  
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